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Abstract

An important goal of systems medicine is to study disease in the context of genetic and envi-

ronmental perturbations to the human interactome network. For diseases with both genetic

and infectious contributors, a key postulate is that similar perturbations of the human inter-

actome by either disease mutations or pathogens can have similar disease consequences.

This postulate has so far only been tested for a few viral species at the level of whole pro-

teins. Here, we expand the scope of viral species examined, and test this postulate more rig-

orously at the higher resolution of protein domains. Focusing on diseases with both genetic

and viral contributors, we found significant convergent perturbation of the human domain-

resolved interactome by endogenous genetic mutations and exogenous viral proteins induc-

ing similar disease phenotypes. Pan-cancer, pan-oncovirus analysis further revealed that

domains of human oncoproteins either physically targeted or structurally mimicked by

oncoviruses are enriched for cancer driver rather than passenger mutations, suggesting

convergent targeting of cancer driver pathways by diverse oncoviruses. Our study provides

a framework for high-resolution, network-based comparison of various disease factors, both

genetic and environmental, in terms of their impacts on the human interactome.

Author summary

Cellular function and behaviour are driven by highly coordinated biomolecular interac-

tion networks. A prime example is the protein-protein interaction network, often simply

referred to as the “interactome”. Recent advances in systems biology have spawned the

view of human disease as a manifestation of genetic and environmental perturbations to

the human interactome, a key postulate being that similar perturbation patterns lead to

similar disease phenotypes. Here, we took a structural systems biology approach to com-

pare mutation-induced and virus-induced perturbations of the human interactome in dis-

eases with both genetic and viral contributors. Specifically, we constructed a domain-

resolved human-virus protein interactome and characterized the distribution of genetic

disease mutations with respect to human domains either physically targeted or
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structurally mimicked by virus. Overall, we found significant convergent perturbation of

the human domain-resolved interactome by viruses and mutations inducing similar dis-

ease phenotypes. Structure-guided, integrated analysis of host genetic variation and host-

pathogen protein interaction data may help elucidate the molecular mechanisms of infec-

tion and reveal its connections to genetic diseases such as cancer, autoimmunity, and neu-

rodegeneration. On a broader note, our finding implies that similar perturbations of the

human interactome at the domain level can have similar phenotypic consequences,

regardless of the source of perturbation.

Introduction

Cellular function and behaviour are driven by highly coordinated biomolecular interaction

networks. A prime example is the protein-protein interaction (PPI) network, also known as

the protein “interactome” or interactome for short. A central focus of disease systems biology

is to use interactome networks to study genotype-phenotype relationships in complex diseases

[1]. The idea of using interactome networks to infer gene function and gene-disease associa-

tion comes from the well-validated principle of “guilt by association”, which states that physi-

cally interacting proteins tend to share similar functions and, by extension, tend to be involved

in similar disease processes [1–4]. Recent advances in systems biology have spawned the view

of human disease as a manifestation of genetic and environmental perturbations to the human

interactome, a key postulate being that similar perturbation patterns lead to similar disease

phenotypes [5–8]. A corollary is that, for diseases with both genetic and infectious contribu-

tors, similar perturbations of the human interactome by either disease mutations or pathogens

can have similar disease consequences. This corollary has been tested for several viral species

at the level of whole proteins [9, 10]. For example, Gulbahce et al. used yeast two-hybrid

screens to map binary interactions between Epstein-Barr virus (EBV) and human papillomavi-

rus (HPV) proteins and human proteins, and transcriptionally profiled human cell lines exoge-

nously expressing HPV oncoproteins E6 and E7 [9]. They found that human genes associated

with EBV- and HPV-implicated genetic diseases were often either directly targeted by the

virus or transcriptionally regulated by viral targets. This finding led to the idea that oncoviral

proteins may preferentially target host proto-oncogenes and tumour suppressors, which was

experimentally validated in four families of DNA oncoviruses [10].

Despite insights from these studies on the etiology of virally-implicated genetic diseases,

there has yet to be a systematic, structure-based comparison of mutation-induced and patho-

gen-induced perturbations of the human interactome. A high-resolution, structurally-resolved

network biology approach is important for unravelling complex genotype-phenotype relation-

ships, because mutations occurring in different PPI-mediating interfaces on the same protein

often have distinct functional impacts and phenotypic consequences [5–8]. In this regard,

structural systems biology has proved useful in uncovering evolutionary properties of single-

and multi-interface PPI network hubs, systems-level principles governing human-virus inter-

actions, and systems properties of disease variants [6, 11, 12]. For instance, by constructing

atomic-resolution human-virus and within-human protein interactomes, Franzosa and Xia

discovered that viral proteins tend to target existing endogenous PPI interfaces in the human

interactome, rather than creating exogenous interfaces de novo, thereby efficiently perturbing

multiple endogenous PPIs involved in cell regulation [12]. In a follow-up study, Garamszegi

et al. expanded the coverage of the human-virus interactome using domain-resolved models of

PPIs, and found that viral proteins tend to deploy short linear motifs to bind a variety of
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human protein domains [13]. The economical and pleiotropic nature of “host domain-viral

motif” interactions reflects the efficiency with which viruses rewire the human interactome

given limited genomic resources at their disposal. Meanwhile, Wang et al. constructed a

domain-resolution within-human interactome where protein domains are annotated with dis-

ease variant information [6]. They found that mutations occurring in different PPI-mediating

domains within the same protein tend to be associated with different disorders (“gene pleiot-

ropy”). By contrast, mutations occurring in the domains of two different but interacting pro-

teins, where the interaction is mediated by said domains, tend to be associated with the same

disorder (“locus heterogeneity”). These studies attest to the utility of structural systems biology

in the study of infectious and genetic diseases.

Here, we apply structural systems biology to the study of virally-implicated genetic diseases

(VIDs), and rigorously test the postulate that endogenous genetic mutations and exogenous

viral proteins give rise to similar disease phenotypes by inducing similar perturbations of the

human interactome at the level of protein domains. Specifically, we constructed a domain-

resolved human-virus protein interactome and characterized the distribution of genetic dis-

ease mutations with respect to human domains targeted by virus. Overall, we found that viral

proteins and VID mutations induce similar perturbations of the human domain-resolved

interactome, for individual viruses with clearly defined VIDs and sufficient numbers of host-

virus PPIs (including EBV, HPV and HIV), for oncoviruses, as well as for all viruses combined.

We first analyzed the disease associations of host proteins targeted by viral proteins and con-

firmed that virus-targeted proteins tend to be causally associated with VIDs rather than non-

VIDs. We then analyzed the domain-level distribution of disease mutations in virus-targeted

proteins and found that virus-targeted domains are significantly enriched for mutations caus-

ing VIDs rather than non-VIDs. Using a pooled analysis of all oncoviruses and all oncomuta-

tions, we found oncovirus-targeted domains to be significantly enriched for mutations causing

cancer rather than other diseases. Furthermore, domains of oncoproteins either physically tar-

geted or structurally mimicked by oncoviruses are significantly enriched for cancer driver

mutations rather than passenger mutations, which implies convergent perturbation of cancer

driver pathways by diverse oncoviruses. Finally, we also assessed the extent to which viral pro-

teins and VID mutations perturb the same domain-domain interactions (DDIs) in the human

interactome. We found that viruses preferentially target DDI partners of domains harbouring

VID mutations, regardless of whether the DDI partners themselves are susceptible to known

disease mutations. By correlating the equivalent pathogenicity of viral proteins and VID muta-

tions with their convergent perturbation of the human domain-resolved interactome, we pro-

vide a framework for high-resolution, network-based comparison of the functional impacts of

both genetic and environmental disease factors. On a broader note, our finding implies that

similar perturbations of the human interactome at the domain level can have similar pheno-

typic consequences, regardless of the source of perturbation.

Results

Disease-annotated, domain-resolved human-virus protein interaction

network

We first acquired human-endogenous and human-virus binary PPI data from IntAct, HPIDB

3.0, and the HIV-1 Human Interaction Database [14–18]. Only PPIs supported by at least one

PubMed ID were included in the whole-protein resolution human-virus interactome, which

consists of 173830 PPIs between 15995 human proteins, and 28531 PPIs between 7761 human

proteins and 624 viral proteins. 7211 human proteins participate in both endogenous and

exogenous PPIs. To build homology models of PPIs, we collected high-confidence domain-
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domain interaction (DDI) and domain-motif interaction (DMI) templates derived from 3D

structures of protein complexes in the Protein Data Bank, and scanned protein sequences for

the occurrence of Pfam domains and domain-binding linear motifs [19–23]. Structural models

were assigned to each PPI by extracting all DDIs and DMIs possibly mediating the PPI. The

resulting domain-resolved human-virus structural interaction network (hvSIN) consists of

61041 PPIs between 11596 human proteins, and 4654 PPIs between 1590 human proteins and

405 viral proteins. 1517 human proteins participate in both endogenous and exogenous por-

tions of hvSIN.

We then obtained manually-curated disease variant data from UniProtKB and ClinVar [24,

25], selecting missense variants located inside Pfam domains for our analyses. Overall, 19047

mutations associated with 5383 diseases were mapped to 3585 domains of 2622 proteins.

14720 mutations associated with 4185 diseases were mapped to 2642 domains of 1864 human

proteins in hvSIN. Table 1 lists the number of mutations by the type of domain in which they

occur. Incidentally, 1272 domains of 957 human proteins in hvSIN are susceptible to disease

mutations, but lack interacting domains or motifs. 850 of these 1272 domains harbour a total

of 4154 mutations associated with 1381 diseases that are not accounted for by mutations

occurring in PPI-mediating domains in hvSIN. Because the completeness of a domain’s PPI

profile depends largely on the interactome search space and availability of 3D structures of

protein complexes, and domains often have important biological functions besides mediating

PPIs (e.g. enzymatic or nucleotide-binding activity), we included all domains of virus-targeted

host proteins in a comprehensive analysis of the domain-level distribution of disease

mutations.

Virus-targeted host domains are enriched for virally-implicated disease

mutations

To relate the equivalent pathogenicity of viral proteins and VID mutations to their equivalent

perturbation of the host interactome, we first characterized the mutational landscape of

human proteins targeted by EBV, HPV and HIV, three viruses with clearly defined VIDs and

sufficient numbers of host-virus PPIs. Since most oncoviruses are causally implicated in only a

few site-specific malignancies (e.g. HBV/HCV in hepatocellular carcinoma, KSHV in Kaposi’s

sarcoma, and HTLV in adult T-cell lymphoma), and various types of cancer share common

molecular hallmarks [26, 27], to increase the statistical power of our analysis and establish

whether a general equivalence exists between endogenous and exogenous perturbagens of

oncogenic pathways, we also performed a pooled analysis of host proteins targeted by diverse

oncoviruses, by considering all types of cancer as interchangeable diseases, all oncomutations

as interchangeable endogenous perturbagens, and all oncoviral proteins as interchangeable

exogenous perturbagens. We found that for EBV, HIV, HPV and a broad spectrum of oncov-

iruses, virus-targeted host proteins tend to be causally associated with VIDs (Fig 1), and virus-

targeted host domains tend to harbour mutations causally associated with VIDs (Fig 2). We

Table 1. Number of disease mutations mapped to human protein domains in the human-virus structural interaction network (hvSIN).

Proteins Domains Disease mutations Diseases

All disease proteins in hvSIN 1864 2642 14720 4185

Disease proteins containing exclusively endogenously-interacting domains 924 1147 7073 2281

Disease proteins containing exclusively exogenously-interacting domains 9 9 19 15

Disease proteins containing overlapping endogenous-exogenous domains 200 214 1300 583

Disease proteins containing domains without annotated interacting domains or motifs 957 1272 6328 2224

https://doi.org/10.1371/journal.pcbi.1006762.t001
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discuss our findings for each type of virus below. A full list of VIDs and disease-associated pro-

teins for EBV, HPV and HIV can be found in S1 Table.

EBV. EBV is involved in lymphomas of the B, T, and NK-cell lineages as well as in adeno-

carcinomas of epithelial cells [28–32]. EBV hijacks cellular signaling processes by encoding

viral homologues of cellular proteins that play key roles in apoptosis and proliferation. Exam-

ples include EBNA2 (mimics Notch signaling), LMP1 (mimics CD40 receptor signaling),

LMP2 (mimics IgG receptor signaling), BALF1 and BHRF1 (homologues of cellular Bcl-2), and

BCRF1 (homologue of cellular IL-10) [27]. All EBV homologues share at least one PPI partner

with their cellular counterparts. Overall, EBV targets 11/99 (11.1%) host proteins associated

with EBV diseases, and 51/2523 (2%) host proteins associated with non-EBV diseases, i.e. EBV

tends to directly target host proteins causally associated with EBV-implicated diseases (Fisher’s

exact test, two-tailed P = 1 × 10−5) (Fig 1). Analysis of the domain-level distribution of disease

mutations found that 35/43 (81.4%) EBV-disease mutations and 62/856 (7.2%) non-EBV dis-

ease mutations occur in EBV-targeted domains, suggesting that EBV-targeted domains are sig-

nificantly enriched for EBV-disease mutations (Fisher’s exact test, two-tailed P < 2.2 × 10−16)

(Fig 2). Fig 3A shows the exclusive localization of mutations causing lung cancer, an EBV-

implicated disease, in EBV-targeted tyrosine kinase domain (PF07714) of EGFR protein, while

mutations causing other diseases such as brain cancer are evenly distributed among all

domains of EGFR.

HPV. High-risk human papillomaviruses (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59,

66, 68), as defined by the Centers for Disease Control and Prevention (CDC) and International

Agency for Research on Cancer (IARC), are established etiological agents for cervical, oropha-

ryngeal and anogenital cancers [33–35]. Several studies have also reported an association

between HPV and cancers of the bladder [36], breast [37], lung [38], and prostate [39]. Overall,

HPV targets 5/79 (6.3%) host proteins associated with HPV diseases, and 17/2543 (0.7%) host

Fig 1. Virus-targeted host proteins tend to be causally associated with virally-implicated diseases (VIDs). “VID proteins” have at least one missense variant that is

causally associated with a VID, whereas all missense variants of “non-VID proteins” are exclusively associated with non-VIDs. Literature-curated, virus-specific diseases

for EBV, HPV and HIV are listed in S1 Table. For pooled analysis of oncoviruses, VIDs include all types of cancer (Methods). For pooled analysis of all viruses, VIDs

include all proliferative and immunological diseases (Methods). Error bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006762.g001
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proteins associated with non-HPV diseases, i.e. HPV tends to directly target host proteins

causally associated with HPV-implicated diseases (Fisher’s exact test, two-tailed P = 3 × 10−4)

(Fig 1). Analysis of the domain-level distribution of disease mutations found that 117/119

(98.3%) HPV-disease mutations and 94/150 (62.7%) non-HPV disease mutations occur in

HPV-targeted domains, suggesting that HPV-targeted domains are significantly enriched for

HPV-disease mutations (Fisher’s exact test, two-tailed P = 2 × 10−14) (Fig 2). Fig 3B shows the

exclusive localization of mutations causing vulvar cancer and lung cancer, both HPV-impli-

cated diseases, in HPV-targeted B domain (PF01857) of RB protein, while mutations causing

other diseases such as retinoblastoma are evenly distributed among all domains of RB.

HIV. HIV substantially raises the risk of Kaposi’s sarcoma, non-Hodgkin’s lymphoma

and cervical cancer [40], as well as cancers of the anus, liver, lung, oropharynx and testes [41].

Although HIV-encoded accessory proteins such as Tat and Nef have demonstrated oncogenic

properties on their own [42–44], HIV-associated cancers are mostly attributed to opportunis-

tic infections with oncoviruses such as KSHV, EBV, HPV, and Hepatitis B/C virus. In addition,

other HIV-associated complications such as cardiomyopathy and neurocognitive disorders

have become increasingly common in the post-HAART era [45–50]. Overall, HIV targets 23/

132 (17.4%) host proteins associated with HIV diseases, and 120/2490 (4.8%) host proteins

associated with non-HIV diseases, i.e. HIV tends to directly target host proteins causally asso-

ciated with HIV-implicated diseases (Fisher’s exact test, two-tailed P = 3 × 10−7) (Fig 1). Analy-

sis of the domain-level distribution of disease mutations found that 103/158 (65.2%) HIV-

disease mutations and 479/898 (53.3%) non-HIV disease mutations occur in HIV-targeted

domains, suggesting that HIV-targeted domains are significantly enriched for HIV-disease

mutations (Fisher’s exact test, two-tailed P = 7 × 10−3) (Fig 2). Fig 3C shows the exclusive local-

ization of mutations causing cervical cancer, an HIV-implicated disease, in HIV-targeted

PI3-kinase domain (PF00454) of MTOR protein, while mutations causing other diseases such

as focal cortical dysplasia and Smith-Kingsmore syndrome are evenly distributed among all

domains of MTOR. In addition to offering general insights on human-HIV interaction, our

Fig 2. Virus-targeted host domains tend to harbour mutations causally associated with virally-implicated diseases (VIDs). “VID mutations” are causally associated

with at least one VID, whereas “non-VID mutations” are exclusively associated with non-VIDs. Error bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006762.g002
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domain-resolved PPI models also provide useful information about specific HIV proteins. For

instance, our model for the interaction between human Akt1 and HIV Nef involves the protein

kinase domain (PF00069) of Akt1 and a region of Nef matching three overlapping motifs:

MOD_NEK2_1 (residues 100–105), DOC_MAPK_gen_1 (residues 105–112) and DOC_-

MAPK_MEF2A_6 (residues 105–114). Notably, our predicted Akt1-binding region of Nef
(residues 100–114) is consistent with the experimentally determined Akt1-binding region of

Nef (residues 55–210) [51]. hvSIN also reveals a previously unreported similarity between the

host interaction profiles of HIV Nef and the EBV oncoprotein LMP2, in that both can bind the

SH2 domain (PF00017) of Src family kinases (Lck, Lyn, Src) and Syk family kinases (Syk,

ZAP70), as well as the WW domain (PF00397) of the Nedd4 family of E3 ubiquitin ligases

(Itch, Nedd4), possibly revealing disease modules perturbed in common by HIV and EBV in

AIDS-related lymphoma [52, 53].

Oncoviruses. Oncoviruses contribute to 12% of human cancers worldwide and can acti-

vate in a cancer cell the same molecular hallmarks shared among cancers of non-viral origin

[27, 54]. In fact, some of the most potent oncogenes were first discovered in retroviruses [55].

Oncoviruses in hvSIN include human herpesviruses (HHV-4/EBV, HHV-5/CMV, HHV-8/

KSHV), high-risk HPVs, human polyomaviruses (BKV, JCV, MCV), hepatitis B and C viruses,

Fig 3. Exclusive localization or enrichment of VID mutations in virus-targeted domains. (A) Exclusive localization of mutations causing lung cancer, an EBV-

implicated disease, in EBV-targeted tyrosine kinase domain of EGFR protein. (B) Exclusive localization of mutations causing vulvar cancer and lung cancer, both HPV-

implicated diseases, in HPV-targeted B domain of RB protein. (C) Exclusive localization of mutations causing cervical cancer, an HIV-implicated disease, in HIV-targeted

PI3-kinase domain of MTOR protein, while mutations causing other diseases such as focal cortical dysplasia and Smith-Kingsmore syndrome are evenly distributed

among all domains of MTOR. (D) Moderate enrichment of oncomutations in KSHV-targeted SH2 domain of PTPN11 protein, compared to mutations causing Noonan

syndrome. Most of the oncomutations cause juvenile myelomonocytic leukemia, a disease although not caused by KSHV, is mimicked clinically and morphologically by

other human herpesvirus infections, including EBV, CMV and HHV-6. VID mutations are shown as dark green diamonds. Non-VID mutations are shown as orange

diamonds. Amino acid residues in virus-targeted domains are shown as light green squares. Residues in domains not targeted by virus are shown as yellow squares.

https://doi.org/10.1371/journal.pcbi.1006762.g003
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human T cell lymphotropic virus (HTLV) and oncogenic retroviruses. Some oncoviruses,

although not directly infectious to human, are tumorigenic in other species, can transform

human cells in vitro, and serve as models for studying viral oncogenesis in human (e.g. murid

herpesvirus 4) [56, 57]. Despite HIV being classified by IARC as a Group 1 carcinogen and the

in vitro oncogenicity of HIV-encoded accessory proteins, we excluded it from the pooled anal-

ysis of oncoviruses, because there is insufficient data on HIV prevalence and cancer incidence

among HIV-infected individuals to accurately assess the independent contribution of HIV to

infection-attributable cancers [58]. Pooled analysis of all oncovirus-targeted host proteins

found that oncoviruses target 34/194 (17.5%) oncoproteins and 119/2428 (4.9%) proteins asso-

ciated with non-cancer diseases, i.e. oncoviruses tend to directly target oncoproteins (Fisher’s

exact test, two-tailed P = 1 × 10−9) (Fig 1). Analysis of the domain-level distribution of disease

mutations found that 314/413 (76%) oncomutations and 371/1322 (28.1%) other disease muta-

tions occur in oncovirus-targeted domains (OVTDs), i.e. the odds of finding cancer-causing

over other disease-causing mutations in OVTDs is 8 times as high as that in non-OVTDs

(Fisher’s exact test, two-tailed P< 2.2 × 10−16) (Fig 2). Fig 3D shows a moderate enrichment of

oncomutations in KSHV-targeted SH2 domain (PF00017) of PTPN11 protein, compared to

mutations causing Noonan syndrome. Most of the oncomutations cause juvenile myelomono-

cytic leukemia, a disease although not caused by KSHV, is mimicked clinically by other

human herpesvirus infections, including EBV, CMV and HHV-6 [59, 60]. Finally, we also

assessed the mutational landscape of 107 oncovirus-targeted pleiotropic proteins that are sus-

ceptible to both oncomutations and other disease mutations. Overall, 88/113 (77.9%) oncomu-

tations and 110/179 (61.5%) other disease mutations were mapped to the OVTDs of these

pleiotropic proteins, suggesting that enrichment of oncomutations in OVTDs holds even at

the level of individual proteins involved in both cancer and other diseases (Fisher’s exact test,

two-tailed P = 4 × 10−3).

Viruses in proliferative and immunological diseases. All viruses have evolved sophisti-

cated mechanisms to subvert host transcriptional and signaling machineries for replication

and persistence. Viruses are known to encode homologues of cellular proteins to mimic

mutant oncoproteins (Fig 4A) or antagonize mutant cytokine receptors (Fig 4B). Viruses have

also been shown to abuse peptide motifs to modulate host signaling pathways, potentially

mimicking the effects of disease-causing mutations (Fig 4C). We suspect that viruses and

mutations causing proliferative and immunological diseases (PIDs) target similar human

domains involved in cell cycle progression, apoptosis, DNA repair and immune homeostasis.

Proliferative diseases include various neoplasms, both benign and malignant. Examples

include lung cancer (Fig 3A), vulvar and lung cancer (Fig 3B), cervical cancer (Fig 3C), juve-

nile myelomonocytic leukemia (Fig 3D), glioblastoma multiforme and non-small-cell lung

cancer (Fig 4A), lung cancer, breast cancer and lymphoma (Fig 4C). Immunological diseases

include autoimmune diseases, hypersensitivity, and immunodeficiency disorders. One exam-

ple of an immunological disease, inflammatory bowel disease (IBD), is given in Fig 4B, where

we show convergent perturbation of the IL10-binding domain of IL-10R1 by both viral homo-

logues of IL-10 and IBD mutations.

To establish whether a general equivalence exists between endogenous and exogenous per-

turbagens of pathways associated with PIDs, we performed a pooled analysis of all virus-tar-

geted host proteins by considering all PIDs as a unique category of diseases with both genetic

and viral contributors, all PID mutations as interchangeable endogenous perturbagens, and all

viral proteins as interchangeable exogenous perturbagens. We found that overall, viruses tend

to target host proteins associated with PIDs (85/338, 25.1%) rather than non-PIDs (213/2284,

9.3%) (Fisher’s exact test odds ratio = 3.3, two-tailed P = 1 × 10−14) (Fig 1), and virus-targeted

domains are enriched for mutations causing PIDs (525/737, 71.2%) rather than non-PIDs

Convergent perturbation of host domains by viruses and mutations inducing similar diseases
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(803/2003, 40%) (Fisher’s exact test odds ratio = 3.7, two-tailed P < 2.2 × 10−16) (Fig 2). Since

the equivalence between oncoviruses and oncomutations has already been established in the

previous section, we excluded proliferative diseases from consideration and further tested the

equivalence between viral proteins and mutations in causing immunological diseases. Again,

we found that viruses tend to target host proteins associated with immunological diseases (31/

151, 20.5%) rather than other diseases (267/2471, 10.8%) (Fisher’s exact test odds ratio = 2.1,

two-tailed P = 8 × 10−4), and virus-targeted domains are enriched for mutations causing

immunological diseases (101/179, 56.4%) rather than other diseases (1227/2561, 47.9%) (Fish-

er’s exact test odds ratio = 1.4, two-tailed P = 0.03). Finally, we tested the equivalence between

viral proteins and mutations in causing proliferative, but not immunological diseases. Overall,

viruses tend to target host proteins associated with proliferative diseases (56/199, 28.1%) rather

than other diseases (242/2423, 10%) (Fisher’s exact test odds ratio = 3.5, two-tailed

P = 8 × 10−12), and virus-targeted domains are enriched for mutations causing proliferative

diseases (431/571, 75.5%) rather than other diseases (897/2169, 41.4%) (Fisher’s exact test odds

ratio = 4.4, two-tailed P< 2.2 × 10−16).

Fig 4. Viral and mutational perturbations of host domains are mechanistically similar. (A) Viruses encode homologues of human proteins to mimic mutations in

oncoproteins that cause uncontrolled cell proliferation. Top: EGFRvIII deletion mutation, frequently detected in glioblastoma multiforme (GBM) patients, and v-ErbB,

encoded by avian leukosis virus, both lack the EGFR ligand-binding domain. Meanwhile, an L858R missense mutation in the EGFR kinase domain is frequently found in

non-small-cell lung cancer (NSCLC). These alterations lead to conformational changes that result in ligand-independent, constitutive kinase activity [61, 62]. (B) Viruses

encode homologues of human proteins to antagonize mutations in cytokine receptors that cause hypersensitivity. Human IL-10 functions both as an immunosuppressant

in the inhibition of proinflammatory cytokines, and as an immunostimulant in the induction of MHC II expression on B cells. Mutations in the IL10-binding domain of

IL-10R1 abrogate hIL10-induced phosphorylation, leading to loss of immunosuppression and inflammatory bowel disease [63]. In contrast, viral IL-10 homologues

encoded by Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) retain and amplify the immunosuppressive properties of hIL-10, thus facilitating viral

persistence after lytic infection [64]. ebvIL-10 selectively retains only the immunosuppressive properties of hIL-10. cmvIL-10 binds with greater affinity to IL-10R1 than

hIL-10, while co-opting other IL10-associated pathways to amplify the immunosuppressive properties of hIL-10. Interestingly, transgenic expression of vIL-10 has been

tested in animal models as an immunosuppressant option for transplant recipients [65]. In addition, abnormal expression levels of IL-10, IL10-R1 and IL10-R2 has been

suggested as a mechanism for diffuse large B-cell lymphoma, a disease with clear EBV involvement [66]. (C) Viruses abuse peptide motifs to modulate host signaling

pathways, potentially mimicking the effects of disease-causing mutations. Left: Kaposi’s sarcoma-associated herpesvirus (KSHV) protein K15-M uses a “PPLP” motif to

bind the SH3 domain (PF00018) of Src [67], which possibly induces conformational opening of the Src kinase domain, thereby mimicking activating mutations such as

Y527F [68]. Interestingly, a W121C mutation in the KSHV-targeted SH3 domain of Src has been identified in lung cancer [69]. Middle: Murine polyomavirus (MPyV)

Middle T antigen (MT) uses a tyrosine-phosphorylated motif to recruit host Shc1, thereby promoting cell cycle progression [70]. Interestingly, a R175Q mutation in the

MPyV-targeted PTB domain (PF00640) of Shc1 has been found to regulate tumorigenesis in mouse models of breast cancer [71]. Right: HIV protein gag uses the late-

budding domain to sequester host PTPN23 and facilitate viral budding [72]. The phosphatase domain (PF00102) of PTPN23 regulates cell migration via

dephosphorylation of FAK and is often mutated in cancer and developmental disorders [73, 74].

https://doi.org/10.1371/journal.pcbi.1006762.g004
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Oncovirus-targeted host domains are enriched for cancer driver mutations

A main challenge in cancer research is to distinguish mutations which confer clonal growth

advantage (i.e. drivers), from mutations that do not cause clonal expansion (i.e. passengers)

[75]. Large-scale cancer genome sequencing projects have enabled systematic identification of

cancer driver proteins and mutations [76]. Rozenblatt-Rosen et al. previously constructed an

oncovirus-human interactome and demonstrated, at the whole-protein level, comparability

between oncoviral perturbation and conventional functional genomics approaches to cancer

gene discovery [10]. However, by representing proteins and PPIs as generic nodes and edges,

their approach is not sensitive enough to distinguish driver mutations from passenger muta-

tions occurring in the same oncoprotein. As we demonstrated earlier in the case of pleiotropic

oncoproteins, the oncogenicity or “driver-ness” of a mutation is often correlated with its

occurrence in oncovirus-targeted domains (OVTDs).

To confirm that oncoviruses can help identify driver proteins, we first cross-classified

human proteins in hvSIN by whether they are oncoviral targets, and whether they are curated

by the Cancer Gene Census (CGC) as being causally implicated in cancer, i.e. driver proteins

[76]. Out of 727 oncoviral targets, 93 (12.8%) are in CGC, whereas out of 10897 remaining

human proteins in hvSIN, 514 (4.7%) are in CGC. In other words, there is a 3-fold enrichment

of driver proteins among oncoviral targets (Fisher’s exact test, two-tailed P = 3 × 10−16) (Fig

5A). Next, to find out if oncoviruses can also help identify driver mutations, we cross-classified

mutations in oncoproteins by whether they are drivers or passengers, and by whether they

map to OVTDs. Oncogenic and resistance mutations with a ClinVar clinical significance value

of “pathogenic” or “likely pathogenic” are considered drivers, while passengers include all

other missense mutations in oncoproteins that are catalogued by ClinVar and COSMIC. Out

of 194 oncoproteins with annotated driver mutations, we identified 30 oncoproteins as having

at least one OVTD. Pooled analysis of all 30 oncoproteins mapped 340/398 (85.4%) driver

mutations and 3673/7177 (51.2%) passenger mutations to OVTDs. In other words, the odds of

finding a driver mutation in OVTDs is 5 times as high as that in non-OVTDs (Fisher’s exact

test, two-tailed P< 2.2 × 10−16) (Fig 5B). Closer inspection identified 19 candidates for focused

investigations into the common basis of viral and mutational oncogenesis (Table 2): (I) 7 onco-

proteins where all domains are OVTDs, and the driver:passenger ratio is higher than the aver-

age ratio across all oncoproteins; (II) 8 oncoproteins where some domains are OVTDs, and

driver mutations are exclusively found in OVTDs; and (III) 4 oncoproteins where some

domains are OVTDs, and driver mutations are significantly enriched in OVTDs (Fisher’s

exact test, two-tailed P < 0.05). An example of each type of candidate is given in Fig 6.

Oncovirus-mimicked host domains are enriched for cancer driver

mutations

Viruses are known to encode structural homologues that mimic host domains in order to

modulate the biological activities of host targets. Such viral homology domains (VHDs) play

key roles in mediating immune response (e.g. PF00048 in CMV and KSHV), apoptosis (e.g.

PF00452 in EBV and KSHV), cell differentiation (e.g. PF07684 in feline leukemia virus), and

protein phosphorylation (e.g. PF06734 in CMV), among other cellular processes involved in

virally-implicated diseases. VHDs often compete with cellular counterparts for interaction

partners, thereby rewiring host signaling networks to the virus’s advantage. Table 3 lists

instances of human proteins convergently targeted by human domains and oncoviral homol-

ogy domains in hvSIN.

The preceding section established that oncovirus-targeted host domains are enriched for

cancer driver mutations. Here, we test the hypothesis that oncovirus-mimicked host domains

Convergent perturbation of host domains by viruses and mutations inducing similar diseases
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are also enriched for cancer driver mutations, independent of whether they are physically tar-

geted by the virus. To this end, we identified 21 oncoproteins having at least one oncovirus-

targeted domain (OVTD) and at least one viral homology domain (VHD). We further classi-

fied viral homology domains (VHDs) into those enriched in oncogenic viruses (oncoviral

homology domains, or OVHDs), versus those enriched in non-oncogenic, i.e. “generic”

viruses (generic viral homology domains, or GVHDs) (Methods, S2 Table). We found that

domains structurally mimicked by oncoviruses (OVHDs) are more likely to harbour driver

mutations, compared to domains structurally mimicked by generic viruses (GVHDs), inde-

pendent of whether the domain is physically targeted by oncoviruses (OVTD) (CMH test,

common odds ratio = 2.2, P = 5 × 10−5).

We then analyzed the mutational landscape of 44 oncoproteins having at least one oncov-

iral homology domain (OVHD) but not physically targeted by the virus, i.e. having no

OVTDs. Pooled analysis of all 44 oncoproteins mapped 245/298 (82.2%) driver mutations and

Fig 5. Oncovirus-targeted proteins are enriched for driver proteins, and oncovirus-targeted or mimicked domains are enriched for driver mutations. (A) There is a

3-fold enrichment of Cancer Gene Census proteins in oncovirus-targeted proteins. (B) There are 5-fold and 3-fold enrichments of driver mutations in oncovirus-targeted

domains (OVTDs) and oncoviral homology domains (OVHDs), respectively.

https://doi.org/10.1371/journal.pcbi.1006762.g005
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5422/9554 (56.8%) passenger mutations to OVHDs. In other words, the odds of finding a

driver mutation in OVHDs is 3 times as high as that in non-OVHDs (Fisher’s exact test, two-

tailed P< 2.2 × 10−16) (Fig 5B). Closer inspection identified 23 candidates for focused investi-

gations into the common basis of viral and mutational oncogenesis (Table 4): (I) 4 oncopro-

teins where all domains are OVHDs, and the driver:passenger ratio is higher than the average

ratio across all oncoproteins; (II) 16 oncoproteins where some domains are OVHDs, and

driver mutations are exclusively found in OVHDs; and (III) 3 oncoproteins where some

domains are OVHDs, and driver mutations are significantly enriched in OVHDs (Fisher’s

exact test, two-tailed P < 0.05). An example of each type of candidate is given in Fig 7. In sum-

mary, oncovirus-mimicked host domains are enriched for cancer driver mutations, regardless

of whether these domains are physically targeted by the virus.

Viral proteins and virally-implicated disease mutations tend to perturb the

same domain-domain interactions in the human interactome

Gulbahce et al. previously hypothesized, and established at the whole-protein level, that viruses

and VID mutations induce similar perturbations of the human interactome [9]. Here, we test

the same hypothesis at the higher resolution of protein domains, by examining whether viruses

and VID mutations perturb the same domain-domain interactions (DDIs) in the human inter-

actome. In other words, do viruses tend to target DDI partners of domains harbouring VID

mutations (viral disease domain-interacting domains, or VDDiDs), rather than DDI partners

of domains harbouring non-VID mutations (non-viral disease domain-interacting domains,

Table 2. Oncoproteins having at least one oncovirus-targeted domain (OVTD), where driver mutations are either

exclusively found or enriched.

Type Oncoprotein OVTD

I BAX PF00452

I BCL10 PF00619

I CDKN1B PF02234

I CHEK2 PF00069; PF00498

I IRF1 PF00605

I MAP2K2 PF00069

I PPP2R1A PF02985; PF13646

II ABL1 PF00017; PF00018; PF07714

II FBXW7 PF00400

II FGFR4 PF07714

II PDGFRA PF07714

II RAF1 PF00130; PF07714

II RXRA PF00104

II SPOP PF00917

II TGFBR2 PF07714

III AR PF00104

III ATM PF00454

III RB1 PF01857

III TP53 PF00870

Type I: All domains are OVTDs, and the driver:passenger ratio is higher than the average ratio across all

oncoproteins. Type II: Some domains are OVTDs, and driver mutations are exclusively found in OVTDs. Type III:

Some domains are OVTDs, and driver mutations are significantly enriched in OVTDs (Fisher’s exact test, two-tailed

P < 0.05).

https://doi.org/10.1371/journal.pcbi.1006762.t002
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or nVDDiDs) (Fig 8A)? As some domains can interact with both VID domains and non-VID

domains, we define VDDiDs as domains that interact with at least one VID domain, and

nVDDiDs as domains that exclusively interact with non-VID domains. We found that EBV

and HPV exhibit a slight preference for targeting VDDiDs, although the effect sizes are not sta-

tistically significant (42/62 VDDiDs vs. 58/104 nVDDiDs for EBV, and 20/29 VDDiDs vs. 41/

69 nVDDiDs for HPV). HIV targets 218/309 (70.6%) VDDiDs and 193/346 (55.8%)

nVDDiDs, representing a 1.9-fold enrichment of VDDiDs among HIV-targeted domains

(Fisher’s exact test, two-tailed P = 1 × 10−4). Similarly, oncoviruses target 204/285 (71.6%)

VDDiDs and 164/291 (56.4%) nVDDiDs, i.e. a 1.9-fold enrichment of VDDiDs among oncov-

irus-targeted domains (Fisher’s exact test, two-tailed P = 1 × 10−4). Finally, a meta-analysis on

the common effect of all viral proteins and all mutations causing proliferative and immunolog-

ical diseases found that viruses target 424/599 (70.8%) VDDiDs and 350/551 (63.5%)

nVDDiDs, i.e. a 1.4-fold enrichment of VDDiDs among virus-targeted domains (Fisher’s

exact test, two-tailed P = 0.01) (Fig 8B).

Virus’s preferential targeting of VDDiDs may be confounded by the tendency for viruses to

target VID domains (Fig 2), and the tendency for VID domains to interact among themselves.

We therefore excluded domains susceptible to known disease mutations and examined the

extent to which virus targets “non-disease” domains that interact with VID domains. We

found that HIV targets 179/250 (71.6%) VDDiDs and 164/285 (57.5%) nVDDiDs that do not

harbour any known disease mutation (Fisher’s exact test odds ratio = 1.9, two-tailed

Fig 6. Oncoproteins having at least one oncovirus-targeted domain (OVTD), where driver mutations are either exclusively found or enriched. (A) driver:passenger

ratio in oncovirus-targeted PF00605 domain of IRF1 is higher than the mean driver:passenger ratio for all oncoproteins; (B) driver mutations are exclusively found in

oncovirus-targeted PF07714 domain of PDGFRA; (C) driver mutations are enriched in oncovirus-targeted PF00104 domain of AR.

https://doi.org/10.1371/journal.pcbi.1006762.g006
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P = 8 × 10−4). Similarly, oncoviruses target 165/230 (71.7%) VDDiDs and 137/237 (57.8%)

nVDDiDs that do not harbour any known disease mutation (Fisher’s exact test odds

ratio = 1.8, two-tailed P = 2 × 10−3). Pooled analysis of all viruses found that overall, viruses

target 345/481 (71.7%) VDDiDs and 295/456 (64.7%) nVDDiDs that do not harbour any

known disease mutation (Fisher’s exact test odds ratio = 1.4, two-tailed P = 0.02). Virus’s pref-

erential targeting of VDDiDs supports our hypothesis that viruses and VID mutations induc-

ing similar disease phenotypes convergently perturb the host domain interactome, possibly

unveiling core disease modules underlying clinically heterogeneous virally-implicated diseases

(Fig 9).

Discussion

Structural interaction networks serve as a valuable tool for understanding the molecular mech-

anisms of genetic diseases, as well as the fundamental differences between endogenous and

exogenous PPI networks. As experimental determination of protein structure remains an

arduous task, homology modelling offers an efficient alternative for the structural annotation

of protein complexes. This is based on the observation that PPIs are often mediated by evolu-

tionarily conserved structural modules, such as domains and short linear motifs [77]. Here, we

reassess the role of viral proteins as surrogates for human disease variants in relating interac-

tome network perturbation to disease phenotypes, using a domain-resolved human-virus pro-

tein interactome where human domains are annotated with disease variant information.

Compared to previous work demonstrating general proximity between viral targets and VID

proteins in the human interactome, our results provide a structural explanation for the

Table 3. Human proteins convergently targeted by human domains and oncoviral homology domains (OVHDs)

in hvSIN.

Human domain/

OVHD

Pfam description Human proteins convergently targeted by human

domain and OVHD

PF00001 7 transmembrane receptor

(rhodopsin family)

CX3CL1

PF00017 SH2 domain CDC37;HSP90AA1; HSP90AB1; KHDRBS1; NCKIPSD;

PDGFRB; RAF1; WASL
PF00018 SH3 domain CDC37;HSP90AA1; HSP90AB1; KHDRBS1; NCKIPSD;

PDGFRB; PPP2CA; RAF1; WASL
PF00084 Sushi repeat (SCR repeat)

PF00134 Cyclin, N-terminal domain CCT8; CDK2; CDK3; CDK4; CDK5; CDK6; CDK8;
CDKN1B; CDKN2A; POLR2A

PF00452 Apoptosis regulator proteins, Bcl-2

family

BAK1; BAX; BCL2; BCL2L11; BIK; CCDC155; GPX8;
PLD3; SPNS1; VRK2

PF00489 Interleukin-6/G-CSF/MGF family IL6R; IL6ST
PF00605 Interferon regulatory factor

transcription factor

PF00726 Interleukin 10 IL10RA; IL10RB
PF01335 Death effector domain CASP8; FADD; RIPK1
PF07686 Immunoglobulin V-set domain NCR3LG1
PF07714 Protein tyrosine kinase CDC37;HSP90AA1; HSP90AB1; KHDRBS1; NCKIPSD;

PDGFRB; RAF1; WASL
PF10401 Interferon-regulatory factor 3 CREBBP; EP300; RB1

OVHDs are structural homologues of human domains either exclusively occurring in oncoviruses or enriched in

oncoviral proteomes (compared to generic viral proteomes). Cancer Gene Census proteins are in bold.

https://doi.org/10.1371/journal.pcbi.1006762.t003
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equivalent pathogenicity of viral proteins and VID mutations. Whereas previous studies

merely recognized the existence of viral homologues of cellular domains, we delve deeper into

the functional implications of oncoviral domain homology. Our approach can readily identify

domains convergently targeted or mimicked by diverse oncoviruses for focused screening of

driver mutations across various types of cancer. Further characterization of cellular domains

and motifs interacting with domains targeted or mimicked by viruses may uncover immune

evasion strategies exploited in common by cancer cells and pathogens, and shed light on path-

ways dysregulated in other virally-implicated disorders.

Although most of our findings are statistically significant, there are notable differences in

the enrichment of VID mutations in virus-targeted domains, both among individual viruses

(EBV, HPV and HIV), as well as between single-virus analysis and pooled analysis on multiple

viruses. For single-virus analysis, enrichment effect size and significance are impacted by the

number of virus-host protein-protein interactions and virus-specific diseases, which ultimately

determine the statistical power. Pooled analysis on all oncoviruses detected trends in the same

direction as analysis on single oncoviruses (EBV and HPV), but with higher statistical power.

In addition to investigator bias resulting in some viruses having a higher number of mapped

virus-host PPIs, it is also possible that certain viruses prefer to perturb host regulatory network,

Table 4. Oncoproteins having no oncovirus-targeted domain (OVTD) but at least one oncoviral homology

domain (OVHD), where driver mutations are either exclusively found or enriched.

Type Oncoprotein OVHD

I ETV6 PF00178; PF02198

I MAX PF00010

I MC1R PF00001

I MYC PF00010; PF01056; PF02344

II AKT3 PF00169; PF00433

II ALK PF07714

II BTK PF00017; PF00018; PF00169; PF07714

II ESR1 PF00104; PF00105

II FGFR1 PF07714

II FLT3 PF07714

II KIT PF07714

II MET PF07714

II NTRK1 PF07714

II PLCG2 PF00017; PF00018

II POLD1 PF00136; PF03104

II POLE PF00136; PF03104

II RASA1 PF00017; PF00018; PF00169

II RET PF07714

II REV3L PF00136; PF03104

II ROS1 PF07714

III BRAF PF07714

III ERBB2 PF07714; PF14843

III FGFR2 PF07714

Type I: All domains are OVHDs, and the driver:passenger ratio is higher than the average ratio across all

oncoproteins. Type II: Some domains are OVHDs, and driver mutations are exclusively found in OVHDs. Type III:

Some domains are OVHDs, and driver mutations are significantly enriched in OVHDs (Fisher’s exact test, two-tailed

P < 0.05).

https://doi.org/10.1371/journal.pcbi.1006762.t004
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rather than host PPI network, which is beyond the scope of this work. Compared to direct tar-

geting of VID domains (a “first-degree” effect), viral targeting of the interaction partners of

VID domains is expected to have a weaker, “second-degree” effect on the VID domains. This

partly explains why results of the “first-degree” analysis on EBV and HPV (Fig 2) are stronger

than those of the “second-degree” analysis (Fig 8B).

Our pooled analysis of all oncoviral targets and all oncomutations is motivated by the

assumption of convergent evolution and mimicry of endogenous oncogenic mechanisms by

diverse oncoviruses. There is compelling evidence of different oncoviruses complementing

each other’s replication and persistence strategies, thus eliciting multiple cellular responses

associated with the hallmarks of cancer. One example is primary effusion lymphoma, a disease

causally linked to KSHV but also having an EBV component. While expression of KSHV lytic

genes such as vIL-6 and K1 promote VEGF secretion and angiogenesis, concomitant expres-

sion of EBV latent genes confers additional anti-apoptotic properties to infected cells in the

initial phase of lymphomagenesis [78, 79]. Given the paucity of context-dependent (i.e. tissue-

and disease-specific) host-endogenous and host-pathogen PPI data, here we focus on estab-

lishing viral proteins and genetic mutations that induce similar disease phenotypes as generally

equivalent perturbagens of the human interactome. Future work will also consider the diver-

sity of host range and tissue tropism among different viruses, and the potentially distinct func-

tional impacts of the same mutation in different cell types and diseases.

Fig 7. Oncoproteins having no oncovirus-targeted domain (OVTD) but at least one oncoviral homology domain (OVHD), where driver mutations are either

exclusively found or enriched. (A) driver:passenger ratio in oncovirus-mimicked PF00178 and PF02198 domains of ETV6 is higher than the mean driver:passenger ratio

for all oncoproteins; (B) driver mutations are exclusively found in oncovirus-mimicked PF07714 domain of MET; (C) driver mutations are enriched in oncovirus-

mimicked PF07714 domain of FGFR2.

https://doi.org/10.1371/journal.pcbi.1006762.g007
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One potential caveat of our interactome perturbation model is its incompleteness, due to

the following reasons. Firstly, current mapping of the host-virus protein interactome is far

from exhaustive. Secondly, some bona fide host-virus PPIs cannot be modelled by existing

domain-based interaction templates. Thirdly, virus may not interact with a host protein via

PPI, but rather regulate its expression via transcriptional or epigenetic mechanisms. Lastly,

our study only considers missense mutations, because domain-based analysis of interactome

perturbation requires precise positioning of mutations with respect to protein domains. Mis-

sense mutations can be unambiguously mapped to individual domains, whereas other types of

mutations (e.g. nonsense or frameshift) may cause more drastic changes in the protein struc-

ture and are more difficult to map to individual domains. We are aware, however, of literature

suggesting that nonsense and frameshift mutations tend to occur more frequently in tumour

suppressor genes than in oncogenes [80]. Effects of these mutations on the integrity of the

human interactome warrant further investigation. Still, despite the incompleteness of our

model, we observed significant convergent perturbation of the human domain-resolved inter-

actome by viruses and mutations inducing similar disease phenotypes.

The advent of high-throughput biotechnology has made it possible to comprehensively

characterize genomic variations in and interspecies interactions between human and

microbes, which play important roles in health and disease. As more data on pathogen-impli-

cated diseases and host-pathogen interactions emerge, our approach may be extended to the

Fig 8. Viral proteins and VID mutations perturb the same domain-domain interactions in the human interactome. (A) From left to right, domains are cross-classified

as: interacting with a domain harbouring at least one VID mutation (VDDiD) and targeted by virus, VDDiD not targeted by virus, interacting with a domain harbouring

only non-VID mutations (nVDDiD) and targeted by virus, and nVDDiD not targeted by virus. (B) Viruses tend to target VDDiDs rather than nVDDiDs, regardless of

whether the VDDiDs and nVDDiDs are susceptible to known disease mutations. The results for EBV and HPV are not statistically significant, possibly due to small sample

sizes.

https://doi.org/10.1371/journal.pcbi.1006762.g008
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study of bacterial diseases and co-infections involving multiple pathogenic species, such as the

co-pathogenesis of HIV and Mycobacterium tuberculosis. By combining these data within the

framework of structural systems biology, our work sets the stage for multi-scale, integrative

investigations into endogenous and exogenous perturbagens of the human interactome, thus

helping to elucidate the molecular mechanisms of infection and its possible connections to

genetic diseases such as cancer, autoimmunity, and neurodegeneration.

Methods

Construction of disease-annotated human-virus structural interaction

network

Human-endogenous and human-virus binary PPI data were obtained from IntAct [14],

HPIDB [15], and the HIV-1 Human Interaction Database [16–18]. Structural templates for

domain-domain and domain-motif interactions were obtained from 3did [19], iPfam [21] and

ELM [20]. Protein sequences were scanned for Pfam domains using InterProScan under

default settings (version 5.30–69.0) [23, 81], and for the occurrence of domain-binding motifs

as defined by 3did and ELM. Domain-based interaction models were assigned to each PPI by

extracting all DDIs and DMIs possibly mediating the PPI. Disease association and clinical sig-

nificance of variants were obtained from UniProtKB, ClinVar, and COSMIC [24, 25, 76].

Ensembl Variant Effect Predictor (VEP v93.0) was used for extracting variant genomic loca-

tion, variation class, reference allele, HGVS notations, amino acid position, overlapping Pfam

domains, among other features [82]. To facilitate counting of mutational events, variants are

Fig 9. Viral proteins and VID mutations convergently perturb dense regions of the human domain interactome. Examples are given for EBV (left) and HIV (right).

https://doi.org/10.1371/journal.pcbi.1006762.g009
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annotated with RefSNP IDs using VEP’s check_existing flag. Variants not co-located with any

known variant are merged based on identical genomic location, variation class, and shared

alleles, as per NCBI guidelines for merging submitted SNPs into RefSNP clusters (https://

www.ncbi.nlm.nih.gov/books/NBK44417/). Only missense mutations located inside Pfam

domains were retained for analyses. Assignment of each virally-implicated disease (VID) to

EBV, HPV and HIV was based on at least two literature sources (S1 Text). To minimize redun-

dancy in disease annotation, UMLS and OMIM IDs given to subtypes of the same disease were

merged into the more general Disease Ontology [83], Orphanet [84] and MeSH IDs.

Pooled analysis of viral proteins and disease mutations

Oncoviruses are as classified by CDC, IARC, and MeSH (https://www.ncbi.nlm.nih.gov/mesh/

68009858). Cancer is defined as any disease whose parent terms include “DOID:162”,

“ORPHA:250908”, or MeSH IDs beginning with “C04.557|C04.588|C04.619|C04.626|C04.651|

C04.666|C04.682|C04.692|C04.697|C04.700|C04.730|C04.834|C04.850”. Diseases without Dis-

ease Ontology, Orphanet or MeSH IDs are manually labelled as “cancer” if their names match

the following regular expression: “blastoma|cancer|carcino�|glioma|leukemia|leukaemia|lym-

phoma|melanoma|neoplas�|sarcoma|tumour|tumor”. Proliferative diseases have parent terms

“DOID:14566”, “ORPHA:250908”, or MeSH IDs beginning with “C04”. Immunological dis-

eases have parent terms “DOID:2914”, “ORPHA:98004”, or MeSH IDs beginning with “C20”.

All statistical analyses were conducted in R [85]. Plots of domain-level distribution of disease

mutations were created with Protter [86].

Classification of viral homology domains

Pfam domain annotation for all human and viral proteins in UniProt was retrieved from Inter-

Pro (Release 69.0) [87]. We define viral homology domains (VHDs) as Pfam domains con-

served between human and viral proteins. For each VHD, the likelihood of it occurring in

oncoviruses was calculated as the number of oncoviruses encoding the VHD, divided by the

total number of unique oncoviral species in UniProt. Similarly, the likelihood of a VHD occur-

ring in “generic” (i.e. non-oncogenic) viruses was calculated as the number of generic viruses

encoding the VHD divided by the total number of unique generic viral species in UniProt.

The observed likelihood ratio (LR) of an oncovirus vs. a generic virus encoding the VHD is

then the ratio of the two likelihoods. We then permuted the label “oncovirus” and “generic

virus” 10000 times among viruses encoding the VHD, thereby obtaining a null distribution for

the LR. An empirical p-value for the enrichment or depletion of a VHD in oncoviral prote-

omes was calculated according to [88]. VHDs whose observed LR > 1 and Benjamini-Hoch-

berg adjusted p-values (q-values) < 0.1 are considered enriched in oncoviral proteomes. These

VHDs and other VHDs exclusively occurring in oncoviruses are called oncoviral homology

domains (OVHDs). Likewise, VHDs whose observed LR< 1 and q-values< 0.1 are consid-

ered enriched in generic viral proteomes. These VHDs and other VHDs exclusively occurring

in generic viruses are called generic viral homology domains (GVHDs).

Supporting information

S1 Text. References for virally implicated diseases.

(DOCX)

S1 Table. Virally implicated diseases and disease-associated proteins for EBV, HPV and

HIV. Disease proteins are shown in brackets if they are targeted by virus, but the human-virus

PPI does not have a domain-based structural model. Disease proteins are in bold if the domain
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