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ABSTRACT

Genotype imputation is a process that estimates
missing genotypes in terms of the haplotypes and
genotypes in a reference panel. It can effectively
increase the density of single nucleotide polymor-
phisms (SNPs), boost the power to identify genetic
association and promote the combination of ge-
netic studies. However, there has been a lack of
high-quality reference panels for most plants, which
greatly hinders the application of genotype impu-
tation. Here, we developed Plant-ImputeDB (http:
//gong lab.hzau.edu.cn/Plant imputeDB/), a compre-
hensive database with reference panels of 12 plant
species for online genotype imputation, SNP and
block search and free download. By integrating geno-
type data and whole-genome resequencing data of
plants from various studies and databases, the cur-
rent Plant-ImputeDB provides high-quality reference
panels of 12 plant species, including ∼69.9 million
SNPs from 34 244 samples. It also provides an easy-
to-use online tool with the option of two popular tools
specifically designed for genotype imputation. In ad-
dition, Plant-ImputeDB accepts submissions of dif-
ferent types of genomic variations, and provides free
and open access to all publicly available data in sup-
port of related research worldwide. In general, Plant-
ImputeDB may serve as an important resource for
plant genotype imputation and greatly facilitate the
research on plant genetic research.

INTRODUCTION

Natural variation as a primary resource to study the genetic
basis for phenotypic differences among different individuals

of the same species, which mainly includes single nucleotide
polymorphisms (SNPs) and genomic structural variations
(1). In plants, SNPs are major variations widely used in ge-
netic breeding and population evolution research (2–6). In
recent years, with the development of sequencing and geno-
typing technologies, the cost of whole-genome resequenc-
ing (WGS) and genotyping has been declining (7), and large
amounts of population genotype data from different species
have been continuously released, facilitating the wide appli-
cation of genetic linkage analysis or genome-wide associ-
ation analysis (GWAS) in the research of different species
(2–5). High-density markers of mass samples are conducive
to increase statistical power, boost fine mapping of causal
variants and facilitate the discovery of relationship between
rare variants and traits (8,9). But due to the cost limitations,
only a subset of SNPs is directly genotyped by SNP-chips or
DNA sequencing in study samples (10). So, genotype impu-
tation was developed to use the haplotypes and genotypes
in a reference panel to estimate genotypes that not directly
assayed in a sample of individuals and has been one of the
key steps in preprocessing genetic data (10).

The basic idea of the genotype imputation methods is
to explore and hunt for shared ‘identical by descend’ hap-
lotypes that exhibit high linkage disequilibrium measured
in r2 from a high-density typed reference panel of geno-
types or haplotypes over a region of tightly linked markers,
and use them to fill untyped SNPs (11). According to the
idea, several imputation methods have been developed in
recent years, such as Beagle (v5.1) (12) and Minimac3 (13)
both based on common hidden Markov model framework
(14,15), and Impute2 (16) based on a Markov chain Monte
Carlo framework. Increasing evidence demonstrated the
advantages of genotype imputation and it has become a
standard step in GWAS and other genetic research because
it is an economic and efficient way to acquire high-density
population genotype data from SNP array, genotyping-
by-sequencing (GBS) or reduced-representation sequenc-

*To whom correspondence should be addressed. Tel: +86 027 87285085; Fax: +86 027 87285085; Email: niuxiaoh@mail.hzau.edu.cn
Correspondence may also be addressed to Qing-Yong Yang. Tel: +86 027 87285085; Fax: +86 027 87285085; Email: yqy@mail.hzau.edu.cn
Correspondence may also be addressed to Jing Gong. Tel: +86 027 87285085; Fax: +86 027 87285085; Email: gong.jing@mail.hzau.edu.cn
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0003-1895-2993
http://gong_lab.hzau.edu.cn/Plant_imputeDB/


Nucleic Acids Research, 2021, Vol. 49, Database issue D1481

ing commonly used in plant research (17,18). For exam-
ple, it is clear that the probability of detecting the pheno-
type associated SNPs with genotype imputation (8.9%) is
much greater than that without genotype imputation (5.4%)
at the significance level of P < 10−6 in � 2 statistics, indi-
cating that genotype imputation can greatly improve the
power of GWAS (19). In an association analysis of the in-
dica population, eight peaks for amylose content on chro-
mosome 6 were detected using the imputed data, including
the regions containing Wx and SSII, while three of these
associations could not be detected using the original unim-
puted data (20). However, the challenges for genotype im-
putation methods will be in preparing large enough, diverse
enough set of haplotypes available for constructing refer-
ence panel, and the imputation accuracy will decrease when
new accessions that are not well-represented in the reference
panel (21). In addition, it is still difficult to correctly impute
rare variants under the current imputation framework and
mainstream imputation methods (22). A high-quality refer-
ence panel is not only the essential prerequisite for genotype
imputation but also play a crucial role for the imputation
quality.

Benefit from the construction of large reference panel for
genotype imputation and the development of genotype im-
putation methods, genotype imputation is widely used in
human genetic studies (21,23–26). In human, the commonly
used public reference panels mainly include International
HapMap Project Phase3 (27), 1000 Genomes Project Phase
3 (1) and Haplotype Reference Consortium (28). Interna-
tional HapMap Project Phase3 comprises 1011 samples and
1.4 million variants (27); 1000 Genomes Project Phase 3 in-
cludes 81.7 million variants and 2504 samples of 26 popula-
tions (1); and Haplotype Reference Consortium integrates
20 studies to develop a human reference panel that includes
32 470 samples and 40.4 million variants (28). In animals,
Animal-ImputeDB comprises 2565 samples of 13 species
and over 400 million variants (29). Construction of these
large reference panels makes it possible to acquire high-
density genetic markers from low-density data, and untyped
variants can be accurately imputed at low minor allele fre-
quencies (MAFs), provided that they are first observed in
the reference population (30). Recently, an imputation plat-
form has been established for rice, which allows online geno-
type imputation (20). However, there has been no database
that provides reference panels of multiple species for plant
genotype imputation to the best of our knowledge.

With the increasing availability of massive genotype data
in plants and mature tools, it is possible to construct
a comprehensive database with multiple plant reference
panels and online imputation tools. Here, we developed
the Plant Imputation database (Plant-ImputeDB, http://
gong lab.hzau.edu.cn/Plant imputeDB/), which comprises
a collection of high-quality reference panels derived from
publicly available plant genomic sequencing or genotype
data, for the browsing, searching and downloading of refer-
ence panels and its related information. Through data cura-
tion, sample filtering, genotype calling and haplotype phas-
ing, a total of 12 high-quality plant reference panels were fi-
nally built using 34 244 resequencing samples. The database
includes the plants of arabidopsis, oilseed rape, common
bean, cotton, cucumber, zucchini, maize, muskmelon, rice,

soybean, watermelon and bread wheat. In addition, the
database offers a user-friendly online tool with the option
of two popular tools to support the genotype imputation.

DATA COLLECTION AND PROCESSING

Data collection

With the rapid development of sequencing technology
in recent years, genomic datasets of a large number
of species have been constantly released and updated.
In order to include the representative species as many
as possible, we collected the high-quality raw sequenc-
ing and SNP datasets of 12 species from widely studied
plant databases such as 1001genomes (31) (https://www.
1001genomes.org/), Rice SNP-seek database (32) (https:
//snp-seek.irri.org/), Maize HapMap (33) (https://www.
panzea.org/), SoyBase (34) (https://soybase.org/snps/), 1000
wheat exomes project (http://wheatgenomics.plantpath.ksu.
edu/1000EC/) (35) and Cucurbit Genomics Database (36)
(http://www.cucurbitgenomics.org/), as well as the original
sequencing data published in recent years (37–39).

For 10 of 12 species, raw genotype files (VCF for-
mat) were downloaded from database or research. Among
them, samples of five species (arabidopsis, common bean,
maize and watermelon) were genotyped using WGS (31–
33,37,40); samples of three species (cucumber, muskmelon
and zucchini) were genotyped with high-throughput GBS
(36,41); for bread wheat, samples were genotyped using ex-
ome capture sequencing technology (35); for soybean, sam-
ples were genotyped with SoySNP50K Illumina Infinium
II BeadChip (34). For the other two species, oilseed rape
and cotton, the raw sequencing datasets were downloaded
from the NCBI database under accession SRP155312 and
SRP115740, respectively (38,39).

Detailed information of the species, such as NCBI taxon-
omy ID, assembly version and SNP number, is presented in
Table 1. The data sources, genotyping methods and popu-
lation summaries of 12 species are presented in Supplemen-
tary Table S1.

Data processing

With the raw sequencing data, high-quality SNPs were iden-
tified using the Sentieon pipeline (42). First, the raw reads
were mapped to the current standard reference genome
by the Burrows–Wheeler Alignment mem algorithm (43),
and then the BAM files of reads with quality greater than
10 were retained by SAMtools (44). Alignment summary,
GC bias, base quality by sequencing cycle, base quality
score distribution and insert size metrics were collected, and
the duplicate reads were removed with the Sentieon driver.
Then, the indels were realigned, and the base quality was re-
calibrated using the Sentieon driver. The SNP data of each
sample were identified using Sentieon’s Haplotyper algo-
rithm. Then, the variant data of all samples were merged
into VCF files using Sentieon GVCFtyper algorithm. The
raw SNPs of all samples were filtered using the GATK Vari-
antFiltration module with the parameter –filterExpression
‘QUAL < 30.0 || MQ < 50.0 || QD < 2’ –clusterSize 3 –
clusterWindowSize 10. Subsequently, the SNPs with a call
rate < 0.5 or an MAF < 0.01 were removed. Finally, all the
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Table 1. Data summary in Plant-ImputeDB

Reference panel

Species
NCBI

taxonomy ID Assembly version
Number of

chromosomes
Number of

samples
Number of

SNPs

Arabidopsis thaliana(Arabidopsis) 3702 TAIR10 5 2029 2 963 242
Brassica napus (Oilseed rape) 3708 ZS11 v0 19 991 9 141 089
Phaseolus vulgaris (Common bean) 3885 PhaVulg1 0 11 628 4 811 097
Gossypium hirsutum (Cotton) 3635 TM-1 UTX v2.0 26 686 3 149 846
Cucumis sativus (Cucumber) 3659 Cucumber (Gy14) v2 7 1234 21 154
Cucurbita pepo (Zucchini) 3664 Cucurbita pepo v4.1 20 830 41 888
Zea mays (Maize) 4577 AGPv3 10 1210 35 073 758
Cucumis melo (Muskmelon) 3656 Melon (DHL92) v3.5.1 12 2084 26 011
Oryza sativa Japonica (Rice) 39 947 IRGSP-1.0 12 3240 4 897 277
Glycine max (Soybean) 3847 Wm82.a2 20 20 087 39 636
Citrullus lanatus (Watermelon) 3654 Watermelon (97103) v2 11 414 8 816 591
Triticum aestivum (Bread wheat) 4565 IWGSC v1.0 21 811 942 041

high-quality SNPs that had passed the filtering were used to
construct the reference panel (Figure 1). The detailed statis-
tics of the genetic variants and sample data of each species
in the final dataset are listed in Table 1. In addition, the ge-
nomic blocks of each species were also identified using Plink
with the parameter –blocks (45).

Reference panel construction

Beagle, Minimac3 and Impute2 are the most popular tools
for genotype imputation. A comparison among the three
tools shows that despite of the similarity in accuracy, they
vary greatly in memory requirements and computation
time. Beagle and Minimac3 are superior to Impute2 in com-
putation time and memory efficiency (46), and support the
genotype imputation of polyploid plants (47). Therefore,
Beagle and Minimac3 were chosen for the construction of
reference panels in this study. The reference panels of 12
species were constructed by Beagle using clean SNP data
(MAF > 0.01, call rate > 0.5) with the default parameters,
and then converted from VCF to M3VCF format by Mini-
mac3.

Evaluation of the reference haplotype libraries

Reliable haplotypes are important for genotype phasing
and imputation (48). Therefore, we followed the method of
Marchini, J. et al. and applied switch accuracy as an index
to evaluate the reliability of haplotypes (49). For simulat-
ing haplotype blocks, we referred to the method of Osabe,
D. et al. (50). Firstly, we randomly selected 100 contiguous
haplotype blocks, and all the SNPs located in them were
extracted for the evaluation. Then, 100 genotyping datasets
with the same population size were selected by re-sampling
with replacement from original samples in reference pan-
els. Their haplotype blocks were identified using Plink (45).
The switch accuracies were obtained based on the simula-
tion data. The average switch accuracies of the 12 species
ranged from 0.92 for maize to 0.99 for watermelon, indicat-
ing the reliability of the haplotypes in our panels (Supple-
mentary Figure S1). In addition, we calculated haplotype
blocks and frequency in each species and summarized the
block sizes and SNP numbers in blocks (Supplementary Ta-
ble S2).

Imputation accuracy using reference panels in Plant-
ImputeDB

Performance of the reference panels and imputation process
were evaluated based on three strategies. First, we calcu-
lated the imputation accuracy of all species using a 5-fold
cross-validation strategy. For each species, all the samples
in the reference panel were randomly divided into five folds,
with one fold being selected as the study population, and
the remaining folds being used as the reference panels for
each time. Since most commercial SNP arrays of plants con-
tain about 50–100 k probes (51), we randomly selected 100
000 SNPs from the whole genome of the study population
and masked other SNPs. Considering that four species had
a relatively small number of SNPs (≤100 000), we randomly
selected 5000 SNPs from the whole genome for these four
species (Table 1). Then, Beagle and Minimac3 were used to
impute the genotypes with the default parameters.

In this way, both the true and imputed genotypes were
obtained, and the imputed SNPs with MAF ≥ 0.01 and es-
timated squared correlation ≥ 0.3 were retained as properly
imputed variants and used for the following evaluation. The
concordance rate (CR) and the squared correlation (R2)
were used to validate the accuracy of the imputation. CR
was calculated through dividing the number of correctly im-
puted genotypes by the total number of imputed genotypes
per species, and R2 was the squared correlation between true
and imputed genotypes. The mean of CR or R2 across five
folds was taken as the accuracy of the imputation for each
species, and the results are summarized in Table 2. More-
over, the corresponding boxplots are shown in Supplemen-
tary Figure S2. The number of SNPs increased by an av-
erage 34.47 folds in the study population after imputation.
The average CR for all test species was greater than 0.88.
The average R2 of Beagle ranged from 0.76 for melon to
0.96 for cotton, and that of Minimac3 ranged from 0.76 for
melon to 0.97 for common bean.

In addition, imputation accuracies with the reference
panels were assessed using simulated datasets with differ-
ent densities and independent datasets respectively. First,
as for 12 species in our database, we randomly selected 100
samples with 10 different percentages of masked SNPs from
50 to 95% following the simulation method of Friedrich,
J. et al. (52). Imputation accuracy was calculated by com-
paring imputation results and raw genotypes. As for two
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Figure 1. Construction of plant reference panels in Plant-ImputeDB. (A) Data collection. (B) Data processing. (C–F) Database content and web interface.

imputation tools Beagle and Minimac3, the average accu-
racy of all simulation datasets ranged from 0.83 to 0.99
(Supplementary Figures S3 and 4). Second, nine indepen-
dent validation sets for the corresponding species in our
database, including rice (53), arabidopsis (54), maize (Maize
282) (55), oilseed rape (56), cotton (57), soybean (58), cu-
cumber (59), muskmelon (60) and bread wheat (61) were
collected for assessment of imputation accuracy. These raw
sequencing datasets were processed following the same Sen-
tieon pipeline and parameters, and the missing genotypes

were imputed by Beagle with default parameters. Then, the
common SNPs in independent populations and our refer-
ence panels were retained to validate imputation accuracy.
The validation datasets were constructed with 10 different
percentages of masked SNPs from 50 to 95%. Finally, these
independent datasets were imputed using Beagle and Min-
imac3 with default the parameters respectively. Imputation
accuracies were achieved with the true and imputed geno-
types. Similarly, the average accuracy ranged from 0.77 to
0.99, and the detailed results are interpreted in Supplemen-
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tary Figures S5 and 6. All of these validation results indi-
cate that the reference panels and the imputation tools can
be used for genotype imputation from different population
with relatively high accuracy.

IMPLEMENTATION

Plant-ImputeDB (http://gong lab.hzau.edu.cn/
Plant imputeDB/) was built based on the Flask (ver-
sion 1.1.1) framework with AngularJS (version 1.6.1) as
the JavaScript library, and runs on the Apache 2 web
server (version 2.4.18) with MongoDB (version 3.4.2) as its
database engine. The database is available online without
registration and optimized for Chrome (recommended),
Internet Explorer, Opera, Firefox, Windows Edge and
macOS Safari.

DATABASE CONTENT AND THE WEB INTERFACE

Samples of 12 species in Plant-ImputeDB

The current version of Plant-ImputeDB contains a total
of ∼69.9 million SNPs from 12 species covering 34 244
individuals. The detailed statistics of the number of sam-
ples per species, the number of chromosomes, genome ver-
sion, NCBI taxonomy ID and the number of SNPs are dis-
played and maintained online at the home page of Plant-
ImputeDB and summarized in Table 1. Besides, the basic
introduction, genome size and chromosome number of each
species are presented in the ‘Species information’ module,
and users can access to this module by clicking the plant
photo on the ‘Home’. The detailed sample information of
each species is provided in the ‘Sample information’ mod-
ule. The introduction of samples, population structure and
the list of accessions are provided. In addition, we have pro-
vided two advanced search boxes for different species. The
users can browse the information of accessions for each
species according to the sub-population or country and ob-
tain the specific accession of interest. Finally, the sample
information, including the PubMed ID, publication jour-
nal, publication year of the article, the sample number, ma-
terial, technology, platform, data type and coverage of the
sequencing of the project, was listed as supplemental infor-
mation (Supplementary Table S1).

Web interface

A user-friendly web interface for Plant-ImputeDB was con-
structed, and users can access to three main modules, in-
cluding Module1: ‘Imputation’ for online genotype imputa-
tion, Module2: ‘Reference Panel’ for SNP and block search
based on genomic region information or gene ID, and
sample information of the reference panels, and Module3:
‘Download’ for reference panel download in two formats
(VCF and M3VCF). Specifically, users can access to the
three modules by clicking the corresponding buttons in the
navigation menu on the ‘Home’ page or by clicking the cor-
responding plant photo (Figure 2A). These modules pro-
vide species information as well as realize online genotype
imputation, SNP search, and genomic block search (Figure
2B–E). Plant-ImputeDB provides detailed supporting doc-
umentation on the ‘Help’ page, and is open to any feedback
with email address listed on the ‘Contact’ page.

http://gong_lab.hzau.edu.cn/Plant_imputeDB/
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Figure 2. Overview of the Plant-ImputeDB database. (A) Main modules in Plant-ImputeDB, including ‘Imputation’, ‘Reference Panel’ and ‘Download’
modules. (B) Online genotype imputation in the Plant-ImputeDB database. (C) Browsing of SNPs based on genomic region. (D) Browsing of genomic
blocks based on gene ID. (E) ‘Download’ function of Plant-ImputeDB.

Online genotype imputation in Plant-ImputeDB

Plant-ImputeDB supports two popular imputation tools
(Beagle and Minimac3). The users can access the ‘Imputa-
tion’ module by either clicking ‘Imputation’ in the ‘Home’
page navigation menu or clicking the hyperlink in the cor-
responding species photo on the ‘Home’ page. Then, the
genotype data of normal VCF format are entered into the
text box or uploaded directly through the ‘Choose File’ but-
ton. Besides, an example of genotype data in the VCF for-
mat is provided and can be accessed by clicking the ‘Ex-
ample’ button above the input box. After uploading of the
candidate genotype data, users should select one of the two
tools, enter the chromosome region and click the ‘Submit’
button to finish the query (Figure 2B).

Searching and browsing of SNPs and genomic blocks in
Plant-ImputeDB

The ‘Reference Panel’ module provides an advanced search
box for different species, and users can search and browse
SNPs based on the genomic region or gene ID. SNPs can be
browsed by inputting the specific chromosomal region (e.g.
Chr1:73–266) and MAF (e.g. >0.01). In addition, users can
also input the gene ID (e.g. AT1G04500) and choose differ-
ent lengths of upstream and downstream regions (e.g. 3K)
to search for SNPs. Fuzzy queries are applied in the search
procedure, and the query results are displayed in a table with
the basic SNP information, including the chromosome po-
sition, allele and MAF. For example, when users select ‘A.
thaliana’ and enter ‘Chr1:73–266 in the ‘Region’ box, the
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query results will be returned as shown in Figure 2C. The
returned tables can be sorted by clicking a specific column
header. In addition, the query results can be exported as a
tab-separated file and saved by clicking the ‘Download’ but-
ton.

Similarly, Plant-ImputeDB also supports the searching
and browsing of genomic blocks based on genomic region
or gene ID. The query results are displayed in a table with
the basic genomic block information, including the chro-
mosome, upstream region, downstream region, block ID
and the length of block region. For example, when users se-
lect ‘A. thaliana’ and enter ‘AT1G04500’ in the ‘Gene ID’
box, the query results will be returned as shown in Figure
2D. The returned tables can be sorted by clicking a specific
column header. In addition, the query results can also be
exported as a tab-separated file and saved by clicking the
‘Download’ button.

Free download of reference panels in Plant-ImputeDB

The reference panels for 12 species are publicly available
on the ‘Download’ page of Plant-ImputeDB (Figure 2E).
Users can enter the genomic region of interest in the ‘Re-
gion’ box to obtain the corresponding VCF file. In addi-
tion, users can also download the reference panels of dif-
ferent chromosomes and carry out genotype imputation on
the local server for GWAS or meta-GWAS analysis. These
12 reference panels support both VCF and M3VCF file for-
mats (text and binary). Thus, users can download a refer-
ence panel in either VCF format or M3VCF format accord-
ing to their own tool requirements. The database provides a
total of ∼538 G data for users to download.

SUMMARY AND FUTURE DIRECTIONS

Recent decades have witnessed rapid progress in plant
genetic research. Some plant-related databases including
PMDBase (62) and PlantTFDB (63) have been widely used
in plant research. However, they are mostly related to plant
transcription factors and microsatellite DNA. Reference
panels play an important role in genotype imputation for
plant genetic research and breeding programs. In animal
studies, Animal-ImputeDB (29) is a database that integrates
high-quality reference panels from 13 species, while there is
no high-quality reference panel database for plant genotype
imputation. Therefore, we developed the Plant-ImputeDB
database by collecting publicly available data, construct-
ing reference panels of 12 selected species and offering an
easy-to-use online genotype imputation tool with the op-
tion of two popular tools. Different from the existing related
databases, Plant-ImputeDB is characterized by the com-
prehensive integration of genotype data for a wide range
of species and supports two ways of search for SNPs and
genomic blocks. It accepts submissions of plant genotype
data, and provides free open access to all publicly avail-
able data to support the related research all over the world.
Moreover, it is equipped with friendly web interfaces for
data browse, search, imputation and download. Taken to-
gether, Plant-ImputeDB may achieve the archiving of plant
genotype data at a global scale, and help the full capture of
population genetic diversity and a better understanding of

the complex mechanisms associated with different pheno-
types.

It can be expected that the advancement of the next-
generation sequencing technology and imputation algo-
rithms will greatly facilitate the wide applications of geno-
type imputation. With the continually collecting available
data in the field of plant population studies, we will update
the database annually by incorporating more reference pan-
els of new species (e.g. tomato, sorghum, foxtail millet, etc.)
and increasing the number of representative accessions for
existing species. Overall, we will maintain Plant-ImputeDB
as an informative and valuable resource for plant genetic
research.
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