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Introduction

Cancer is one of the most prominent diseases in 
the world. It has a high mortality rate and causes about 
13% more deaths than other infectious diseases (Asl et 
al., 2018; Fard et al., 2018; Bathula et al., 2020). Acute 
T-cell lymphoblastic leukemia (ALL) is a hematological 
cancer that results from the development of large numbers 
of immature lymphocytes (Bongiovanni et al., 2020; 
Kashef et al., 2020). ALL is the most common cancer 
in children and a leading cause of death in childhood, 
with approximately two years of treatment resulting 
in disease-free survival for more than 85% of patients 
(Sudhakar et al., 2008; Xu et al., 2020; Zekavat et al., 
2020). Although the incidence of ALL in developed 
countries is approximately 90%, in developing countries, 
the incidence of this disease is especially high, and its 
treatment success rate is low (Li et al., 2020).

After the diagnosis of ALL, the initial treatment 
begins with chemotherapy. This step typically takes four 
weeks. Chemotherapy for ALL patients usually involves 
the following drugs (with or without anthracycline): 
corticosteroid (either prednisone or dexamethasone), 
vincristine, L-asparaginase (ASNase), and intrathecal 
chemotherapy (Rohani et al., 2017; Board, 2020). One 
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of the main reasons for the significant improvement 
in the survival in ALL children is the inclusion of 
bacterial ASNase (with Enzyme Commission number 
3.5.1.1) in treatment regimens (Hatanaka et al., 2011; 
Lanvers-Kaminsky et al., 2020).

It has been reported that the increased survival (>80%) 
of ALL patients is partly due to the use of ASNase in the 
drug regimen (Hunt et al., 2020). Therefore, ASNase is 
crucial in the treatment of ALL in children. L-asparagine 
(Asn) is hydrolyzed to aspartic acid and ammonia by 
ASNase (Baskar and George, 2016; Lanvers-Kaminsky et 
al., 2020). This effect of ASNase effectively depletes ALL 
cells that are unable to synthesize (Asn) due to enzyme 
deficiency. It eventually inhibits protein synthesis and 
stops the cell cycle (Derman et al., 2020). Unfortunately, 
human ASNase is not suitable for therapeutic applications 
because it does not show much affinity for Asn. Instead, 
Escherichia coli (E. coli) type II ASNase is used to treat 
ALL because it effectively disrupts Asn circulation and can 
be produced relatively easily and inexpensively (Radadiya 
et al., 2020).

ASNase also has glutaminase (GLNase) activity. 
Therefore, it also breaks down glutamine (Gln) into 
glutamate and ammonia. GLNase activity of ASNase 
is not required for anticancer activity against Asn 
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synthetase-negative cancer cells (Freire et al., 2020). Gln 
is necessary for normal cell proliferation. GLNase activity 
leads to severe side effects associated with ASNase, 
which has reduced ASNase function as an antitumor 
drug (Prakash et al., 2020a). Elevated glutamate levels by 
ASNase lead to an overflow of Gln from the extravascular 
part into the arteries and ultimately cause severe stress 
(Prakash et al., 2020b). Moreover, deamination of both 
Asn and Gln leads to hyperammonemia which has been 
indicated in neurotoxicity in ALL patients (Saeed et al., 
2020). Almost all side effects are mostly related to the 
activity of the enzyme GLNase (Reinert et al., 2006; 
Bunpo et al., 2008; Sanjay et al., 2017). Therefore, to 
overcome these side effects, reducing the GLNase activity 
of ASNase is absolutely necessary.

Materials and Methods

Structure preparation and molecular docking
According to a paper published by Sanches et al., 

(2003), the PDB code for ASNase II was selected as 
the target enzyme to design the mutation. They used the 
three-dimensional structure of ASNase II with code 1NNS.  

Water molecules and non-polar hydrogen atoms were 
removed, and the charge of the atoms was calculated using 
the Gasteiger-Marsili method (Gasteiger and Marsili, 
1980; Rahimi et al., 2016; Roy et al., 2016). Before the 
binding of the substrates, the protein structure was also 
optimized for molecular docking.

In other work, AutoDock Vina was used to perform 
the molecular docking of substrates (Asn and Gln) within 
the active site (Bhattacharjee and Chatterjee, 2013). 
Molecular docking of substrates was studied to select 
the best substrate state in the active site. AutoDock 
Vina is a free virtual molecular screening and virtual 
molecular presentation software. AutoDock Vina can 
automatically calculate the substrate-binding box (Trott 
and Olson, 2010). The crystalline structure of ASNase 
contained aspartic acid as the substrate, and, therefore, 
the surrounding residues were designated as the active 
site (Sanches et al., 2003). All default parameters were 
considered for molecular docking. For each substrate, the 
best binding mode with the lowest binding energy was 
selected for molecular dynamics simulations.

Molecular dynamics (MD) simulation of wild type ASNase
MD was performed for wild-type (WT) ASNase 

complexed with both Asn and Gln substrates. All MD 
studies were carried out using GROMACS software 
(version 5.1) (Van Der Spoel et al., 2005; Ardalan et al., 
2018). An AMBER 99SB force field was also applied. The 
PROPKA 2.0 server calculated the pKa of the residues 
of ASNase to define ionized residues in their correct 
ionization state (Bas et al., 2008). The partial charge and 
topology files of the applied substrates were generated 
using ACPYPE software in the ANTECHAMBER 
package (Wang et al., 2001). Each system was dissolved 
in a cubic box of the TIP3P model water and neutralized 
properly using sodium and chlorine (Jorgensen et al., 
1983). Structure optimization in MD was performed using 
the steepest descent and conjugate gradient algorithms. The 

computational ranges of van der Waals and electrostatic 
interactions were 1.4 and 0.9, respectively. PME was 
used to calculate electrostatic interactions (Darden et 
al., 1993; Mirzaie et al., 2015; Bemani et al., 2018). 
Meanwhile, (Mirzaie et al., 2015) utilized Berendsen for 
the temperature equilibrium and a Parrinello-Rahman 
barostat for the pressure equilibrium. A temperature of 
300 K and a pressure of 1 atmosphere were considered 
for all MD runs, and all systems reached equilibrium at 
this temperature and pressure (Koushki et al., 2020). In 
the present study, each system was analyzed for 20 ns. The 
output of MD runs was analyzed using VMD software, 
and the diagrams were plotted using Excel.

The free binding energy of ASNase
MM-PBSA is a free software used to calculate the 

free binding energy between two defined groups. The 
MM-PBSA algorithm has recently been used as a scoring 
function in the computational drug design (Kumari et al., 
2014; Mollica et al., 2016). In this study, the MM-PBSA 
method was used to calculate the free energy between 
substrates and ASNase. The free binding energy is 
calculated from the following formula:

Gbinding = Gcomplex - (Gprotein + Gligand)      (1)

Where Gcomplex is the total free energy of 
the protein-substrate complex, and Gprotein and Gligand 
are the total free energy of the separated protein and 
substrate in the solvent, respectively (Mollica et al., 2016).

The free binding energy for each residue in the ASNase 
WT-substrates

Another feature of MM-PBSA is that it calculates 
the free energy of binding each residue to the substrate 
(Ardalan et al., 2018). After calculating the energy, 
residues interacting more with Gln than Asn, based on their 
free binding energy and those not essential for the catalytic 
function of the enzyme, were selected for mutagenesis. 
Therefore, residues with a low free energy of binding to 
Asn and high free energy of binding to Gln were selected.

Molecular docking, MD, and free binding energy of 
substrates in mutant enzymes

The selected mutations in the enzyme crystal structure 
were applied by Discovery Studio software. The mutants 
were prepared like the WT enzyme, and the substrates 
were docked into the active site. MD simulations and 
free binding energy were performed under the same WT 
enzyme conditions.

Analysis of MD simulation results of mutant and WT 
enzymes

After completing MD optimization using the existing 
commands in GROMACS software for a series of 
results- including RMSD, RMSF, the intra-molecular and 
inter-molecular hydrogen bonds, the radius of gyration 
(Rg), solvent accessible surface area (SASA), principal 
component analysis (PCA), Dynamical cross-correlation 
matrix (DCCM)- the free energy landscape (FEL) obtained 
during the simulation was extracted for simulation 
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is 52.76 kcal mol-1 and -45.86 kcal mol-1, respectively.

Determination of residues suitable for mutagenesis
After performing the MD of the WT enzyme and using 

MM-PBSA, the binding energy of each protein residue 
with the enzyme substrates was investigated. Residues 
deemed suitable to serve as mutants in this study are 
listed in Table 1.

Because the main goal of this study was to reduce 
GLNase activity, a residue that binds more to Gln than Asn 
was selected. Among these residues, Gly11, Val27, and 
Thr166 were the most suitable residues for mutagenesis. 
The Tyr25, Thr12, Thr89, Asp90, and Lys162 residues 
have a catalytic role and bind to the substrate (Borek et 
al., 2014; Ardalan et al., 2018). The Ser58, Asn248, and 
Gln59 have a role in binding to the substrate (Sanches 
et al., 2003; Borek et al., 2014). Hence, they play an 
essential role in the catalytic activity of this enzyme, and 
their mutations decrease ASNase activity.

Creating different mutations in selected residues
The three residues were selected include Gly11, Val27, 

and Thr166. The selected residues were mutated into other 
residues whose binding energies with Asn and Gln are 
shown in Table 2. Based on the results, the V27F mutant 
was elected, which had binding energy of 13.992 Kcal 
mol-1 with Asn and binding energy of 3.51 Kcal mol-1 
with Gln. It had lower binding energy to Gln than the WT 
enzyme and similar binding energy with Asn.

Interaction of the active sites of the ASNase to Gln after 
MD simulation for 20 ns

After 20 ns MD simulation, the PDB file was taken, 
and the interaction of the Gln substrate in the active site 
of V27F was compared with that of WT (Figure 1). The 
decision of whether to reduce GLNase activity to reduce 
the ASNase activity of the mutant enzyme compared to 
that of the WT enzyme was based on the calculated free 
binding energy.

In this section, the reason for the decrease in the 
calculated binding energy is investigated. As shown in 
Figure 1, Ser58 interacts with the carboxyl group of Gln 
via hydrogen bonding (backbone) in the WT enzyme 

analysis. Also, the residue interaction network (RIN) was 
created after MD simulation. The RIN of each system 
was designed by the NAPS webserver (Chakrabarty et 
al., 2019).

Principal component analysis (PCA)
The PCA was engaged to investigate conformational 

changes. As part of the PCA, a covariance matrix was 
constructed from the trajectories after the removal of the 
rotational and translational movements. The computation 
of the projection of eigenvalues and eigenvectors along the 
first two PCA was done by gmx_covar and gmx_anaeig 
GROMACS tools (Priya Doss et al., 2014). This procedure 
divided the enzymes into two conformational subspaces—
the first is the essential subspace, and the second is the 
physically non-essential subspace (Nemaysh and Luthra, 
2017). After the PCA of the backbone atoms in each 
system was finished, the first two eigenvectors (EigeV1 
and EigeV2) were used to study FEL (Noorbakhsh et 
al., 2021).

Dynamical cross-correlation matrix analysis
Correlated motions can happen between proximal 

residues and also among areas as in domain-domain 
communication (Luo and Bruice, 2002). In the present 
study, the cross-correlation of the atomic fluctuations 
captured from the MD simulations was investigated. 
The dynamical cross-correlation matrix (DCCM) was 
computed using Equation (2) (Noorbakhsh et al., 2021):

                                                                                       (2)

Where i and j display i-th and j-th residues and ∆ri and 
∆rj correspond to the replacement of i-th and j-th atom 
from the mean position, respectively (Noorbakhsh et al., 
2021), the DCCM was created by an R base analysis tool 
(Grant et al., 2006).

Results 

Molecular docking of WT ASNase
The docking energy of WT with Asn and Gln substrates 

Figure 1. Interaction of the Gln Substrate at the Active Site of V27F ASNase (B) and WT (A). 



Noeman Ardalan et al

Asian Pacific Journal of Cancer Prevention, Vol 221140

and V27F. Residues of the WT enzyme interact with the 
substrate include Thr12, Ser58, Gln59, and Asp90, all of 
which are essential in the ASNase active site. On the other 

hand, residues of V27F that interact with the substrate 
include Phe27, Ser58, Thr12, Thr89, and Thr165. A 
comparison of these residues revealed that in V27F, the 

Figure 2. RMSD for V27F (black) and WT (red) ASNase after MD Simulation for 20 ns. 

Figure 3. RMSF for V27F (black) and WT (red) ASNase after MD Simulation for 20 ns. 

Residues number 3-Letter Symbol Energy binding to Asn (Kcal mol-1) Energy binding to Gln (Kcal mol-1)
11 Gly 0.7433 -3.0767
18 Asp -1.5354 -1.5463
27 Val 0.0354 -0.9111
49 Lys -0.4175 -0.562
57 Gly 0.9027 -1.8033
79 Lys -0.6531 -0.7074
88 Gly -1.7244 -3.5905
166 Thr -0.2625 -0.7087
167 Asp -1.2444 -1.9781

Table 1. Suitable Residues for Mutagenesis Based on Their Energy Binding to Asn and Gln; Selected Residues are 
Demonstrated in Bold
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residues of Gln59 (substrate-binding residue) and Asp90 (catalytic residue) no longer interacted with the substrate. 
Therefore, it was concluded that V27F decreases GLNase 
activity by reducing the interaction of two essential 
residues in the active site with the substrate (Gln). The 
numbers of hydrogen bonds in WT and mutant enzymes 
are 5 and 4, respectively. In V27F, a cation-π bond was 
established between the Phe27 and NH3 groups of Gln.

Evaluation of the stability of the investigated systems by 
RMSD analysis

Root mean square deviation (RMSD) is a standard 
parameter in MD studies that is measured to ensure system 
equilibrium during simulations. The RMSD for V27F and 
WT enzymes were analyzed after 20 ns of MD simulation 
(Figure 2). According to this figure, the RMSD values of 
the WT enzyme and V27F complex system in the first 
1,500 ps of the simulation are different. In the WT system, 
the RMSD is approximately equal to 0.11 nm at the first 
1,500 ps, but in the V27F system, the RMSD is about 0.14 

Figure 4. Inter-Molecular H-bond in V27F (black) and WT (red) ASNase after 20 ns of MD Simulation. 

Figure 5. Intra-Molecular H-bond in V27F (black) and WT (red) ASNase after 20 ns of MD Simulation. 

Variants Binding Energy to 
Asn (Kcal mol-1)

Binding Energy to 
Gln (Kcal mol-1)

Wild type -15.756 -20.763
G11L 3.838 4.968
G11S -4.354 -3.776
G11V -12.726 -15.707
T166N -20.902 -20.567
T166F -14.52 -16.142
T166L -18.669 -22.021
V27F -13.992 3.51
V27L -18.093 -3.669
V27D -11.797 -15.735
V27K 13.911 -17.574

Table 2. The Binding Energy of Mutants to Substrates 
Compared to WT; the Selected Mutant is Shown in Bold.



Noeman Ardalan et al

Asian Pacific Journal of Cancer Prevention, Vol 221142

nm at the first 1,500 ps (the value has also reached 0.16 
nm at 280 ps). At 1,800 ps, the RMSD of the WT system is 
0.19, which is much higher than that of the mutant system.

At up to 5,000 ps of simulation, the V27F system has a 
better equilibrium and stability than the WT enzyme. From 
5,000-10,900 ps, the RMSD fluctuates in both systems. In 
the WT enzyme system, the RMSD value rose to 0.22 nm 
at 6460 ps and fell to 0.12 nm at 10,450 ps. Also, in the 
V27F system, the RMSD value increased to 0.21 nm at 
5950 ps and dropped to 0.12 nm at 10,540 ps. At higher ps 
values, the RMSD represents a mutant system that reaches 
a relative equilibrium of up to 17,320 ps.

However, for the WT enzyme system, the RMSD 
peaked at 11,390 ps and reached relative equilibrium at 
12,130 ps. Then, at 17,660 ps, the RMSD fluctuated again 
in both systems. The RMSD for the WT enzyme system 
is lower than that for the V27F system within the range of 
18,000-18,720 ps. At 18,120 ps, RMSD is 0.22 and 0.14 
nm in the V27F and WT systems, respectively. In general, 

RMSD fluctuations can be seen in both systems. Still, there 
are fewer abnormal fluctuations in the mutant system than 
in the WT enzyme. The mutant system also has a better 
equilibrium than the WT enzyme system.

Discussion

Evaluation of the residue flexibility of the investigated 
systems by RMSF analysis

Root mean square fluctuations (RMSFs) indicate 
the mobility and flexibility of the residues during the 
simulation. High RMSF values indicate high flexibility 
(Figure 3). It has been observed that the residue of Thr21 
has the highest flexibility in both mutant and WT enzymes 
(5.52 Å and Å 5.34, respectively). Figure 3 shows the 
peak with the highest RMSF, which corresponds to three 
loops in the enzyme ASNase. Loop B and Loop C in the 
V27F have less flexibility, probably due to the mutation.

Residues 25-46 also have different levels of flexibility 

Figure 6. The Rg Plot for the V27F (black) and WT (red) ASNase Systems after 20 ns of MD Simulation. 

Figure 7. The Calculated SASA of V27F (black) and WT (red) ASNase after 20 ns of MD Simulation. 
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in the WT enzyme and V27F—the RMSFs of these 
residues are lower in V27F than in the WT enzyme. 
Mutations in the V27 enzyme also reduced the flexibility 
of this residue and surrounding residues.

Residues 50-62 also have different RMSFs in the two 
systems. Residues 58 and 59 are essential binding residues 
of the substrate, which is in the 50-62 range. The V27F 
mutation has reduced their flexibility. Thus, it can be said 
that this mutation reduces the RMSF in the two 58 and 
59 residues, thereby reducing their capacity to bind to 
the Gln substrate. Residues with a higher RMSF in the 
V27F enzyme than in the WT enzyme include residues 

Figure 8. The Principal Component Analysis (PCA) of V27F (black) and WT (red) ASNase after 20 ns of MD 
Simulation. 

Figure 9. Free Energy Landscape Analysis of (A) V27F and (B) WT. The blue points demonstrate the principal 
components where the energy is minimum, and the red points describe the principal components where the energy is 
maximum.

181, 222, and 300. Residues in the range of 276-273 also 
have more flexibility in V27F.

The intra- and inter-hydrogen bonds number during MD 
simulation

Figure 4 shows the number of hydrogen bonds in the 
two investigated systems. Based on this figure, it can be 
observed that in some simulation times, the number of 
hydrogen bonds in the V27F enzyme system has decreased 
compared to that in the WT enzyme. Although in some 
other times, the number of hydrogen bonds in the V27F 
enzyme system has increased compared to that in the 
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Figure 10. Dynamic Cross-Correlation Matrix (DCCM) of V27F (A) and WT (C), the Pink Color Indicates Negative 
(Anti) Correlated Motions, and the Cyan Color Shows Positively Correlated Motions. Deeper colors display a stronger 
correlation. Anti-correlated motions of V27F and WT are illustrated by red lines in the 3D structure of each V27F and 
WT ASNase protein.

Figure 11. 3D Residue Interaction Network (RIN) of (A) V27F and (B) WT. The nodes are colored based on their 
connectivity (highly connected in red color). 
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WT enzyme. In general, the average number of hydrogen 
bonds in the WT enzyme and the V27F enzyme systems 
was 5.4562 and 5,359, respectively, which indicates a 
relative reduction in the V27F system.

The higher number of the intramolecular H-bond 
indicates more stability of the protein. The intra-molecular 
H-bond was shown in Figure 5. The average of intra-
molecular H-bond numbers in the V27F and WT systems 
were 221.19 and 218.99, respectively. Based on the 
intramolecular H-bond results shown in Figure 5, there is 
no significant difference between the V27F and WT; thus, 
they have the same stability approximately.

The radius of gyration as an index of structure compactness
The Rg was indicated in Figure 6 for WT and V27F 

systems. The Rg evident the rate of compactness in the 
protein structure (Farshadfar et al., 2020). The Rg values 
of two proteins are similar to Rg values between 21.5 
and 22.3 Å. This Rg value indicated that the two studied 
systems achieved relatively stable conformation during 
the 20 ns of MD run. The average Rg values of the WT 
and V27F ASNase were 21.8 and 21.94 Å, respectively. 
The WT and V27F ASNase system represented similar 
Rg values. These results suggest that both systems form 
compact and stable complexes.

Solvent accessible surface area analysis
SASA analysis was extracted from MD output which 

is shown in Figure 7. The average SASA value was 
146.58 ± 2.18 nm2 and 144.56 ± 1.99 nm2 for V27F, and 
WT, respectively. These values show the conformational 
changes occurring after the V27F mutation. A higher 
SASA value suggests the expansion of protein structure 
(Rahman et al., 2020). The SASA value of V27F ASNase 
was increased briefly as compared to the WT ASNase.

Principal component analysis
Overall, enzymes accomplish their specific roles 

through collective atomic motions. Hence, the collective 
atomic motion of a specific enzyme is considered as a 
parameter to figure out the stability of the enzyme (Amir 
et al., 2019). The effect of the overall motion of protein 
due to ligands attachment was analyzed by PCA using the 
construction of eigenvectors. PCA is a powerful method 
used for determining the rigidity of each atom and large-
scale motions during MD simulation (Ndagi et al., 2020). 
Figure 8 displays the conformational sampling of WT and 
V27F ASNase in the required subspace by projecting the 
Cα atom along eigenvectors 1 and 2.

The results show that WT ASNase had a different 
conformational fluctuation in comparison with the V27F 
mutant (Figure 8). Both systems have good stability, but 
a reduction was observed in the occupied conformational 
space of the V27F mutant, demonstrating that the V27F 
mutant is more stable than WT ASNase.

Free energy landscape analysis
The FEL plot for PC-1 and PC-2 is displayed in Figure 

9. The plot shows that the Gibbs free energy value ranges 
from 0 to 8.43 and 0 to 8.55 for V27F ASNase (Figure 9A) 
and WT ASNase (Figure 9B), respectively. Both systems 

displayed approximately similar Gibbs energy. The V27F 
mutation does not significantly change the global minima 
(blue regions) during the MD simulation, suggesting both 
systems are thermodynamically favorable.

Dynamical cross-correlation matrix analysis and Residue 
interaction network (RIN)

The DCCM analysis of studied ASNase systems is 
illustrated in Figures 10A and 10B. The cyan areas in the 
matrix illustrate the strongly correlated motion, while 
the pink areas are related to the strong anti-correlated 
motion of the ASNase residues. We have also shown 
anti-correlated motions for both systems within the 3D 
structure of the ASNase protein (Figure 10).

The WT and mutated ASNase displayed minor 
variations in the correlated and anti-correlated motions. 
These results elucidate that the V27F mutation indicated 
little variation in the original structure of ASNase. As 
can be observed, the binding region, including residues 
50-100, is specified by the oval line in Figure 10. 
According to Figure 10, the anti-correlation of the active 
site of V27F ASNase is lower than that of WT. This 
decrease indicates a lower affinity of Gln to the V27F 
enzyme than to WT. Overall, considering the whole V27F 
structure, ASNase anti-correlation is slightly higher than 
WT, indicating the higher stability of V27F. However, the 
reduction of anti-correlation in the active site residues of 
V27F is very important for our study.

The residue interaction networks of both ASNases 
were indicated in Figure 11. The results of network 
analysis show that both V27F and WT ASNases have high 
connectivity. Therefore, it is concluded that both systems 
have sufficient stability.

In conclusion, ASNase (mainly derived from E. coli) 
is one of the most attractive enzymes in cancer research. 
In this computational study, a new mutation was proposed 
based on Gln free binding energy to reduce the GLNase 
activity of this enzyme. V27F is the best mutant in this 
study. V27F mutagenesis reduces Gln binding energy 
from -20.736 Kcal mol-1 to 3.51 Kcal mol-1. The RMSD 
value of the V27F mutant was lower than that of WT 
ASNase. The mean RMSF of the V27F enzyme (0.1091 
nm) was lower than that of the WT (0.1142), indicating 
the higher stability of this mutation (V27F). In general, 
based on the significant similarity of the RMSF values 
derived from both simulation systems, mutagenesis was 
deemed successful. The hydrogen bonds between the 
enzyme and the substrate in the V27F enzyme are reduced, 
leading to a decrease in GLNase free binding energy. MD 
simulation analysis showed that the V27F mutant was 
more stable than the WT ASNase and that mutagenesis 
was successful. The ASNase-V27F enzyme is introduced 
in this investigation based on computer studies.
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