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Photoplethysmography (PPG) is increasingly used in digital health, exceptionally in

smartwatches. The PPG signal contains valuable information about heart activity,

and there is lots of research interest in its means and analysis for cardiovascular

diseases. Unfortunately, to our knowledge, there is no arrhythmic PPG dataset publicly

available—this paper attempt to provide a toolbox that can generate synthesized

arrhythmic PPG signals. The model of a single PPG pulse in this toolbox utilizes two

combined Gaussian functions. This toolbox supports synthesizing PPG waveform with

regular heartbeats and three irregular heartbeats: compensation, interpolation, and reset.

The user can generate a large amount of PPG data with a certain irregularity, with

different sampling frequency, time length, and a range of noise types (Gaussian noise and

multi-frequency noise) can be added to the synthesized PPG which can all be modified

from the interface, and different types of arrhythmic PPGs (as calculated by the model)

generated. The generation for large PPG datasets that simulate PPG collected from

real humans could be used for testing the robustness of developed algorithms that are

targeting arrhythmic PPG signals. Our PPG synthesis tool is publicly available.

Keywords: digital health, data modeling, data generation, big data, biosignal generation, PPG construction, signal

simulation, generative model

1. INTRODUCTION

Photoplethysmogram (PPG) signal contains rich information about the cardiovascular system (1).
In the past decade, some studies have used PPG to calculate heart rate, oxygen saturation, blood
pressure, cardiac output, cardiac index, peripheral vascular resistance, and other indicators of
cardiovascular function, and many algorithms were developed to calculate these indices (2).

Four PPG databases, at time of writing, are publicly available: Multiparameter Intelligent
Monitoring in Intensive Care (MIMIC) (3), the University of Queensland Vital Signs Dataset (4),
Vortal Dataset (5), and PPG-BP (6). The sampling frequency and time length of PPG signals
are different in different databases; however, most algorithms designed for these databases are
signal-independent. Additionally, it is still a challenge to evaluate the performance of these
algorithms under different PPG types and different signal-to-noise ratios (SNR).
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FIGURE 1 | Types of heartbeat classification based sinus node response to atrial premature depolarization [adapted from (7, 8)]. (A) Regular: d0 = d1 = d2. (B)

Compensation: d1 + d2 = 2d0. (C) Reset: d0 < d1 + d2 < 2d0. (D) Interpolation: d1 + d2 = d0.

PPGSynth is developed to generate PPG signals across a wider
range of sampling frequencies and time lengths. Three types of
irregular PPG signals also can be generated by the PPGSynth tool.
It can also conveniently manage parameters and graphical output
through a graphical user interface (GUI). This toolbox does not
require highly experienced users, but it is recommended that you
have basic knowledge of PPG signal and cardiac irregularities.

2. HEARTBEAT CLASSIFICATION

The amplitude, duration, and waveform shape of PPG pulses
tend to vary between persons, and they even differ from
moment to moment in the same person. Premature heartbeats
are typical irregular PPG beats. There are two different types
of premature heartbeats, premature atrial contractions and
premature ventricular contractions. This study only focuses on
irregular PPG signals that have premature atrial contractions.
Premature atrial contraction changes the waveform of PPG for
two consecutive beats. In this study, these two beats are defined
as the premature group, and the first beat of the premature
group and the second beat of the premature group are defined
as the first beat and second beat, respectively. The beats without
the influence of premature contractions are defined as reference
beats. The first beat duration is always less than the reference beat
duration. Based on the difference between the durations of the
first beat and second beat, Roskamm and Csapo (7), classified
heartbeats into four types: compensation, reset, interpolation,

and re-entry. Based on their analysis, these four types are defined
as follows:

• Compensation: the second beat is prolonged, and the sum of
the first beat duration and second beat duration is equal to the
duration of two reference beats.

• Reset: the second beat is prolonged, but the sum of the
first beat duration and second beat duration is less than the
duration of two reference beats.

• Interpolation: the sum of the first beat duration and second
beat duration is equal to one reference beat duration.

• Re-entry: the sum of the first beat duration and second beat
duration is less than one reference beat duration.We could not
find a template, within the four databases mentioned above,
that satisfies the definition of re-entry. Therefore, the re-entry
is not included in the current analysis.

A previous attempt (8) on the use of heartbeat classification
using ECG signals inspired the classification of heartbeats in

PPG signals. Based on the previous heartbeat classification (8),

Figure 1A shows the regular heartbeats where the first beat,

second beat, and third beat have equal durations (e.g., d0 =

d1 = d2 = 1, 000 ms). On the other hand, Figure 1B shows

the compensation phase, the second beat (e.g., d1 = 850 ms) is
followed by a prolonged beat (e.g., d2 = 1150 ms) to compensate
the two beats duration of 2,000 ms. During the reset phase
(Figure 1C), the second beat (e.g., d1 = 650 ms) is followed
by a prolonged beat (e.g., 1,150 ms), while in the interpolation
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(Figure 1D), the second beat (e.g., d1 = 400 ms) is followed by
an irregular beat (e.g., d2 = 600 ms).

3. METHODOLOGY

The PPGSynth consists of three main parts: the model of a single
PPG pulse, the pulse duration generator, and the noise generator.

3.1. Model of Single PPG Pulse
The single PPG pulse step is based on a recently published
model (9) that simulates fingertip PPG waveforms. Note that
the adopted model (9) is an early work on healthy subjects;
however, this paper is about arrhythmic PPG beats relating to
cardiovascular patient simulated recordings, which is definitely
a new concept.

The construction of a PPG waveform is regarded as a motion
trajectory in the three-dimensional space established by the
coordinate system (x, y, z). As shown in Figure 2, the periodicity
of PPG is represented by a circular motion.

The motion trajectory in the (x, y) plane is the unit circle.
One cycle of movement on the circle corresponds to a peak-to-
peak interval or heartbeat. The trajectory in the z direction is the
PPG signal. The systolic wave and diastolic wave are simulated in
Gaussian functions. The equation of (x, y, z) is defined as follows:















x(t) = cos (ω(t − t0)− π)

y(t) = sin (ω(t − t0)− π)

z(t) =
∑2

i=1 ai exp (−
(θ(t)−θi)

2

2b2i
),

(1)

where t is time, ω is the angular velocity (which is used to control
the pulse duration), t0 is the end time of the previous beat,π is
used to align the initial point of this model to the position of the
onset in a PPG waveform, and ai, θi, and bi are the amplitude of
the peak, the position of the center of the peak, and the standard
deviation of Gaussian functions, respectively. Additionally, ω is
calculated by:

ω =
2π

T
, (2)

where T is the PPG pulse duration. θ is the four-quadrant inverse
tangent of (x, y), which is introduced as an independent variable
for motion in the z direction and is defined as:

θ(t) = atan2(y(t), x(t)), (3)

with the changes to (x, y), θ is in the range of (−π ,π).
The corresponding changes to x, y, and z over a single period

are shown in Figure 2; these are repeated in the next pulses.
In this figure, the pulse duration was 1 s, and the sampling
frequency was 125 Hz. Obtaining a waveform of the synthetic
PPG pulse that is close as possible to the real PPG pulse through
calculation of model parameters is an optimization problem
(finding the optimal parameters). The objective function was
expressed as follows:

p∗ = argmin
p

(

l
∑

n=1

(zp(n)− s(n))2 + (1− corr(zp(n), s(n)))), (4)

FIGURE 2 | Motion trajectory of a single synthesized PPG waveform. This

figure shows how the Gaussian model simulates a heartbeat of a PPG

waveform.

such that p = {a1, θ1, b1, a2, θ2, b2},
with the constraints:











0 ≤ a2 < a1 ≤ 1

0 ≤ b1 < b2 ≤ 3

−π ≤ θ2 < θ1 ≤ π ,

(5)

where zp(n) is the synthetic PPG, l is the length of the real PPG
s(n), and corr is Pearson’s linear correlation coefficient.

In this study, the interior-point (10) method was used to solve
the optimization problem.

3.2. Variability of Parameters
In real-world PPG, the waveform often varies between pulses—
sometimes dramatically so. To make the synthesized PPG
closer to a real PPG, we used a Gaussian distribution to
generate random parameters for our model. In this paper,
the mean value and standard deviation of each parameter’s
Gaussian distribution are derived from real PPG signals, set
by modeling a PPG pulse (from start of a pulse to the start
of the consecutive pulse). For a PPG trace which has regular
beats; we modeled all pulses in a 5-min PPG from the MIMIC
database (3). However, for a PPG trace which has irregular
beats, the waveform of the first beat and second beat in the
premature group is distinct from the reference beat. We model
three compensation segments (include the first beat and second
beat) from one record of the Queensland database (4) to get
the distribution of parameters in the compensation type. For
reset, four reset segments from one record of the MIMIC
database are used to get the distribution. For interpolation,
three interpolation segments in one record from the Queensland
database are used to calculate the parameters. The mean and
standard deviation of these parameters are shown in Table 1.
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TABLE 1 | The optimal parameters for each PPG template.

PPG type Beat a1 a2 b1 b2 θ1 θ2 Ratio of pulse duration

Regular - 0.997± 0.028 0.225± 0.030 0.641± 0.034 0.937± 0.161 −1.471± 0.147 1.019± 0.102 -

Compensation 1stBeat 0.829± 0.010 0.420± 0.018 0.732± 0.033 1.219± 0.021 −1.008± 0.147 0.450± 0.167 0.830± 0.061

Compensation 2ndBeat 0.785± 0.034 0.405± 0.049 0.678± 0.036 1.115± 0.065 −1.792± 0.080 −0.607± 0.107 1.170± 0.061

Reset 1stBeat 0.774± 0.012 0.774± 0.012 0.647± 0.041 1.007± 0.046 −1.378± 0.180 0.173± 0.180 0.607± 0.019

Reset 2ndBeat 0.995± 0.002 0.197± 0.024 0.778± 0.055 1.045± 0.341 −1.809± 0.203 0.892± 0.325 0.596± 0.484

Interpolation 1stBeat 0.668± 0.151 0.490± 0.006 0.893± 0.034 1.428± 0.062 −0.627± 0.292 0.442± 0.635 0.561± 0.028

Interpolation 2ndBeat 0.595± 0.084 0.537± 0.092 0.889± 0.170 1.321± 0.289 −1.049± 0.207 −0.289± 0.480 0.475± 0.028

Here, θ1 and θ2 are the locations of the first Gaussian distribution and the second Gaussian distribution, respectively. Here, a1 and a2 are the amplitudes, and, b1 and b2 are the widths

of the first and second Gaussian distributions, respectively. Note that in the regular PPG heartbeat, all beats have similar durations based on the standard deviation.

FIGURE 3 | The graphical interface of PPGSynth. The left side is the main dialogue. The edited parameters dialogue on the right side will pop up after pressing the

“Edit” button. The red text show the numbered steps for generating PPGs. This figure shows how to use the graphical interface of PPGSynth.

Note that since we do not have a high-quality re-entry PPG
in our database, this toolbox does not support generating re-
entry PPGs. To not change the irregular category, the duration
ratio of irregular beat and regular beat in synthetic PPG uses
a fixed value instead of a random number obeying Gaussian
distribution. These fixed values are the mean of the ratio of
the pulse duration of the irregular beat and regular beat in
Table 1.

3.3. Pulse Duration
In this study, the PPG pulse duration is defined as the valley-
to-valley interval. To generate a sequence of PPGs, a series of
PPG pulse durations were needed. In this toolbox, reference
pulse durations are generated based on the basic heart rate
and signal time lengths, and then the reference pulse durations
are randomly replaced by two consecutive irregular beats. The
ratios of the first beat duration and second beat duration to the
reference beat duration are calculated from each type of PPG
templates, and the results are shown in Table 1.

3.4. Adding Noise
Two types of noise are available in this toolbox: white Gaussian
noise andmulti-frequency noise. Multi-frequency noise is a set of
noises that have different amplitudes and frequencies. Each noise
is generated as follows:

n(t) = A sin 2π ft, (6)

where A is the amplitude of the peak of the noise and f is the
frequency of the noise.

If necessary, users can add one or more different amplitudes
and frequency noises to the clean synthetic PPG signals.

4. CUBIC INTERPOLATION

The variability of parameters will make the endpoint value of one
beat differ from the next beat’s onset value. In this paper, cubic
interpolation was used to smooth the synthetic PPG. Cubic spline
interpolation involves a spline where each piece is a third-degree
polynomial specified by its values and first derivatives at the
corresponding domain interval’s endpoints. The interpolation
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FIGURE 4 | Four types of PPG heartbeat generated using the PPGSynth. (A) A 5-s regular PPG with white Gaussian noise. (B) A 10 s compensation PPG with

multi-frequency noise. (C) A 10-s interpolation PPG with multi-frequency noise. (D) A 10-s reset PPG with multi-frequency noise. The parameters of each type shown

at each subfigure. Additionally, the pulse parameters associated with each type are shown in Table 1.

involved a total of 0.2 s around the onset. The previous sampling
points of 0.05 s and the last sampling points of 0.05 s were used
to fit the interpolation function. The middle 0.1-s samples’ value
is replaced by the corresponding samples’ value generated by the
interpolation function.

5. THE GRAPHICAL USER INTERFACE

Figure 3 shows the main dialogue of the GUI. The first step is to
select the type of synthetic PPG using the drop-down button in
the upper left corner. Available options are regular or three types
of irregular PPG. Then we can modify the sampling frequency
and signal length in the “Basic Info” panel. Once we change any
data, the GUI will attempt to generate the synthetic PPG and
show it at the bottom of the dialogue.

By pressing the “Edit” button, users canmodify the parameters
of pulses in the pop-up dialogue. For a regular PPG, this
toolbox uses the same parameters for different pulses. But for
irregular PPGs, parameters are different in the first beat of the
premature group, the second beat of the premature group, and
the reference beat. Users can also modify the ratio of first beat
duration and second beat duration to reference beat duration.
The default value is shown in Table 1. Once done with editing
pulse parameters, press the “OK” button to save these parameters
and go to the main dialogue.

After setting the basic info, users should set some parameters
to generate the pulse duration. For a regular PPG, users can
modify the mean heart rate and standard deviation of the RR
intervals in the “Pulse Duration Info” panel. For irregular PPG
types, this panel changes to an “Irregular Duration Info” panel,
where users can modify the basic heart rate and irregular times of
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the synthetic PPG. The basic heart rate and mean heart rate are
in the range of 50 to 180. A warning dialogue pops up when the
“Irregular Times” value is too large or too small relative the signal
length. In this case, users should either decrease the irregular
times or increase the length of the signals.

If necessary, users can add noise to synthetic PPG. Two
types of noise are available in the “Noise Info” panel: White
Gaussian noise and multi-frequency noise. For white Gaussian
noise, users can modify the signal-to-noise ratio (SNR). A 5-s
regular PPG with white Gaussian noise is shown in Figure 4A.
Additionally, for multi-frequency noise, see as Figures 4B–D.
“Amplitude” is the amplitude of the peak of the noise
signals, and “Frequency” describes the noise frequencies. The
number of values in “Amplitude” and “Frequency” should be
the same.

After synthesizing signals, users can press the “Save” button
to save the synthetic PPG to comma-separated values file (.csv),
Microsoft Excel file (.xlsx), and MAT-file (.mat).

6. LIMITATIONS OF STUDY AND FUTURE
WORK

Generating regular PPG signal using certain parameters is
reproducible. If we add noise, the PPG signal cannot be
reproduced as the noise addition is carried out randomly. On the
other hand, generating irregular PPG signals is non-reproducible
because the duration of each beat is randomly getting set. Adding
noise to the generated irregular PPG signal makes it highly
non-reproducible.

The next step is to generate re-entry irregular heartbeats
in PPG signals, and potentially other types of abnormalities
to the toolbox. The main focus of the current study was not
on detecting events in irregular PPG signals with irregular
heartbeats; rather, the focus was on generating irregularity
in PPG signals. Another aspect of future development is to
generate PPG signals with certain hemodynamic parameters (e.g.,
blood pressure levels) simulating the PPG templates and their
associated hemodynamics parameters. This toolbox is released
as version 1 (PPGSynth v1.0, August 11, 2020) and the more
templates we include the more the toolbox will be more able
to generate PPG waveforms covering different irregularities

(simulated cardiovascular patient groups) and noise types. One
of the next steps is to generate normotensive and hypertensive
PPG signals.

7. SUMMARY

PPGSynth, a new publicly available toolbox, is described as a
means to generate synthetic PPG waveforms. Users can easily
generate a waveform across a range of sampling frequencies
and can also set the length of regular and irregular PPGs. The
utility can also generate specific shapes of PPGs by modifying
the pulse parameter settings. These characteristics make the
new toolbox useful for less experienced users that would like
to generate synthetic PPGs for their research and training in
physiological measurements.
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