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Simple Summary: Non-small cell lung cancer (NSCLC) is the most common cause of brain metastasis
(BM). Approximately 50% of patients with metastatic NSCLC harbor BMs. Within the past decade,
Gamma Knife radiosurgery (GKRS) has become one of the first-line treatments for BMs. Ability to
predict treatment response after GKRS can therefore guide treatment strategy. This study aimed to
determine whether pre-radiosurgical neuroimaging radiomics can predict survival and local tumor
control after GKRS. Based on the collected magnetic resonance images and clinical characteristics
of the 237 NSCLC BM patients with BMs (for survival prediction) and 256 NSCLC patients with
976 BMs (for prediction of local tumor control), we concluded that the identified radiomic features
could provide valuable additional information to enhance the prediction of BM responses after GKRS.
The proposed approach provided physicians with an intuitive way to predict the patient outcome
based on pre-radiosurgical magnetic resonance images.

Abstract: The diagnosis of brain metastasis (BM) is commonly observed in non-small cell lung cancer
(NSCLC) with poor outcomes. Accordingly, developing an approach to early predict BM response to
Gamma Knife radiosurgery (GKRS) may benefit the patient treatment and monitoring. A total of
237 NSCLC patients with BMs (for survival prediction) and 256 patients with 976 BMs (for prediction
of local tumor control) treated with GKRS were retrospectively analyzed. All the survival data were
recorded without censoring, and the status of local tumor control was determined by comparing
the last MRI follow-up in patients’ lives with the pre-GKRS MRI. Overall 1763 radiomic features
were extracted from pre-radiosurgical magnetic resonance images. Three prediction models were
constructed, using (1) clinical data, (2) radiomic features, and (3) clinical and radiomic features.
Support vector machines with a 30% hold-out validation approach were constructed. For treatment
outcome predictions, the models derived from both the clinical and radiomics data achieved the best
results. For local tumor control, the combined model achieved an area under the curve (AUC) of 0.95,
an accuracy of 90%, a sensitivity of 91%, and a specificity of 89%. For patient survival, the combined
model achieved an AUC of 0.81, an accuracy of 77%, a sensitivity of 78%, and a specificity of 80%.
The pre-radiosurgical radiomics data enhanced the performance of local tumor control and survival
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prediction models in NSCLC patients with BMs treated with GRKS. An outcome prediction model
based on radiomics combined with clinical features may guide therapy in these patients.

Keywords: non-small cell lung cancer; brain metastasis; Gamma Knife radiosurgery; outcome
prediction; radiomics; machine learning; magnetic resonance imaging

1. Introduction

Non-small cell lung cancer (NSCLC) is a common malignant cancer with a high mor-
tality rate. Approximately 50% of patients with metastatic NSCLC harbor brain metastases
(BMs) [1]. Whole-brain radiotherapy, stereotactic radiosurgery, and surgical resection are
common treatments for BMs [2–4]. Within the past decade, Gamma Knife radiosurgery
(GKRS) has become one of the first-line treatments for BMs [5,6]. GKRS has demonstrated
efficacy in randomized controlled trials for a limited number of BMs, achieving local tumor
control rates of 70 to 80% [7]. However, variations in treatment response exist. Therefore,
accurate prediction of such a response may help guide management. Several molecular
biomarkers have been associated with local tumor control after GKRS for NSCLC BMs.
The mutation status of Epidermal Growth Factor Receptor (EGFR) was suggested to be
associated with the local tumor control of BM after GKRS. Lee et al. reported that the
local control rate in the EGFR mutant group was approximately 3-fold higher than that
in the wild-type group during the 2-year follow-up period after GKRS [8]. Moreover, the
insulin-like growth factor I receptor pathway was reported to be over-expressed in BMs
and induced treatment resistance in non-small cell lung cancer cells [9,10]. Despite this, the
use of molecular biomarkers for predictions necessitates tissue sampling and molecular
sequencing, which present additional costs and risks. Therefore, there is a need for accurate
prediction tools that utilize readily available clinical and neuroimaging data.

Magnetic resonance imaging (MRI) is a standard-of-care neuroimaging modality in
the workup and diagnosis of BMs in NSCLC patients. Some of the imaging features,
including size, number, and presence of hemorrhage, have been associated with local
tumor control after GKRS [11–13]. Nevertheless, the predictive performances of models
using conventional imaging characteristics have been limited by these rudimentary tumor
descriptions. Radiomics, a method that extracts high-throughput quantitative features from
radiographic medical images, has been utilized in cancer research to improve diagnostic,
prognostic, and predictive accuracies [14–16]. More recently, several studies have suggested
that MRI radiomics could facilitate several clinical applications, such as lesion classification,
cancer staging, and survival prediction in various types of cancers [17–19]. Concurrently,
machine learning methods have been widely applied to process high-dimensional data
and develop prediction models in radiomics studies [20]. Prior studies have attempted to
combine MRI radiomics and machine learning methods to predict response after GKRS in
patients with BMs [21–23]. However, these studies were limited by small sample sizes and
unstandardized radiomics processing.

In this study, we developed local tumor control and overall survival (OS) prediction
models using machine learning. Clinical and radiomics data were used in the derivation
of these models, and different models were compared. We hypothesized that imaging
features extracted from pre-radiosurgical MRIs can improve local tumor control and OS
prediction models for NSCLC patients with BMs treated with GKRS.

2. Materials and Methods
2.1. Patient Cohort

A database of 307 NSCLC patients with BMs treated with GKRS at Taipei Veterans
General Hospital between 2011 and 2018 was retrospectively collected. Inclusion criteria
for the study: (1) a diagnosis of NSCLC confirmed by lung biopsy or open surgery;
(2) presence of ≥1 BM(s) on MRI; (3) underwent GKRS treatment for the BM(s); (4) at least
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one clinical and neuroimaging follow-up. The flowchart of patient recruitment is shown
in Figure 1. The study was approved by the Institutional Review Board, and informed
consent was waived.
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Figure 1. Flowchart of patient recruitment.

2.2. MRI Preprocessing and Radiomics Feature Extraction

Pre-GKRS MRIs were acquired from each patient, including T1-weighted (T1w;
TR/TE = 500/9 ms), contrast-enhanced T1-weighted (T1c; TR/TE = 500/9 ms) and T2-
weighted (T2w; TR/TE = 4000/109 ms) images. All the pre-treatment MRI data were
acquired on the same day of GKRS followed by the treatment planning and treatment
delivery. Pre-processing was applied to improve the reliability of radiomics analysis. Image
resolution adjustments were performed to re-sample all voxel sizes to 1 × 1 × 1 mm3 for
each MRI sequence. The T2w and T1w images were then co-registered to the T1c images
using a rigid body transformation followed by a six-parameter rigid body transformation
and mutual information algorithm. Afterward, the co-registration quality was visually
verified on the processing platform. Finally, image intensities were transformed into stan-
dardized ranges (Z-score transformation) based on the whole-image mean and standard
deviation for each image set.

The BMs were delineated on pre-radiosurgical MRIs based on a consensus of a multi-
disciplinary team comprising experienced neurosurgeons and neuroradiologists for GKRS
treatment planning. Radiomic features, including histogram, geometry (shape and size),
and texture analyses, were extracted from the pre-radiosurgical MRIs. The histogram
features describe the global distribution of the region of interest (ROI), such as energy,
entropy, maximum, kurtosis, and skewness. The geometry features describe the tumor
volume, surface area and shape, and their ratios. The texture features describe the het-
erogenetic of ROIs based on the gray level co-occurrence matrix (GLCM), gray level run
length matrix (GLRLM), and local binary pattern (LBP) [24–27]. In the feature extraction
process, the feature aggregation of GLCM and GLRLM values was performed by averaging
over 3D directional matrices to improve rotational invariance [28]. The LBP features were
calculated slice-by-slice followed by the histogram analysis of LBP matrices across all
slices. The wavelet features were calculated using a three-dimensional wavelet transform
function (coif1 wavelet). Wavelet decomposition was conducted by applying low (L) and
high (H) pass dimensional filters along three image axes, resulting in eight decomposed
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image sets: LLL, LLH, LHL, LHH, HLL, HLH, HHL and HHH filtered images. Wavelet
decomposition was performed according to the IBSI guidelines for three-dimensional
separable wavelets applied to radiomics [29]. For the original MRI and each wavelet
image set, 16 histograms and 49 texture features (including GLCM, GLRLM, and LBP)
were extracted, yielding 585 features. Eight geometry features were calculated to further
quantify the three-dimensional geometry of the ROIs. A total of 1763 MR radiomic features
(585 features × 3 image contrasts + 8 shape and size features) were generated for each BM.
All the image preprocessing steps and subsequent radiomics extraction were performed
using previously published MR radiomics platform (MRP) [30,31] complied with the Image
Biomarker Standardization Initiative (IBSI) [28]. A total of 1763 radiomic features were
extracted from the pre-radiosurgical MRIs. The diagram of the radiomics workflow is
displayed in Figure S1. The formulae for the calculation of radiomics are listed in Table S1.

2.3. Feature Selection and Classification Models

In this study, classification models were developed to predict local tumor control
and OS after GKRS. The BM response to GKRS was assessed by comparing the last MRI
follow-up in patients’ lives to the pre-GKRS MRI and categorized as follows: (1) poor
tumor control (tumor progression): more than 10% increase in tumor volume and (2) good
tumor control (stable tumor volume or regression): less than 10% increase or more than
10% decrease of tumor volume. For the OS prediction, we applied the median survival to
categorize patients into good or poor survival groups. A hold-out method was used to
divide the dataset into a training dataset (70% of the total samples) and a testing dataset (the
remaining 30%). Feature selection and construction of predictive models were applied to
the training set. The testing set was used to assess the performance of the derived models.

Three predictive models for each outcome were developed using the following fea-
tures: (1) clinical features (i.e., Karnofsky performance status (KPS), presence of extracranial
metastases, treatment of primary NSCLC, number of BMs, and volume of BMs); (2) ra-
diomic features; and (3) the combination of clinical and radiomic features. A two-step
feature selection was adopted to identify key radiomic features and reduce feature re-
dundancy. The first step was conducted using a two-sample t-test to identify the feature
candidates with significant differences between groups (good vs. poor for local tumor
control; and good vs. poor for survival). For each classification model, 25 features with
the smallest p-value (<0.05) were first identified separately. Final key features for model
training were further sieved out by using the sequential forward selection (SFS) algorithm
for each outcome prediction [32].

The sample sizes of the good and poor local tumor control groups were unbalanced.
To reduce the bias, a near miss under-sampling method (NearMiss-2) was used to equalize
the number of samples in two classes [33]. For the prediction of local tumor control,
the proposed model was constructed by the lesion-wise approach. For the prediction
of overall survival, the model was developed using the patient-wise analysis, and only
the radiomic features extracted from the largest BM were used in the model derivation.
The rationales that we only focused on the largest BM included: (1) to produce a more
reliable estimate of radiomic features with a sufficient number of voxels [34]; (2) to mostly
represent the malignancy of BM and impact on patients’ survival; (3) to alleviate the
potential variability of radiomics features extracted from multiple lesions within a patient.
Features identified through the two-step feature selection process were used in the model
training, and support vector machines (SVM) with Gaussian function kernel and Bayesian
optimization for hyperparameters were trained for each prediction.

2.4. Model Performance and Statistics

The performance of three models for each outcome prediction based on different fea-
tures were evaluated by calculating the accuracy, sensitivity, specificity, and area under the
receiver operating characteristic curve (AUC) in the testing dataset. To further statistically
compare the performance between three models for each outcome prediction, we employed
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bootstrap random resampling 100 times on the testing dataset and repeatedly evaluate
model performance for each sampling dataset [35]. Based on the evaluated variation for
each model performance, we used the paired t-test to identify the significant differences of
accuracy, sensitivity, specificity, and AUC between the predictive models with Bonferroni
correction for the multiple comparisons.

3. Results
3.1. Clinical Characteristics of Patients

The clinical characteristics of finally recruited 237 patients with BMs (for the survival
prediction) and 256 patients with 976 BMs (for the prediction of local tumor control) are
listed in Table 1. All the 237 patients have complete information of OS (recorded time-
to-death event) and clinical data, and all the 976 BMs have complete information of local
tumor control and clinical data.

Table 1. Patient and BM characteristics.

Characteristic Value Percentage or Range

Patients for survival prediction (N = 237)

Age 60.8 22.6–91.3
Gender (Male:Female) 115:122

Overall survival (Month) 12.2 0.07–64.7
Other metastasis

Yes 117 49.4%
No 120 50.6%

KPS
≥90 164 69.2%
<90 73 30.8%

Original tumor control
Yes 108 48.8%
No 129 50.4%

Number of tumors
≥3 123 51.9%
<3 114 48.1%

NSCLC histology
Pure adenocarcinoma 233 98.4%

Adenocarcinoma + Large cell carcinoma 1 0.4%
Adenocarcinoma + Squamous

cell carcinoma 1 0.4%

Undifferentiated NSCLC 2 0.8%
Additional treatments

Neurosurgery 22 9.3%
Whole-brain radiotherapy 30 12.7%
Tyrosine kinase inhibitor 207 87.3%

Chemotherapy 137 57.8%

BMs for prediction of local tumor control (N = 976)

Local tumor control
Good 821 84.1%
Poor 155 15.9%

Maximum 3D diameter (d)
0 < d < 5 mm 11 1.1%

5 < d < 10 mm 410 42.0%
10 < d < 20 mm 416 42.6%

d > 20 mm 139 14.3%
Median GK dose (Gy)

Tumor center 28.6 18.7–50
Tumor periphery 19 12–30

3.2. Selected Radiomic Features

For the prediction of local tumor control after GKRS, 25 radiomic features were first
selected (Table S2). Five final radiomic features were selected by the SFS algorithm from
the 25 features identified. These features included the textural features focusing on the
informational coefficient of correlation in T1w and T1c images, and the local homogeneity
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in T1w images. The final selected features of local tumor control prediction are listed in
Table 2.

Table 2. Final selected radiomic features for the outcome prediction.

Image
Contrast

Wavelet
Filtering Radiomics Type Feature Name

Outcome Status

Good Poor

Prediction of local tumor control
T1w LLH Texture-GLCM Homogeneity 1 −0.52 ± 0.46 0.53 ± 1.13

T1w LHL Texture-GLCM Informational measure of correlation 1
(IMC1) −0.51 ± 0.49 0.52 ± 1.12

T1w HLL Texture-GLCM Informational measure of correlation 1
(IMC1) −0.52 ± 0.46 0.53 ± 1.12

T1w HHL Texture-GLCM Informational measure of correlation 1
(IMC1) −0.54 ± 0.45 0.55 ± 1.11

T1c none Texture-GLCM Informational measure of correlation 1
(IMC1) −0.50 ± 0.49 0.52 ± 1.12

Prediction of overall survival
T1w LLL Histogram Maximum 0.32 ± 1.03 −0.33 ± 0.86
T1w LLH Histogram Minimum −0.30 ± 1.17 0.31 ± 0.67
T1w LHH Texture-GLCM Cluster Tendency 0.19 ± 1.17 −0.20 ± 0.76
T1w HLL Texture-GLCM Correlation 0.01 ± 0.96 −0.01 ± 1.06

GLCM: gray-level co-occurrence matrix. In the column of wavelet filtering, L represents a low-pass filter, and H represents a high-pass
filter. The combination of L and H letters stands for the filter type applied to the three image axes in order.

For OS prediction after GKRS, a total of 25 features were first selected (Table S3). Four
final radiomic features were selected by the SFS algorithm from the 25 features identified.
These features included the histogram and textural features focusing on the minimum
and maximum of intensity distribution, the local density of voxels, and the correlation of
neighboring intensities in T1w images. The final selected features of OS prediction are
listed in Table 2.

3.3. Performance of Outcome Prediction Models

Figure 2 demonstrates the workflow of prediction model development and validation
in this study. For the local tumor control prediction, the combined model (derived from
clinical and radiomics data) achieved the best AUC of 0.95, with a sensitivity of 91%, a
specificity of 89%, and an accuracy of 90% in the testing dataset. Table 3 lists the detailed
performance for each model and statistical comparisons between different models. The
receiver operating characteristic (ROC) curves of the three models are illustrated for the
prediction of local tumor control in Figure 3a and OS in Figure 3b, respectively.

Table 3. Statistical comparisons between developed predictive models.

Model
Performance Radiomics Clinical Combined

p-Values

Radiomics
vs.

Clinical

Radiomics
vs.

Combined

Clinical
vs.

Combined

Prediction of local tumor control
AUC 0.86 ± 0.10 0.80 ± 0.08 0.95 ± 0.09 <0.001 * <0.001 * <0.001 *

Accuracy 0.85 ± 0.10 0.76 ± 0.09 0.89 ± 0.11 <0.001 * <0.001 * <0.001 *
Sensitivity 0.85 ± 0.17 0.69 ± 0.14 0.87 ± 0.17 <0.001 * 0.124 <0.001 *
Specificity 0.85 ± 0.11 0.83 ± 0.10 0.91 ± 0.12 0.118 <0.001 * <0.001 *

Prediction of overall survival
AUC 0.64 ± 0.24 0.78 ± 0.15 0.82 ± 0.15 <0.001 * <0.001 * <0.001 *

Accuracy 0.62 ± 0.21 0.71 ± 0.10 0.80 ± 0.17 <0.001 * <0.001 * <0.001 *
Sensitivity 0.68 ± 0.25 0.73 ± 0.25 0.77 ± 0.14 0.046 <0.001 * 0.006 *
Specificity 0.55 ± 0.29 0.68 ± 0.20 0.81 ± 0.24 <0.001 * <0.001 * <0.001 *

* Significant difference is identified based on the paired t-test with Bonferroni correction.
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Figure 3. Results of the SVM models for GKRS treatment outcome prediction. Receiver operating characteristic curves
of constructed models for predicting (a) local tumor control and (b) OS estimated based on the testing dataset. The blue
asterisks represent the optimal parameter setups. The corresponding predictive model scores of each case for the (c) local
tumor control and (d) OS prediction. The red bars in (c,d) represent the cases with good outcomes (good local tumor control
and longer OS), and the blue bars represent the cases with poor outcomes (poor local tumor control and shorter OS). Most of
the red bars exhibit positive predictive model scores, and most of the blue bars show negative values, indicating satisfactory
prediction performance.
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The predictive model scores of local tumor control and OS-derived clinical and ra-
diomics data in the testing set are illustrated in Figure 3c,d, respectively. Representative
cases illustrating the relationship between radiomic values and local tumor control are
shown in Figure 4a, and the relationship between radiomic values and OS in Figure 4b.
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Figure 4. Representative cases for the predictions of local tumor control (Case #1 and #2) and overall survival (Case #3 and
#4). (a) Case #1 with a measured BM volume of 150 mm3 (upper) shows good local tumor control after GKRS, and Case #2
with a measured BM volume of 142 mm3 (lower) shows poor local tumor control after GKRS. (b) The predictive model
scores are estimated by the proposed prediction model based on both radiomic and clinical features. (c) The key selected
radiomic features for Cases #1 and #2. (d) Case #3 with a measured BM volume of 497 mm3 (upper) presents better overall
survival (22.6 months) after GKRS, and Case #4 with a measured BM volume of 477 mm3 (lower) shows poor survival
(6.8 months). (e) The predictive model scores are estimated by the proposed prediction model based on both radiomic and
clinical features. (f) The key selected radiomic features for Cases #3 and #4. The yellow boxes in the upper-right corner of
(a,d) are the zoom-in views of MRIs in the lesion areas.

4. Discussion

Prediction of local tumor control and OS for NSCLC patients with BMs after GKRS is
challenging in clinical practice. In this study, we proposed a radiomic-based approach to
predict treatment outcomes after GKRS in these patients. Radiomic features extracted from pre-
radiosurgical MRIs enhanced the prediction models derived from clinical characteristics alone.

Previous radiomic studies predicting local control of BM after GKRS were limited by
their relatively small sample sizes and non-standardized radiomics procedure. For exam-
ple, Mouraviev et al. included 87 patients with 408 BMs and trained a random forest model
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based on MRI radiomics, and clinical features to achieve an AUC of 0.79 in predicting local
control after GKRS [21]. In this study, we developed a prediction model of local tumor
control using both clinical and radiomic data, which achieved an AUC of 0.95. The superior
performance of our proposed model may be attributed to the following factors. First, the
larger sample size in our study may have allowed for better representation of the general
cohort and consideration of the potential variations in sampling. Second, in addition
to contrast sequences, T1w sequence without contrast enhancement was also acquired,
which provided additional information in characterizing tumor compositions. Third, a
two-step feature selection was performed in this study, comprising two-sample t-tests to
remove a large number of non-significant redundant features followed by the application
of the SFS algorithm to identify the final key features. An appropriate feature selection
can reduce redundancy and improve the accuracy of the classifier with high computing
efficiency. Finally, the image pre-processing and feature extraction methods applied in this
study were in accordance with the IBSI recommendations. IBSI provided a comprehensive
review and suggestions of each essential step in radiomics analysis, including the image
pre-processing, lesion segmentation, feature extraction, and validation [28,36]. The stan-
dardization of radiomics in this study could improve the reliability and performance of the
prediction models.

For local tumor control prediction, we noted that all five selected features described
the extent of tumor heterogeneity which were associated with tumor malignancy and ag-
gressiveness [37]. Four of the five selected features were associated with the informational
measure of correlation 1 (IMC1) feature. The results showed that BMs with poor local
tumor control exhibited higher values of IMC1. This phenomenon implied that BMs with
high intra-tumor heterogeneity may result in poorer treatment effects in GKRS. Previous
studies have reported that the values of texture features may be associated with local
failure in BM patients after GKRS [21]. In addition, we observed log-linear correlations
(r > 0.9, p < 0.001, Figure S2) between IMC1 features and initial tumor volume. Combining
our model performance and this logarithm relation, we suggested that IMC1 features may
have the potential to predict local tumor control of BMs with similar or subtle changes in
tumor volumes. We demonstrated two representative cases with similar volumes and their
local tumor control after GKRS (Figure 4a–c). The good local tumor control one presented
lower IMC1 and homogeneity 1 values than the case with poor local tumor control.

For the prediction of local tumor control, we found that all the 9 misclassified lesions
of the testing dataset were small BMs ranged from 12 to 141 mm3 in volumes (with 5 to
11 mm in maximal 3D diameters). In another hand, if we only focused on the small BMs
with volumes less than 150 mm3 in the test dataset (N = 58), the proposed radiomic and
clinical feature-based classification models could achieve an accuracy of 76% and 64%,
respectively. The combined model based on both radiomic and clinical features for the
small BM prediction could still improve the accuracy to 85% (the accuracy of the full test
dataset composed of both small and larger BMs was 90%). In summary, despite all the
misclassified lesions are small BMs for the prediction of local tumor control, not all of
the small BMs were misclassified (in fact, the accuracy could still achieve 85%). These
results revealed that even the small BMs may be relatively hard to acquire accurate imaging
features due to limited lesion volumes, the added values of radiomic features to enhance
the prediction of local tumor control could still be observed in small BMs.

Clinical characteristics included in this study, such as the KPS, extracranial metastases,
and the number of lesions were associated with OS in these patients [38]. We combined
radiomics with these clinical predictors to derive an OS prediction model. The combination
of clinical and radiomic data improved the performance of the model to achieve an AUC
of 0.81 compared to a model based on radiomics (AUC of 0.66) or clinical data (AUC of
0.75). Patients with longer OS had higher maximum, cluster tendency, correlation values,
and lower minimum values in the T1w image. The intensity of the T1w signal was related
to tumor composition. Tumors with high intracellular mucin usually have lower T1w
signal intensity due to their high water content [39] and are susceptible to secondary
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electron ionization inducing DNA damage [40]. High values of T1w correlation and cluster
tendency in BMs may suggest high intratumoral homogeneity reported to associate with
more appropriate dose control of tumor margin [41]. All selected radiomic features were
extracted from pre-contrast T1w images which may reflect that the composition of tumor
were the potential predictors for the survival of BM patients. Two representative patients
with similar-sized BMs illustrate the relationships between clinical and radiomic features
and OS (Figure 4d–f). Case #3 with better KPS (>90) and without extracranial metastases
had better survival than Case #4 with poorer KPS (<90) and with extracranial metastases
(22.6 vs. 6.8 months). Compared to the local tumor control prediction model (AUC of 0.95),
the OS prediction model achieved a lower AUC of 0.81, indicating that more comprehensive
information with regard to the clinical and genetic characteristics may be necessary for
predicting survival.

The limitations of the study should be recognized. First, although the dataset acquired
from a single institution may improve the homogeneity of the data [21], the external
validation dataset should be considered in future studies to improve the generalizability
of the prediction models. Second, radiomic features extracted from the largest BM in
each patient were used in our model derivation, as previous studies suggested a sufficient
number of voxels provides reliable results [34,42]. However, the optimal approach in
quantifying radiomic features from multiple BMs remains debatable, and additional studies
to explore this effect may benefit the prediction of OS in BM. Third, additional treatments,
including neurosurgery, whole-brain radiotherapy, tyrosine kinase inhibitor treatment, and
chemotherapy, were delivered under the physicians’ prescription based on each patient’s
condition reflecting the issue of complicated clinical practice. Further studies are required
to investigate the combined effects of these additional treatments. Finally, based on the
newest update of the Graded Prognostic Assessment for lung cancer using molecular
markers (Lung-molGPA), the EGFR and anaplastic lymphoma kinase mutation status
were included as prognostic factors for patients with NSCLC and BMs [43]. In our study,
only a proportion of patients had reported EGFR status. Future studies utilizing clinical,
MRI radiomic, and molecular information to build more comprehensive models should
be encouraged.

5. Conclusions

The inclusion of MRI radiomics in local tumor control and OS prediction models
improves the accuracies and reliabilities of these models. Informational measures of corre-
lation and homogeneity values of MRIs may suggest tumor radio-resistance. Histogram
features, correlation, and cluster tendency extracted from MRIs combined with clinical
characteristics can also improve OS prediction. The dynamic changes in radiomic features
during follow-up may be worthy of further investigations to guide treatment strategies in
these patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/cancers13164030/s1, Table S1: The formulae for the calculation of primary radiomic features,
Table S2: Twenty-five radiomic features with the most significant differences between stable and
progression local tumor control, Table S3: Twenty-five radiomic features with the most significant dif-
ferences between better and poorer overall survival, Figure S1: Processing flow of radiomics analysis,
Figure S2: Correlation analysis between the four selected radiomic features and tumor volume.
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