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Abstract

Background: Neurotrophins play a central role in the development and maintenance of the nervous system.
However, neurotrophins can also modulate B and T cell proliferation and activation, especially via autocrine loops.
We hypothesized that both serum and lymphocytic neurotrophin levels may be deregulated in systemic Lupus
erythematosus (SLE) and may reflect clinical symptoms of the disease.
Methods: Neurotrophins in the serum (ELISA tests) and lymphocytes (flow cytometry) were measured in 26 SLE
patients and 26 control subjects. Th1 (interferon-γ) and Th2 (IL-10) profiles and serum concentration of BAFF were
assessed by ELISA in the SLE and control subjects.
Findings: We have demonstrated that both NGF and BDNF serum levels are higher in SLE patients than healthy
controls (p=0.003 and p<0.001), independently of Th1 or Th2 profiles. Enhanced serum NT-3 levels (p=0.003) were
only found in severe lupus flares (i.e. SLEDAI ≥ 10) and significantly correlated with complement activation
(decreased CH 50, Γ=-0.28, p=0.03). Furthermore, there was a negative correlation between serum NGF levels and
the number of circulating T regulatory cells (Γ=0.48, p=0.01). In circulating B cells, production of both NGF and BDNF
was greater in SLE patients than in healthy controls. In particular, the number of NGF-secreting B cells correlated
with decreased complement levels (p=0.05). One month after SLE flare treatment, BDNF levels decreased; in
contrast, NGF and NT-3 levels remained unchanged.
Conclusion: This study demonstrates that serum and B cell levels of both NGF and BDNF are increased in SLE,
suggesting that the neurotrophin production pathway is deregulated in this disease. These results must be confirmed
in a larger study with naive SLE patients, in order to avoid the potential confounding influence of prior immune-
modulating treatments on neurotrophin levels.
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Introduction

The neurotrophins (NT) are a family of proteins comprising
nerve growth factor (NGF), brain-derived neurotrophic factor
(BDNF), Neurotrophin-3 (NT-3), and NT-4/5, initially identified
through their crucial function in nervous system development,
growth control, and neuron and astrocyte apoptosis [1].
However, the effects of these growth factors are much more
broad, and extend to a wide range of cell types, including
immune cells. Indeed, growing evidence suggests that NGF,
BDNF, and NT-3 participate in inflammatory responses,

including the modulating and regulating immune function in
inflammatory and autoimmune diseases [1].

Neurotrophin function in immune regulation has been
assessed in several reports that demonstrate that immune cells
both secrete and are targets of the three major NTs (NGF,
BDNF and NT3). Indeed, after activation, B cells, plasmocytes
and T cells express NT receptors (TrkA, TrkB, TrkC and
p75NTR) and produce functional NGF, BDNF, and NT-3, which
is involved in lymphocyte maturation, proliferation, and
activation [2-6]. Concerning B lymphocytes, NGF is secreted
during B cell activation, which triggers their proliferation and
differentiation into plasma cells [7-10]. Immunoglobulin
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secretion (IgG and IgM or IgE) is enhanced by NGF or BDNF
[8-11]. In addition, BDNF also plays an important role in B cell
development. This was demonstrated in BDNF-/- mice, which
show a developmental arrest in B cell maturation at the pre-BII
stage [12]. Lastly, both NGF and BDNF are autocrine factors
for mature B and plasma cell survival [2,13], whereas this
function for NT-3 has only been reported during inflammatory
conditions [4].

NTs also exert important functions in T lymphocytes: they
may promote T cell activation of a Th2 or Th1 profile. Indeed,
NGF enhances Th2 cell proliferation and modulates T-cell-
dependent antibody synthesis and T cell production of gamma-
interferon (INF-γ) [10,14-18]. Moreover, CD40L, interleukin-1β
(IL-1β), IL-4 and tumor necrosis factor-alpha (TNF-α)
upregulate production of NGF in lymphocytes [19]. In contrast,
INF-γ decreases NT synthesis [20]. Th2 cytokines can also
upregulate BDNF production in immune cells [21]. NT3
synthesis is enhanced in Th1-activated human lymphocytes
[22]. Thus, these data support a potential crosstalk between
NTs and Th1 and Th2 cytokine profiles during the inflammatory
response.

Data on immune cell expression of NT-4/5 are sparse.
NT-4/5 is expressed by 25% of human circulating peripheral
blood mononuclear cells (PBMC), activated human T cells, and
murine alveolar macrophages [23-25]. However, the function of
this neuropeptide, known to interact with the TrkB receptor in
neural cells, remains unknown in immune cells.

The relationship between NT-secreting immune cells and the
resulting tissue damage has been evaluated in some chronic
inflammatory-autoimmune diseases. During rheumatoid or
psoriasis arthritis, synovial CD3+ T lymphocytes and
monocytes/macrophages produce high levels of NGF, which
enhance both fibroblast-like cell proliferation and synovial T cell
activation via TrkA ligation and Akt phosphorylation [26,27]. In
sarcoidosis, epithelioid and multinucleated giant cells of the
granuloma, alveolar macrophages and T cells produce NGF,
BDNF and NT-3 [28,29]. CD4 and CD8 NT expression
correlates with the sarcoidosis radiological damage index [29].
In contrast, in Crohn’s disease, local secretion of NT, especially
NGF and BDNF by mast cells, reduces enteric glia cell
apoptosis induced by pro-inflammatory cytokines [30,31].

Together, these findings suggest that NT, excessively
produced by immune cells in autoimmune diseases, may
participate in disease progression by modulating both immune
cell function and tissue lesions.

Based on this foundational data, other studies have
evaluated serum NT levels in various autoimmune and pro-
inflammatory diseases. However, these reports have mainly
dealt with NGF [32]. Indeed, serum NGF concentrations are
increased in juvenile arthritis [33], Kawasaki disease [34],
Behçet’s disease [35], systemic sclerosis [36,37] and primary
Sjögren’s syndrome [32,38]. Increased BDNF levels in sera
have also been reported in primary Sjögren’s syndrome, which
correlates with systemic activity and B and T cell activation
[38]. In contrast, serum BDNF levels are decreased in systemic
sclerosis, reflecting the vascular aspect of the disease [36]. It
has also been reported that NT-3 is upregulated only in
autoimmune diseases strongly affecting the joints [36,38].

Serum NT-4/5 levels are upregulated in mood disorders but
have not been yet evaluated in autoimmune disease [39].

There is little data on lymphocytic NT expression in human
inflammatory disease. BDNF-secreting T cells are reduced in
untreated multiple sclerosis patients and increased after
interferon beta treatment [40], while NGF, NT-3 and NT-4
production by PBMCs in multiple sclerosis patients is enhanced
in the post-relapse phase [41]. In contrast, BDNF production is
unchanged in B and T cells in systemic sclerosis patients
compared to healthy controls [36].

In SLE, few studies have focused on NT expression and its
relationship to disease activity. In NZB/W mice, serum NGF
concentrations are significantly increased, correlating with an
accumulation of NGF-containing cells in the kidney and spleen
[42]. NGF levels are higher in the sera of SLE patients than
healthy controls [43,44] and reflect systemic activity of the
disease as assessed by the SLEDAI (SLE Disease Activity
Index) score [44]. However, reports on serum BDNF
concentration in SLE are contradictory and limited to
neuropsychiatric forms of the disease. Though serum BDNF
levels are decreased in neuro-SLE according to one case
report [45], they are increased in two other studies [45,46].

The aim of the present study was to evaluate serum and
lymphocytic levels of NGF, BDNF and NT-3 in SLE patients
and identify their relation to clinical features (systemic activity
assessed by SLEDAI score, joint, skin, neurological and kidney
involvement, vasculitis), SLE-related immunological activity
(anti-native DNA antibodies, complement activation via CH 50,
C3 and C4 levels), and anti-phospholipid antibodies.
Furthermore, we evaluated B cell activation parameters that
could be modulated by SLE (serum BAFF levels and
autoantibody production) and their association with enhanced
levels of NT in sera [36,38]. Additionally, we analyzed the
cytokine profiles and T-regulatory cell population that could be
modified by SLE activity [47]. IL-10 and IFN-γ, two cytokines
belonging to the TH2 and TH1 profile, respectively, were
measured in sera from controls and patients. Several studies
have previously demonstrated that IL-10 levels in sera are
significantly higher in untreated SLE patients than in healthy
controls [48] and strongly reflect SLE activity [49]. Their
dynamics are closely linked to those of autoantibody synthesis
[50,51]. Strikingly, circulating IL-10 levels decrease after
treatment and correlate with a change in the SLEDAI score,
indicating that sera IL-10 level is a biological marker of SLE
activity [52]. Moreover, the evaluation of IL-10 levels in SLE is
also supported by the direct effect of IL-10 on NGF secretion in
a murine astrocyte model [20]. Likewise, a relationship
between IFN-γ and BDNF cell activation has been established
in microglial cells, in that BDNF inhibits IFN-γ-induced
activation [53].

Considering that no reported experimental data support the
involvement of NT4/5 in B and T cell activation or autoimmune
disease, this study mainly focused on the relationship between
serum levels, B-lymphocyte expression of NGF, BDNF and
NT-3, and SLE activity.

NGF, BDNF, NT-3 and Systemic Lupus Erythematosus.
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Materials and Methods

Patients and control population
Twenty-six successive SLE patients, including 24 women

(median age 44±12 years), were included in a one-year cross-
sectional study (2011) in Limoges University Hospital [54]. All
participants fulfilled the revised American College of
Rheumatology (ACR) criteria for SLE. Disease activity was
evaluated using the SLEDAI score [55]. Neurological
complications were ruled out by clinical examination combined
with normal brain MRI (n=11) and brain 18-F-
fluorodeoxyglucose positron emission tomography (n=2).

Patients with neoplastic disorders or depression were
excluded in order to avoid confounding effects on serum NT
levels [56].

The control population consisted of 26 healthy age- and sex-
matched volunteers. Patients were excluded if they were
pregnant, under the age of 18, or unable to give valid consent.
The “NeuroLED” study received ethical approval from The
Limoges University Hospital Research Ethics Committee (N

°I06023), and was carried out in accordance with the Helsinki
Declaration. Written consent was obtained from all patients and
control subjects.

Clinical features
The clinical features of SLE present at the time of blood

sampling were cutaneous (n=22, 85%), articular (n=21, 81%),
renal (n=4, 16%), neurological (n=2, 8%) and pleural (n=1,
4%), as well as pericarditis (n=1) and vasculitis (n=9; Table 1).
The mean SLEDAI score was 7.2 ± 4.1 (range 4-20). Six
patients (23%) presented a severe systemic SLE flare defined
by a mean SLEDAI score over 9 (Table 1). Six patients (23%)
presented an associated anti-phospholipid syndrome and 7
presented secondary Sjögren’s syndrome (27%, Table 1).

Out of the 26 patients, 14 (54 %) were treated with
glucocorticoids (mean 18.1 ± 22.2 mg/day), 20 (77%) with anti-
malarial drugs, and 4 (16%) with immunosuppressants
(azathioprine n=2, mycophenolate mofetil to maintain remission
of a previous renal flare n=2; Table 1).

Table 1. Clinical and biological features of the SLE patient group.

Patient/age/
gender   Clinical manifestations   SLEDAI   

AAPS,
SS   Treatment

NGF (pg/
mL)   

BDNF
(pg/mL)

NT3 (pg/
mL)   

APL,
antiß2GP1   CH 50   

Anti-nuclear Ab /
nDNA

1/41/F Skin 4 1/1 HCQ / 0 559.7 511.1 2546.2 0/0 700 1/320 - 18
2/30/F Skin, Art 6 0/0 HCQ / 1 425.9 433.3 1788.5 0/1 370 1/640 - 200
3/33/F Skin, Art 4 0/0 HCQ, P, MMF / 1 395.7 383.8 2876.2 0/0 750 1/1280- 48
4/40/F Skin, Art 4 0/0 HCQ, P / 0 408.1 434.3 3112.4 0/0 750 1/1280 - 114
5/54/M Art 6 0/1 - / 0 348.3 631 4378.8 0/0 750 1/640 - 87
6/66/F Skin, Art, P 10 0/0 HCQ, P / 0 471.4 749.1 4414 0/0 750 1/160 - 15
7/55/F Skin, Art 6 0/0 HCQ / 0 364.5 596.7 1568.5 1/0 190 1/1280 - 61
8/43/F Skin, Art, Ren, V 6 0/1 HCQ, P / 1 520.7 567.7 4204.2 1/1 650 1/1280 - 200
9/30/F Skin, V 8 0/1 - / 0 480.2 567.7 1247.8 0/0 270 1/1280 - 12
10/40/F Skin, Art 4 0/0 HCQ / 0 404.4 725.0 1846.5 0/0 750 -
11/24/F Skin, Art, Ren, M 8 0/0 HCQ, P / 1 396.9 799.8 2139.7 0/0 570 1/1280 - 113
12/25/F Skin, Art, P 4 0/0 HCQ, P / 1 404.7 665.1 2307.8 0/0 570 1/640 - 12
13/50/F Art, Ren 8 0/0 HCQ, P / 1 411.7 651.4 4261.2 0/0 570 1/1280 - 200
14/48/F Skin, Art 4 0/0 P / 1 443.9 549.1 2717.5 0/0 240 1/1280 - 119
15/47/F Art, Ren, CNS 20 0/0 P / 1 420.5 556.3 3180.1 0/0 570 1/1280 - 200
16/45/F Skin, V 5 1/0 HCQ, P / 0 418.3 617 1753.2 1/0 430 1/1280 - 320
17/30/F Skin 4 0/0 HCQ / 1 440.4 667 2098.2 0/0 380 1/320
18/59/F Skin, V 8 0/0 - / 1 372.8 694.1 1163 1/0 650 1/320
19/39/F Skin, Art, Ren, V 10 1/0 HCQ, P, Aza / 1 309.3 627.1 3619.2 1/0 600 1/1280 - 58
20/77/F Skin, Art, V 8 1/1 - / 1 263.4 584.9 1618.5 1/0 500 1/320
21/44/F Skin, Art, V 12 0/1 HCQ / 1 426.8 548.1 3425.5 0/0 320 1/640
22/38/F Skin, Art, V 12 1/0 HCQ, P / 1 486.4 581.7 5946.3 1/0 330 1/1280 - 12
23/31/M Skin, Art, CNS, V 15 0/0 HCQ / 1 442.8 613.2 4379.6 1/1 210 -
24/55/F Art 4 1/0 HCQ, P, Aza / 1 522.7 358.2 3682.7 1/1 570 1/1280 - 12
25/53/F Skin, Art 4 0/1 HCQ / 0 375.7 781 3928.1 0/0 700 1/320
26/50/F Skin, Art, Dig 4 0/0 HCQ, P, MMF / 0 520.7 472.3 1436.5 0/0 570 1/1280 - 200

Clinical manifestations: {skin manifestations (Skin), articular (Art), renal (Ren), central nervous system (CNS), muscular (M), and digestive (Dig) involvements, pleural
effusion and pericarditis (P), vasculitis (V)}, SLEDAI score, associated antiphospholipid syndrome (AAPS), secondary Sjögren’s syndrome (SS) associated with SLE.
Immunomodulating treatment: {prednisone (P), hydroxychloroquine (HCQ), mycophenolate mofetil (MMF), azathioprine (Aza)} was increased (1) or not (0) after sampling.
Serum dosages of NGF, BDNF and NT3 (pg/mL) and immunological profiles including anti-phospholipid (APL) and anti- native DNA antibodies Ab (nDNAn) are summarized.
doi: 10.1371/journal.pone.0079414.t001
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Treatment was increased directly after the blood sampling for
systemic flare in 61% of cases (n=16) with the initiation of
hydroxychloroquine (n=5, 19%), glucocorticoid (n=7, 27%) or
immunosuppressants (n=7, 27%), or with an increase of
previous corticosteroid dosages alone (n=3, 11%; Table 1).

Another blood sample for serum NT levels was taken one
month after the systemic flare in 9 cases.

Additional assessment of quality of life
Patients completed the Medical Outcomes Study, a 36-item

short form health survey (SF-36), independently of their visit to
the physician [57]. The questionnaires were returned to the
research assistant.

Measurement of autoantibodies and neurotrophin
levels

Antinuclear antibodies were characterized by
immunofluorescence in HEp2 cells (The Binding Site, Saint
Egrève, France) and anti-native DNA (nDNA) antibodies by
ELISA (Phadia, Saint-Quentin Yvelines, France). Anti-
cardiolipin and anti-β2 Glycoprotein 1 (β2-GP1) antibodies
were measured by ELISA (Ingen, Chilly Mazarin, France).

Serum NGF, BDNF and NT-3 levels were measured using
commercial ELISA kits according to the manufacturer’s
instructions (NGF Emax

® ELISA, BDNF Emax
® ELISA, NT-3

ELISA, Promega, Charbonnières, France). All assays were
performed in duplicate and the data are presented as pg/mL.
Detection limits were 15 pg/mL for BDNF and 4 pg/mL for NT-3
and NGF.

B cell activation analysis and determination of Th1 and
Th2 profiles

Serum BAFF, INF-γ (Th1) and IL-10 (Th2) levels were
measured with an ELISA kit according to the manufacturer’s
instructions (Quantikine® Human Immunoassay R&D system,
Lille, France). All assays were performed in duplicate and the
data are presented as pg/mL. Detection limits were 4 pg/mL for
BAFF and 2 pg/mL for INF-γ and IL-10.

Determination of neurotrophin expression by B and T
cells

Expression of intracellular NGF, BDNF and NT-3 in T and B
lymphocytes was assessed by flow cytometry. Whole blood
cells were stained with either phycoerythrin (PE)-cyanin (Cy) 7-
conjugated anti-CD3 or anti-CD19 antibodies for 15 min at
room temperature. After lysing the red blood cells
(Immunoprep, Beckman Coulter, France), white blood cells
were fixed, permeabilized (Intraprep, Beckman Coulter) and
incubated at room temperature for 30 min with rabbit anti-NGF,
anti-BDNF and anti-NT-3 antibodies (all 1/100; Santa Cruz
Biotechnology, France) in Phosphate-Buffered Saline (PBS)
containing 1% Bovine Serum Albumin. After two washes in
PBS, antibodies were detected with Alexa Fluor 488-
conjugated goat anti-rabbit IgG antibodies (10 μg/mL;
Invitrogen, France) for 30 min at 4°C. Cells stained with rabbit
isotypic immunoglobulins (Santa Cruz Biotechnology, France)
were used as controls to determine background and positive

result thresholds. After washing twice in PBS, cells were
suspended in PBS and analyzed with a flow cytometer
(FacsCantoTM II, Becton Dickinson, Le Pont-de Claix, France).

Quantitative analysis of circulating T regulatory cells
Cells were stained with Cy7-conjugated anti-CD3, FITC-

conjugated anti-CD4, Cy5-anti-CD25 (Beckman Coulter), and
PE anti-FOXP3 (eBioscience) antibodies or isotype controls,
and FACS analysis was performed as previously described
[58].

Statistical analysis
The results were expressed as means ± standard deviation.

P values ≤ 0.05 were considered significant. One-way analysis
of variance (ANOVA), Chi-square tests and Mann-Whitney
tests were used when appropriate. To detect correlations
between serum NT levels, clinical and other biological data,
linear regression analysis was used and p-values were
determined by Spearman’s rank correlation test.

Results

Variations in serum NT expression in SLE
The NT levels in sera of SLE patients, NGF, BDNF and

NT-3 were determined by ELISA.  Serum NGF levels were
higher in SLE patients (426.13 ± 70.85 pg/mL) than in healthy
controls (373.9 ± 52.3 pg/mL, p=0.003, Figure 1A). BDNF
levels were also increased in SLE patients (598.9 ± 129.8 vs
326.1 ± 60.5 pg/mL in controls, p<0.0001, Figure 1B). Average
serum NT-3 levels were similar in the SLE group and controls
(2911.7 ± 1248.8 vs 2553.7 ± 879.7 pg/mL, NS, Figure 1C).

The increases in serum levels of NGF and BDNF were
statistically independent (Figure 1D, r=0.28, NS). Therefore, we
examined the correlation between enhanced NGF and BDNF
levels and lupus systemic activity.

Serum neurotrophins and SLE activation profile
NGF, BDNF and NT-3 serum levels were not correlated with

initial SLEDAI score (NGF: Γ=0.19, p=0.34, BDNF: Γ=0.16,
p=0.42, NT-3: Γ=0.35, p=0.07). However, there were higher
NT-3 levels in a subset of patients with severe systemic flare
(SLEDAI ≥10; 4171.6 ± 1013.17 vs 2533.7 ± 1062.9 pg/mL,
p=0.002, Figure 2). In contrast, concentrations of NGF (426.2 ±
62.6 vs 425.9 ± 74.6 pg/mL, NS) and BDNF (612.6 ± 73.6 vs
594.7 ± 143.7 pg/mL, NS) were similar in patients regardless of
SLEDAI score.

SLEDAI score reflects the global systemic activity of SLE,
which can correspond to the involvement of various organs.
The presence of cutaneous, neurological or renal SLE
manifestations did not influence serum levels of NGF, BDNF
and NT-3 (Table 1). However, NT-3 levels were significantly
increased in patients with articular manifestations (3185.6 ±
1213.3 pg/mL vs 1761.7 ± 581.2 pg/mL, p=0.02). In contrast,
there was no difference in NGF and BDNF levels between
patients with and without joint involvement (Table 1).

We then investigated the correlation between NT serum
levels and immunological parameters associated with lupus
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flare. Serum NT-3 levels alone were dramatically increased in
patients with complement activation (n=8, 3749.1 ± 1433.25 vs
2457.9 ± 950.7, p=0.01) and these levels correlated negatively
with serum CH 50 levels (Γ=-0.28, p=0.032, Figure 3A, Table

1). In contrast, anti-nDNA antibodies are independent of the
serum levels of NGF (Γ=0.09, p=0.68), BDNF (Γ=0.29, p=0.18)
and NT-3 (Γ=0.35, p=0.07).

Figure 1.  Concentrations of serum NGF (A), BDNF (B) and NT-3 (C) detected by ELISA in SLE patients (SLE, grey boxes)
and healthy controls (Controls, white boxes).  The boxes represent the 50th percentile, the bars outside the boxes show the 10th
and 90th percentiles, and the horizontal black lines represent the median. Significant differences were assessed with Mann-Whitney
tests.
doi: 10.1371/journal.pone.0079414.g001

Figure 2.  Serum NT-3 concentrations (ELISA) in SLE patient with severe systemic flare (SLEDAI>10, grey box), moderate
flare (SLEDAI≤10, dotted box) and healthy controls (Controls, white box).  The boxes represent the 50th percentile, the bars
outside the boxes show the 10th and 90th percentiles, and the horizontal black lines represent the median. Significant differences
were assessed with Mann-Whitney tests.
doi: 10.1371/journal.pone.0079414.g002

NGF, BDNF, NT-3 and Systemic Lupus Erythematosus.
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Considering that SLE may be associated with secondary
Sjögren syndrome or anti-phospholipid syndrome, we
examined if there was a correlation between NT serum levels
and SLE-associated autoimmune disease.

Serum neurotrophins and SLE-associated disease
NGF, BDNF and NT-3 concentrations were similar in SLE

patients with or without secondary Sjögren’s syndrome (NGF
430.7 ± 113.2 vs 424.5 ± 51.8 pg/mL, BDNF 624.27 ± 102.31
vs 589.4 ± 139.89 pg/mL, NT-3 3094.86 ± 1262.33 vs 2860.87
± 1274.52 pg/mL, all NS). However, the presence of anti-SSB
antibodies (n=3) was associated with higher serum NGF levels
(507.2 ± 23.4 vs 417.4 ± 69.1, p=0.03, Table 1).

In patients with anti-phospholipid autoantibodies, lower
serum BDNF levels were observed: anti-cardiolipin (n=9, 529.2
± 142.9 vs 635.7 ± 109.2 pg/mL, p=0.04) or anti-β2GP1
antibodies (n=4, 438.8 ± 185.4 vs 627.9 ± 96.87 pg/mL,
p=0.004). Furthermore, BDNF levels negatively correlated with
the titers of both IgG and IgM anti-cardiolipin antibodies
(Γ=0.46, p=0.01 and Γ=0.41, p=0.04, respectively, Table 1).

In addition, we examined a possible correlation between
systemic flare, quality of life and serum NT profile.

Serum neurotrophins and quality of life
Scores from both the Physical Component Summary (PCS)

and Mental Component Summary (MCS) were lower in SLE
patients than healthy controls (PCS, 36.5 ± 6.9 vs 54.1 ± 7.4,
p<0.0001; MCS, 38.6 ± 10.1 vs 50.2 ± 6.5, p<0.0001) and did
not correlated with SLEDAI score (PCS: Γ=0.03, p=0.87, MCS:
Γ=0.22, p=0.32). In SLE patients and the controls, neither PCS
nor MCS scores were related to serum NT levels.

In order to evaluate the influence of immunomodulating
drugs on the increased circulating levels of NT, we examined
systemic NT levels before and after SLE flare treatment.

Dynamics of neurotrophin serum profile and SLE
treatment

Serum NGF, BDNF, and NT-3 concentrations were similar in
SLE patients at the time of the blood sample whether they were
untreated (n=4) or previously treated by corticosteroid,
hydroxychloroquine or immunosuppressants (Table 1).

Interestingly, serum BDNF concentrations decreased one
month after the systemic flare of the disease (407.7 ± 65.6
pg/mL) but were still higher than those in healthy volunteers
(326.1 ± 60.5 pg/mL, p<0.001, Figure 4). In contrast, serum
levels of NGF (426.12 ± 70.8 vs 462.6 ± 47.1 pg/mL, NS) and
NT-3 (2986.9 ± 954.5 vs 2911.7 ± 1248.8 pg/mL, NS) remained
unchanged after treatment of the SLE flare. NGF, BDNF and
NT-3 levels remained uncorrelated with the SLEDAI score
(mean 4 ± 1.8) assessed after flare treatment (Γ=0.35, Γ=0.46
and Γ=0.27 respectively, all NS).

In order to determine if there was a correlation between NT
and SLE activity at the level of immune cells, we tested if there
was a relationship between serum and lymphocytic NT
expression, T and B cell activation, and cytokine profiles.

Lymphocytic neurotrophins and clinical and
immunological SLE profile

NGF and BDNF-producing B cells are increased in
SLE.  The numbers of B cells producing NGF and BDF were
greater in the SLE group than in healthy controls (NGF, 29.3 ±
31.3 vs 11.3 ± 20.9, p=0.02; BDNF, 71.2 ± 30.9 vs 47.9 ± 27.8,
p=0.03, Figure 5). Cell numbers were independent of serum
NGF, BDNF and NT-3 concentrations. In contrast, the numbers
of NT-3-CD19-positive cells were similar in the two groups
(72.4 ± 29.7 vs 64.7 ± 29.1, NS).

The numbers of NGF and BDNF-producing B cells were
independent of SLEDAI score (Γ=0.22 and Γ=0.2 respectively,
NS). Although numbers of NGF-producing cells were
independent of clinical SLE profiles, CD19+ BDNF-producing B
cells were dramatically decreased in patients with an

Figure 3.  Correlations between NT-3 and CH 50 NGF (A) and T regulatory cell counts (flow cytometry) in SLE patients
(B).  The linear regression curve and coefficient of determination yielded by the analysis of variance are both represented. Each
point represents an individual patient and a healthy control. Γ defines the coefficient of determination yielded by the analysis of the
variance table. P-values were determined by Spearman’s rank correlation test.
doi: 10.1371/journal.pone.0079414.g003
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associated anti-phospholipid syndrome (40.2 ± 8.9 vs 80.5 ±
22.05, p=0.03).

NGF and BDNF-producing B cells were not influenced by
corticosteroid (NGF: 36.5 ± 33.8 vs 20.8 ± 27.11, NS, BDNF:
75.4 ± 23.7 vs 88.8 ± 17.5, NS), hydroxychloroquine (NGF:
33.6 ± 23.6 vs 14.7 ± 16.8 NS, BDNF: 79.9 ± 23.3 vs 84.3 ±
19.2, NS) or immunosuppressants (NGF: 25.3 ± 19.8 vs 30.1 ±
33.3, NS, BDNF: 76.06 ± 30.2 vs 81.6 ± 21.7, NS).

Interestingly, NGF production by B cells tended to be higher
in SLE patients with cryoglobulinemia (mean fluorescence
intensity, Xmean, 8.7 ± 7.7) than in patients without
cryoglobulinemia (Xmean 4.1 ± 2.7, p=0.06). A similar
relationship was observed between CD19-related NGF

production and complement activation (Xmean 7.1 ± 5.41 vs
3.5 ± 1.8, p=0.05).

CD19-BDNF-producing B cells were also decreased in
patients positive for lupus anticoagulants (28.5 ± 14.3 vs 79.0 ±
23.9, p=0.01).

NGF and BDNF-producing T cells in SLE.  The numbers of
T lymphocytes expressing NGF (17.2 ± 21.2 vs 9.8 ± 21.3,
NS), BDNF (55.1 ± 33.5 vs 55.1 ± 33.5, NS) and NT-3 (57.5 ±
33.7 vs 52.9 ± 24.2, NS) were similar in the SLE and control
groups and were independent of patients’ clinical and
immunological SLE profiles.

NT and B-cell activation parameters.  As expected, serum
BAFF levels were increased in the SLE group (1980.7 ± 1315.9
vs 1019.9 ± 193.4 pg/mL, p=0.01). However, they did not

Figure 4.  Serum BDNF concentrations in SLE patients before (SLE1, grey box) and after (SLE2, dotted box) treatment of
the disease flare compared to healthy controls (Controls, white box).  The boxes represent the 50th percentile, the bars
outside the boxes show the 10th and 90th percentiles, and the horizontal black lines represent the median. Significant differences
were assessed with Mann-Whitney tests.
doi: 10.1371/journal.pone.0079414.g004

Figure 5.  Percentage of B lymphocytes (flow cytometry) expressing NGF (A) and BDNF (B) (SLE, grey boxes) and healthy
controls (Controls, white boxes).  The boxes represent the 50th percentile, the bars outside the boxes show the 10th and 90th
percentiles, and the horizontal black lines represent median values. Significant differences were assessed with Mann-Whitney tests.
doi: 10.1371/journal.pone.0079414.g005
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correlate with serum concentrations of NGF, BDNF, or NT-3
(Γ=0.12, Γ=0.03 and Γ=0.04, respectively) in the SLE group.

In contrast, in the control group, serum concentrations of
NGF positively correlated with BAFF levels (Γ=0.64, p=0.02),
which were also independent of the serum levels of both BDNF
and NT-3 (Γ=0.02 and Γ=0.6, respectively).

Serum levels of BAFF were also independent of B and T cell
NT expression in both the SLE and control groups.

NT and T regulatory cells.  Only serum NGF levels and T
regulatory cell counts were negatively correlated in SLE
patients (Γ=0.48, p=0.01, Figure 3B), whereas there was no
significant correlation between BDNF or NT-3 levels and T
regulatory cell numbers (Γ=0.06, NS, Γ=0.28, NS, respectively).
T regulatory cells and NTs appeared to be independent in
healthy controls (NGF Γ=0.27, BDNF Γ=0.12, NT3 Γ=0.08, NS).

BDNF-positive CD19 cells and T regulatory cells were
negatively correlated (Γ=0.39, p=0.04).

NT and IL-10 production.  IL-10 concentrations were higher
in the SLE group (29.4 ± 81.1 vs 0.19 ± 3.3 pg/mL, p=0.06),
especially in the subgroup of patients with severe systemic
flare (91.28 ± 162.6 vs 10.9 ± 11.26 pg/mL, p=0.03) or positive
anti-SSA antibodies (77.25 ± 152.48 vs 12.24 ± 13.27 pg/mL,
p=0.07).

In the SLE group, NGF, BDNF and NT-3 serum levels were
statistically independent of serum IL-10 levels (Γ=0.02, Γ=0.12
and Γ=0.12 respectively), which did not influence NT
production in T or B cells. The same results were observed in
the control group.

NT and Interferon-γ production.  Serum INF-γ levels were
higher in the SLE group (INF-γ 136.7 ± 230.9 vs 6.9 ± 10.5
pg/mL, p=0.03), particularly in patients with severe systemic
flare (258.9 ± 422.32 vs 79.58 ± 98 pg/mL, p=0.08). NGF,
BDNF and NT-3 levels were also statistically independent of
INF-γ concentrations (Γ=0.21, Γ=0.17 and Γ=0.35, respectively)
in the SLE group. In contrast, serum BDNF levels negatively
correlated with INF-γ concentration in the control group sera
(Γ=0.55, p=0.03).

While NT production by B and T cells was independent of
INF-γ concentration in the control group, INF-γ serum levels
correlated with NGF production in T lymphocytes (Γ=0.64,
p=0.01).

Discussion

The present study provides new evidence of the significant
variation in NT levels in both serum and circulating B
lymphocytes in SLE patients. Previous studies mainly focused
on serum NGF levels, and serum BDNF and NT-3 had not
been studied in a SLE cohort. Furthermore, NT expression in
circulating B cells had not yet been documented. We have
identified an increase in NGF and BDNF levels in both serum
and circulating blood CD19-B cells in patients. Interestingly,
NT-3 levels were only increased in severe forms of SLE and
correlated with complement activation.

We have identified a significant increase in sera NGF and
BDNF levels in SLE patients compared to a healthy control
group. We confirm that serum NGF levels are increased in SLE
patients, a result previously demonstrated [43]. However, we

did not find any correlation between serum NGF levels,
systemic complications, and SLEDAI scores in this SLE
population, characterized by previous treatment with either
corticosteroid or immunosuppressants. These results differ
from those of a previous study reporting a correlation between
serum NGF levels and SLE activity [44]. However, the inclusion
criteria of this study was different, involving only untreated
children (and not adults) with an over-representation of renal
involvement (60% of patients vs 16% in the present study) [44].
Moreover, a link between renal involvement and enhanced
NGF levels has been described in SLE mice and in patients
with SLE glomeronephritis-related renal insufficiency [42,59],
which could explain this discrepancy. However, we did not find
any correlation between NGF serum levels and the presence of
renal involvement (only 4 adults) or other systemic
complications. Therefore, the effect of immunomodulating
drugs on serum NGF levels in previously treated patients
needs to be discussed in regards to other reports. In fact, NGF
serum levels have been found to be independent of
immunomodulating treatments in other diseases such as
systemic sclerosis, rheumatoid arthritis, and primary Sjögren
syndrome [36,38,60].

Concerning BDNF levels, this study reports for the first time
an increase in serum BDNF levels in SLE patients, occurring
independently of central neurological involvement (absent in all
but two patients). Serum BDNF levels did not correlate with
SLEDAI score. Only one previous case report has been
described of psychotic involvement in SLE with an increase of
serum BDNF [61]. Likewise, in multiple sclerosis and
rheumatoid arthritis, a decrease in serum BDNF levels occurs
with clinical improvement, independently of other inflammatory
markers [62,63]. After treatment, a decrease in BDNF levels is
detected in these SLE patients. The significance of this
decrease with treatment is debated and also appears to be
independent of both corticosteroid and immunosuppressive
drugs in psychiatric form of SLE patients [46], as well as in
systemic sclerosis [36] and rheumatoid arthritis [60]. In
contrast, BDNF serum levels are enhanced in primary Sjögren
syndrome patients (pSS) treated with either corticosteroid or
immunosuppressants for severe systemic involvement [38].
Interestingly, we have shown that BDNF levels decrease after
treatment of systemic flares, signifying that this decrease could
be a biological marker for improvement and a therapeutic
response in SLE [46].

Strikingly, we find an increase of NT-3 serum levels only in
severe (SLEDAI ≥ 10) and articular forms of SLE. Serum NT-3
has been infrequently studied in inflammatory diseases,
although NT-3 immune function has been demonstrated in
asthma: autocrine NT3 autocrine secretion leads to plasma cell
survival [4]. NT-3 involvement in autoimmune articular
symptoms is indicated by its presence in the synovial fluid of
patients with spondyloarthritis [64] and by increased levels in
the sera of systemic sclerosis patients with articular
complications that require hydroxychloroquine treatment [36].
Enhanced NT-3 serum levels in severe forms of SLE could
reflect a link between NT-3 and lupus flare, in that complement
activation (decrease of CH 50 levels) correlates with elevated
NT-3 levels. This direct relationship between NT-3 synthesis
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and complement (C1q) has been shown in neuronal cells [65].
In another cell model, NT-3 production by endothelial cells is
upregulated by local ischemia [66]. Therefore, NT-3 secretion
could be a biological marker of severe SLE forms, potentially
associated with vascular damage related to an active vasculitis
process.

The direct impact of NT on SLE physiopathology is also
underlined by the significant overproduction of both NGF and
BDNF by B cells, and could reflect an activation of circulating B
cells in SLE. The activation of circulating B-cells in SLE
patients has been reported during nephritis and SLE activity
[67]. Moreover, in some experimental conditions, a direct link
between in vitro activation of B cells and their secretion of NGF
and BDNF has been established [2,7-10,13]. Overall, the
overexpression of these NTs in SLE patients’ circulating B cells
(compared to healthy controls) could be a hallmark of activation
that correlates with the disease.

To further evaluate the impact of NTs on SLE pathogenesis,
we have looked for correlations between both serum and
lymphocytic NT levels and immune characteristics, especially
antibody production and T regulatory cell profiles.

NGF, BDNF and NT-3 levels did not correlate with anti-nDNA
levels. This correlation has not been previously examined in
the 3 published studies on NGF and BDNF serum levels in SLE
[43,44,46]. This absence of relationship between NT serum
levels and autoantibody production was also found in pSS and
systemic sclerosis [13,37]. Concerning rheumatoid arthritis, to
our knowledge, the correlation between NGF, BDNF and anti-
cyclic citrullinated peptide has not been previously studied
[60,64].

Interestingly, serum BDNF levels were the lowest in the
group positive for anti-phospholipid. This negative correlation
could be due to anti-phospholipid-associated vasculopathy and
oxidative stress, an association previously identified in
systemic sclerosis, atherosclerosis and diabetes [36,68,69].
Similarly, we identified for the first time a striking decrease of
BDNF-producing B cells in patients with an associated anti-
phospholipid syndrome. These results suggest that a reduction
of both circulating BDNF levels and BDNF-producing B cells
are involved in the vascular damage associated with SLE.

In addition, we report a negative correlation between serum
NGF levels and T regulatory cells in SLE patients, which could
reflect either SLE activity [70] or a direct impact of serum NGF
level on T regulatory cell survival. Also, NGF is an inducible
survival growth factor for T cells, depending on the cytokine
profile [26]; anti-NGF treatment enhances Foxp3+ regulatory T
cells and decreases Th17 cells in a murine model of asthma
[71]. Moreover, IL-17 enhances NGF production in human T
cells [72]. Together, this data suggests that NGF could regulate
the balance of T-regulatory and Th17 cells [26,71].
Nevertheless, no reports have shown that either p75NTR or TrkA
NGF receptors are present on human T regulatory cells, which
are known to produce high levels of BDNF in HIV-associated
neurodegeneration models [73].

IL-10 serum levels were enhanced in the SLE group,
reflecting systemic activity and anti-SSA production as
previously described [48-51], whereas NT and IL-10 levels are
were not correlated. Indeed, IL-10 release by immune cells,
which is enhanced by both NGF and BDNF in normal
conditions, is dramatically reduced in cases of allergy [74].

As expected, INF-γ serum levels were increased in SLE.
Interestingly, in our control group only, we found a negative
correlation between serum BDNF level and INF-γ, which is
known to reduce BDNF production in neurons, glia, and
bronchial smooth muscle cells [21,75]. Moreover, a cytokine
balance between INF-γ and BDNF has been described in
bowel mucosa, as a regulating factor of enteric glia cell
apoptosis [30]. The deregulation of the INF-γ and BDNF
balance in SLE may reinforce the importance of BDNF over-
secretion in SLE pathogenicity.

In conclusion, the present study finds that the expression of
the neurotrophins NGF and BDNF, overexpressed by
circulating B cells, are increased in the sera of SLE patients
independently of Th1/Th2 profile. NT-3 is upregulated only in
severe flares of the disease, and BDNF levels are closely
related to anti-phospholipid syndrome.

Thus, we hypothesize that evaluating NT in both sera
and circulating-B lymphocytes could be a new
biological marker of SLE activity and systemic
complications

To test this hypothesis, prospective large cohort studies,
including naive SLE patients, need to be performed. In
addition, further studies of NT-secreting subpopulations of B
and T cells, in association with their NT receptors (i.e. TrkA,
TrkB, TrkC, p75NTR and sortilin), will be conducted to define
their fine-tuning functions during SLE disease. This study
supports the idea that neurotrophins are involved in SLE
physiopathology and thus could be a potential target of
systemic treatment.
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