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Abstract

The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay t and
long-range connection (LRC) probability P have been investigated by synchronization parameter and space-time plots. Four
distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have
been discovered at certain LRC probability P~1:0 as time delay is increased. Interestingly, desynchronization is observed in
oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs
are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate
time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability.
Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC
probability P is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs,
are exposed explicitly for synchronization in delayed Newman-Watts SWNNs.
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Introduction

Synchronization phenomena are common in nature and can be

extensive observed in various realistic systems, especially in

neuronal networks, biological systems and ecological systems [1,2].

Synchronization has been widely studied both theoretically and

experimentally for decades. Several kinds of synchronization have

been discovered in theoretical researches, such as complete

synchronization, weak synchronization, lag synchronization, phase

synchronization and generalized synchronization [3–7]. Complete

synchronization indicates the coincidence of states of coupling

systems, X1(t)~X2(t)
Ref. [5] means the coincidence of shifted in time states of two

systems, X1(tzt0)~X2(t). Experimental studies have shown that

synchronous oscillations can emerge in many special areas of

brain, especially in olfactory system or hippocampal region [8–10].

In recent years, synchronization in neuronal networks and brain

systems has attracted much attention. Synchronous oscillations in

these systems are related to some specific and important

physiological functions, such as olfaction [11], visual percep-

tion [12],cognitiveprocesses [13],andinformationprocessing [14].

Recently ‘‘small-world’’ network has been proposed by Watts

and Strogatz, which takes into account both local and long-range

interactions [15]. It is found that the existence of a small fraction of

long-range connections (LRCs) can essentially change the features

of the given systems [16–19]. These LRCs do exist in neuronal

networks and do play crucial roles in deciding the specific

physiological functions. The interactions from the long-range

connected neurons must be time delayed due to the finite

propagation velocities in the conduction of signals along neuron

axons [20]. And the effects of time delays on self-organized

spatiotemporal dynamics in neuronal systems have been exten-

sively investigated. Lots of interesting phenomena have been

discovered in recent decades [21–36]. For example, Dhamala et al.

have investigated the enhancement of neural synchrony by time

delay [21]. Ko et al have found that time delay can destabilize

synchronous states and induce near-regular wave states [23].

Significantly, Wang et al. have discovered that time delays can

enhance the coherence of spiral waves [27], tame desynchronized

bursting [28], induce stochastic resonances [29] and synchroniza-

tion transitions [30–32], and can cause synchronous bursts [33] and

complex synchronous behavior [34]. Moreover, Yu et al. have

demonstrated the synchronization transitions in delayed neuronal

networks with hybrid synapses [35,36]. Although remarkable

advances have been achieved in the field of delayed neuronal

networks, the underlying mechanisms behind time delay induced

spatiotemporal dynamic and related synchronization transitions

are far from being fully understood. In addition, the lag

synchronization, to our knowledge, has not been identified in

delayed neuronal network. These are the tasks we aim to explore.

In this paper we extend the subject by systematically investi-

gating time delay and long-range connection induced synchroni-

zation transitions in Newman-Watts small-world neuronal net-
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works (SWNNs). By introducing synchronization parameter and

plotting spatiotemporal patterns, four distinct parameter regions,

i.e., asynchronous region, transition region, synchronous region

and oscillatory region, have been found at certain LRC probability

P~1:0. Interestingly, desynchronization and oscillating behaviour

of the order parameter are observed in oscillatory region. More

importantly, the mechanisms of synchronous oscillations and the

transition from non-synchronization to complete synchronization

are discussed. Moreover, we consider the spatiotemporal patterns

obtained in delayed Newman-Watts SWNNs are the competition

results between long-range drivings (LRDs) and neighboring

interactions. A new order parameter, LRD proportion, is used

to verify our point of view. And the four distinct parameter regions

can also be revealed by LRD proportion clearly. In addition, for

moderate time delay, the synchronization of neuronal network can

be enhanced remarkably by increasing LRC probability. Further-

more, lag synchronization has been found between weak

synchronization and complete synchronization as LRC probability

P is a little less than 1.0. And the mechanism is revealed. Finally,

the two necessary conditions, moderate time delay and large

numbers of LRCs, are exposed explicitly for synchronization in

delayed Newman-Watts SWNNs.

Mathematical Model and Setup

We start from a one-dimensional (1D) regular ring that

comprises N~100 identical excitable B€r-Eiswirth neurons[37]

with periodic boundary condition, and each neuron has two

nearest neighbors. The evolvement of the 1D neuronal network is

governed by the following equations:

dui(t)

dt
~{

1

E
ui(t)½ui(t){1�½ui(t){

vi(t)zb

a
�

zD½ui{1(t)zuiz1(t){2ui(t)�,
ð1Þ

dvi(t)

dt
~f ½ui(t)�{vi(t), ð2Þ

where i~1,2, . . . ,N. The function f ½ui(t)� takes the form:

f ½ui(t)�~0 for ui(t)v
1

3
; f ½ui(t)�~1{6:75ui(t)½ui(t){1�2 for

1

3
ƒui(t)ƒ1; and f ½ui(t)�~1 for ui(t)w1. Here variables u and

v are the activator and inhibitor variables, respectively. The small

relaxation parameter E represents the time ratio between activator

u and inhibitor v. The dimensionless parameters a and b denote

the activator kinetics with b effectively controlling the excitation

threshold. D is the coupling intensity which decides the interaction

strength between neighboring neurons. The system parameters are

kept throughout this paper as a~0:84, ~0:07, E~0:04 and

D~0:5. Therefore, the local dynamics can describe typical

excitability of neurons where u represents the membrane potential,

v is the somatic inhibitory current. The diffusive couplings

simulates electrical conjunction interaction between neurons.

Based on the 1D periodic regular ring, we construct delayed

Newman-Watts SWNNs [38] by introducing LRCs such that each

neuron receives an unidirectional time delayed LRD from a

randomly chosen cell with probability P

additional coupling term to Eq. (1) if neuron i receives an

unidirectionally time delayed LRD from cell j. Now the delayed

Newman-Watts SWNN is governed by the following equations:

dui(t)

dt
~{

1

E
ui(t)½ui(t){1�½ui(t){

vi(t)zb

a
�

zD½ui{1(t)zuiz1(t){2ui(t)�

zD½uj(t{t){ui(t)�,

ð3Þ

dvi(t)

dt
~f ½ui(t)�{vi(t): ð4Þ

In Eq. (3) cell j is randomly chosen in the 1D periodic regular

ring and t is the time delay in information transmission. By

manipulating LRC probability P, we can obtain different kinds of

time delayed Newman-Watts SWNNs. The schematic diagram of

the considered networks for different LRC probability with 10
neurons is illustrated in Fig. 1. Here we should mention that for a

given LRC probability there are a lot of network realizations. For

a specific network structure, the interactions between neighboring

neurons are bidirectional (shown by bidirectional arrowed lines),

while the LRDs are unidirectional (shown by unidirectional

arrowed lines). Time delays are only considered in these

unidirectional LRDs, which will cause inhomogeneity in informa-

tion transmission between neighboring and long-range interac-

tions. As we know that the interactions from neighboring neurons

are usually instantaneous in actual biological systems. And the

LRDs from distant cells will have time delays due to the finite

propagation velocities. Therefore, the model considered in present

paper may be more realistic, and the results obtained may be more

practical.

In this paper, the delayed Newman-Watts SWNNs are

integrated by forward Euler integration scheme with time step

Dt~0:001. The initial variables (ui(t~0),vi(t~0)) are randomly

given between 0 and 1 for each simulation. To investigate the

synchronization transitions in delayed Newman-Watts SWNNs

quantitatively, the synchronization parameter R will be used,

which has been introduced in the previous study [41]. It is

numerically calculated as:

R~
v�uu(t)2

w{v�uu(t)w2

1

N

XN

i~1
½vui(t)

2
w{vui(t)w

2�
, ð5Þ

where

�uu(t)~
1

N

XN

i~1

ui(t): ð6Þ

The angular brackets denote the average over time. In present

paper the synchronization parameters are calculated over last 30

time units. From Eq. (5) it is evident that the larger the

synchronization parameter R is, the more synchronization is

realized in neuronal network. Accordingly, the value of R close to

unity indicates all neurons in the network are in complete

synchronization. Therefore, the synchronization parameter R is

an excellent indicator to reveal the spatiotemporal synchronization

in delayed Newman-Watts SWNNs and the related transitions.

To guarantee the statistical accuracy with respect to the network

structure and initial condition, 10 independent samples are

executed for each set of parameter values in the simulation. And

we will use
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 [39,40]. We thus add an



�RR~
1

10

X10

i~1

Ri ð7Þ

as an order parameter to measure the degree of synchronization

and the related transitions induced by time delay and long-range

connection in Newman-Watts SWNNs.

Results

Time Delay Induced Synchronization Transitions
In this part, we firstly investigate time delay induced synchro-

nization transitions in Newman-Watts SWNNs at certain LRC

probability. Figure 2 displays the dependence of synchronization

parameters R (10 samples for each t, depicted by black dots) and
�RR (the average of Rs for 10 samples, depicted by red dots) on time

delay t at P~1:0. Four distinct parameter regions have been

revealed by synchronization parameters as time delay is increased.

When time delay is small (tƒ2:6), synchronization parameters are

all close to zero. It indicates that the states of individual neurons

are significantly different and the whole network oscillates

asynchronously at all (domain I in Fig. 2, called as asynchronous

region). It means that small time delay has no effect on

synchronization in delayed Newman-Watts SWNNs. A typical

asynchronous spatiotemporal pattern is shown in Fig. 3(a) for

t~1:0. In the white regions, the nodes fire, while in the black ones

they are quiescent. Time passes from left to right. Most of neurons

in the network oscillate asynchronously and irregular spatiotem-

poral dynamics is observed. As t is in the narrow region of

½2:8,3:0�, some synchronization parameters increase abruptly. It

indicates that synchronous performance of neuronal network

improves remarkably in some samples. A weak synchronization

state for t~2:8 is revealed in Fig. 3(b). The excitatory fronts are

more ordered both in time and space. Time delay induced

synchronization transition has been detected in Newman-Watts

SWNNs. And we call this narrow parameter region as the

transition region (domain II in Fig. 2, indicated by grey rectangle).

When time delay is moderate (3:2ƒtƒ5:4, domain III in

Fig. 2), synchronization parameters R and �RR jump to unity

simultaneously. It implies that moderate time delay in information

transmission can induce complete synchronization in Newman-

Watts SWNNs. Therefore, synchronous region is defined in this

parameter region. Fig. 3(c) exhibits a completely synchronous

spatiotemporal pattern for t~4:0. All neurons in the network fire

simultaneously and damp to their rest state together. As time delay

is further increased (t§5:6), to our surprise, desynchronization

occurs in Newman-Watts SWNNs. A distinct new parameter

region, composed by asynchronous state, weak synchronization

and complete synchronization, has been discovered. And oscillat-

ing behaviour of the order parameter is detected. Accordingly, we

call this parameter region as the oscillatory region (domain IV in

Fig. 2, indicated by blue rectangle). Fig. 3(d) displays a typical

desynchronized spatiotemporal dynamics in oscillatory region at

t~7:0. Large time delay can effectively improve synchronization

in the beginning (can be indicated by the second excitatory front in

Fig. 3(d)). However, the ordered excitatory front degenerates and

desynchronization occurs as the system evolves. Finally, asynchro-

Figure 1. Schematic diagram of the considered Newman-Watts small-world neuronal networks for different long-range connection
(LRC) probability P with 10 neurons. (a) P~0:0 (one-dimensional regular ring with periodic boundary condition); (b) P~0:5; (c) P~1:0. Here we
should mention that the interactions between neighboring neurons are bidirectional (shown by bidirectional arrowed lines), while the long-range
drivings (LRDs) are unidirectional (shown by unidirectional arrowed lines). Time delays are only considered in these unidirectional LRDs.
doi:10.1371/journal.pone.0096415.g001

Figure 2. Time delay induced synchronization transitions.
Dependence of synchronization parameters R (10 samples for each t,
depicted by black dots) and �RR (the average of Rs for 10 samples,
depicted by red dots) on time delay t at P~1:0. Four distinct parameter
regions, i.e., asynchronous region (domain I for small t), transition
region (domain II for narrow region of time delay t, indicated by grey
rectangle), synchronous region (domain III for moderate t) and
oscillatory region (domain IV for large t, indicated by blue rectangle)
are revealed.
doi:10.1371/journal.pone.0096415.g002
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nous state is obtained in oscillatory region. According to the results

shown in Fig. 2, we can conclude that moderate time delay is

needed for synchronization in delayed Newman-Watts SWNNs.

For further investigating the synchronous oscillations, the

dependence of oscillation period T on time delay t in synchronous

region is shown in Fig. 4(a). It is seen that synchronization

oscillation period is monotonously increased with time delay. And

approximate linear relationship is revealed. However, a time

difference between T and t can be detected. To explain the above

phenomenon, time series u of neurons 79 (shown by black curve),

78 and 80 (two neighboring neurons of 79, shown by green and

yellow curves) and 42 (the LRD neuron of 79, shown by red curve)

of Fig. 3(c) are shown in Fig. 4(b). The blue dashed curve denotes

time series u of neuron 42 with time delay translation. The pink

line indicates excitation threshold. From Fig. 4(b) we can find that

synchronization oscillation period T is composed by time delay t
and excitation time tE . That’s why there exists a time difference

between synchronization oscillation period and time delay.

The mechanism of synchronous oscillations can also be

explained by Fig. 4(b). As complete synchronization is achieved

in delayed Newman-Watts SWNNs, all neurons can excite

simultaneously and damp to their rest state together, oscillate just

as a single cell (can be indicated by the overlap of the four solid

curves). Since time delays exist in LRCs, neurons can be excited

synchronously again by their corresponding delayed LRDs (can be

indicated by the black solid and blue dashed curves). Synchronous

oscillations can self-sustain in delayed Newman-Watts SWNNs in

this manner (such as the two excitation periods shown in Fig. 4(b)).

However, due to the existence of refractory period for excitable

neuron, a minimal time delay tmin is needed for LRDs sustaining

synchronous oscillations. Accordingly, complete synchronization

can emerge in delayed Newman-Watts SWNNs as t§tmin. Based

on the results shown in Fig. 2, we can find tmin&2:8 under current

parameter settings. Now the transition from non-synchronization

to complete synchronization can be explained as follow: For small

time delays (i.e., tvtmin), LRDs can not occupy the whole

network entirely and simultaneously due to the existence of

refractory period for excitable dynamics. Neurons in the network

are mostly driven by their neighbors. As a result, zigzag excitation

fronts (i.e., asynchronous spatiotemporal patterns) are obtained. As

tmin is reached, LRDs can dominate the neuronal network

absolutely, and complete synchronization can emerge in delayed

Newman-Watts SWNNs.

From the above discussion, we can find that LRDs play a key

role in synchronization transition. To qualitatively investigate the

effects of LRDs on the spatiotemporal dynamics obtained in

delayed Newman-Watts SWNNs, the LRD proportion p is used,

which can be calculated as:

p~
NLRD

N
, ð8Þ

where NLRD is the total number of neurons driven by LRDs. The

evolvement of LRD proportion p between adjacent intervals for

different time delay t (corresponding to Figs. 3(a)–d)) is shown in

Fig. 4(c). As time delay is small (t~1:0, below tmin, shown by black

squares), p increases slightly at first and then tends to 0.5. It

indicates that the neuronal network is governed by local and long-

range drivings together. Accordingly, irregular asynchronous

spatiotemporal dynamics of Fig. 3(a) is obtained. When t is in

the transition region (t~2:8, close to tmin, shown by green

triangles), LRD proportion p increases abruptly, but can never

reach 1.0. It means that most of neurons in the network are

sustained by LRDs, and can fire simultaneously. However, few

neurons are still excited by their corresponding neighbors.

Therefore, weak synchronization can be observed. As synchronous

region is reached (t~4:0, beyond tmin, shown by red dots), LRD

proportion p jumps to unity rapidly. With the help of moderate

time delay, LRDs can suppress neighboring interactions to

dominate the system entirely. All neurons in the network can be

excited by their corresponding LRDs simultaneously, and

complete synchronization can emerge in delayed Newman-Watts

SWNNs. When time delay is large (t~7:0, also beyond tmin,

shown by blue diamonds), p increases abruptly at first and goes

through a peak, then deceases monotonously, and finally tends to

0.5. It means that LRDs can take effect so long as tmin is reached.

And LRDs can dominate the neuronal network in the beginning

and weak synchronization such as the second excitatory front of

Fig. 3(d) can be achieved. However, LRD loses its predominance

as the system evolves. It may be caused by the too long resting time

which can increase the chance for neighboring interactions. As a

result, the ordered excitatory front degenerates and desynchroni-

zation occurs in the oscillatory region. So we consider that too

large time delay may be harmful for synchronization to a certain

degree.

Based on the above discussion, we can infer that the mechanism

behind spatiotemporal dynamics obtained in delayed Newman-

Watts SWNNs is the competition between LRDs and neighboring

interactions. This kind of competition is caused by inhomogeneity

in information transmission between neighboring and long-range

interactions of the present model. More importantly, the

competition results, which will decide the spatiotemporal dynamics

in the network, are largely dependent on time delays. Therefore,

we can expect that the LRD proportion is also a good indicator to

study the synchronization transitions in delayed Newman-Watts

SWNNs. The dependence of LRD proportion p (10 samples for

Figure 3. Space-time plots of u for different time delay t at P~1:0.
(a) t~1:0 (asynchronous state), (b) t~2:8 (weak synchronization), (c)
t~4:0 (complete synchronization), (d) t~7:0 (desynchronized state). The
figures are plotted in greyscale from black (lowest value at 0.0) to white
(highest value at 1.0). And this greyscale will be used throughout this
paper.
doi:10.1371/journal.pone.0096415.g003
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each t, depicted by black dots) and �pp (the average of ps for 10

samples, depicted by red dots) on time delay t is shown in Fig. 4(d).

The four distinct parameter regions are revealed by LRD

proportion clearly. Moreover, we can also find that moderate

time delay can help LRDs to beat neighboring interactions to

dominate the network absolutely. The conclusion that moderate

time delay is needed for synchronization in delayed Newman-

Watts SWNNs is further verified.

LRC Induced Synchronization Transitions
From the above understanding we can find that LRDs play an

important role in deciding the spatiotemporal dynamics. There-

fore, a detailed study on LRC induced synchronization transitions

needs to be taken in delayed Newman-Watts SWNNs. Fig. 5(a)

displays the dependence of synchronization parameter �RR on LRC

probability P for different time delay t. For small time delay

(t~1:0, below tmin, shown by black triangles), LRDs can not

occupy the system due to the existence of refractory period. As a

result, LRCs have no effect on synchronization transitions in

asynchronous region. When time delay is in transition region

(t~2:8, close to tmin, shown by pink squares), few LRDs can

occupy the neuronal network under this circumstance. Therefore,

lots of LRCs are needed to slightly improve the synchronization.

For moderate time delay (t~4:0, beyond tmin, shown by red dots),

LRDs can suppress neighboring interactions to dominate the

system entirely. Consequentially, synchronization in delayed

Newman-Watts SWNNs can be enhanced remarkably by increas-

ing LRC probability P. For large time delay (t~7:0, also beyond

tmin, shown by blue diamonds), synchronization of delayed

Newman-Watts SWNN improves as LRC probability increases.

However, as we have identified, too large time delay can increase

the chance for neighboring interactions and is harmful for

synchronization to a certain degree, oscillating behaviour of the

order parameter can be observed. Fig. 5(b) displays the

dependence of synchronization parameter �RR on time delay t for

different LRC probability P. An optimal time delay interval is

needed to enhance the synchronization for Newman-Watts

SWNNs. The centers of optimal time delay interval are all around

4.5 and are largely independent of LRC probability. The width of

optimal time delay interval broadens as LRC probability increases.

To give more intuitive understanding on LRC induced

synchronization transitions in delayed Newman-Watts SWNNs,

space-time plots of u for different LRC probability P at t~4:0 is

given in Fig. 6. Remarkable enhancement of synchronization

induced by LRCs in delayed Newman-Watts SWNNs is revealed

obviously. Besides the asynchronous state (P~0:30 for Fig. 6(a)),

weak synchronization (P~0:70 for Fig. 6(b)) and complete

synchronization (P~1:00 for Fig. 6(d)), another new synchroni-

Figure 4. Dynamical analysis of synchronous oscillations and time delay induced synchronization transitions. (a) Dependence of
oscillation period T on time delay t in synchronous region. (b) Time series u of neurons 79 (shown by black curve), 78 and 80 (two neighboring
neurons of 79, shown by green and yellow curves) and 42 (the LRD neuron of 79, shown by red curve) of Fig. 3(c). The blue dashed curve denotes
time series u of neuron 42 with time delay translation. The pink line indicates excitation threshold. The oscillation period T is composed by time delay
t and excitation time tE . (c) The LRD proportion p between adjacent intervals for different time delay t (corresponding to Figs. 3(a)–(d)). (d)
Dependence of LRD proportion p (10 samples for each t, depicted by black dots) and �pp (the average of ps for 10 samples, depicted by red dots) on
time delay t. The four distinct parameter regions can also be revealed by LRD proportion clearly.
doi:10.1371/journal.pone.0096415.g004
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zation mode has been found at P~0:96 and is shown in Fig. 6(c).

From visual assessment, we guess this kind of new synchronization

mode is the lag synchronization. To test our idea, the similarity

function is introduced, which was proposed to detect lag

synchronization [5]. It is numerically calculated as:

S2~
v½v78(tztS){v79(t)�2w
½vv79(t)2

wvv78(t)2
w�1=2

: ð9Þ

Here v79 and v78 are the time series v of neurons 79 and 78 of

Fig. 6(c). And tS is the time shift. Fig. 7(a) displays the dependence

of similarity function S on time shift tS . The minimal value of S

appears at tS0~0:363, which indicates the lag synchronization

between neurons 79 and 78. Fig. 7(b) shows the projection of the

attractor on the time shifted plane (v78(tztS0), v79(t)). It

demonstrates that the state of neuron 79 is delayed in time with

respect to neuron 78. Accordingly, lag synchronization has been

confirmed in delayed Newman-Watts SWNN. To explain the

mechanism of lag synchronization, time series u of neurons 79

(without LRC, shown by black curve), 78 and 80 (two neighboring

neurons of 79, shown by red and blue curves) of Fig. 6(c) are

shown in Fig. 7(c). And the red dotted and blue dashed curves

denote time series u of neurons 65 and 93 (the two LRD neurons

of 78 and 80) with time delay translation, respectively. As LRC

probability P is a little less than 1.0, some neurons in network will

have no LRCs due to finite connection probability. All neurons

without LRCs must be driven by their neighbors. And these

neighboring neurons are excited by their corresponding delayed

LRDs. The successive driving relationship is revealed in Fig. 7(c).

And lag synchronization between neurons without LRCs and their

corresponding neighbors is identified. Therefore, we can observe

lag synchronization in delayed Newman-Watts SWNNs as LRC

probability P is a little less than 1.0 at moderate time delay.

Fig. 7(d) exhibits the LRD proportion p between adjacent intervals

for different LRC probability P at t~4:0 (corresponding to

Figs. 6(a)–(d)). Anticipated LRD proportions can be quickly

approached so long as time delay is moderate. And large numbers

of LRCs are needed to dominate the network for synchronization

under this circumstance.

According to the results obtained in this part, the conclusion

that moderate time delay can help LRDs to dominate the network

has been verified again. And large numbers of LRCs are needed

for synchronization under this circumstance. Therefore, the two

necessary conditions, moderate time delay and large numbers of

LRCs, are exposed explicitly for synchronization in delayed

Newman-Watts SWNNs.

The Combined Effects on Synchronization Transitions
To have a overall inspection of time delay and LRC induced

synchronization transitions in Newman-Watts SWNNs, the

contour plot of synchronization parameter �RR in the plane (t,P)
is revealed in Fig 8. The color intensity denotes the synchroni-

zation degree in delayed Newman-Watts SWNNs. Specifically,

lighter color representing larger synchronization parameter, which

indicates higher degree of synchronization. The four distinct

Figure 5. LRC induced synchronization transitions. (a) Dependence of synchronization parameter �RR on LRC probability P for different time
delay t. (b) Dependence of synchronization parameter �RR on time delay t for different LRC probability P.
doi:10.1371/journal.pone.0096415.g005

Figure 6. Space-time plots of u for different LRC probability P
at t~4:0. (a) P~0:30 (asynchronous state), (b) P~0:70 (weak
synchronization), (c) P~0:96 (lag synchronization), (d) P~1:00
(complete synchronization).
doi:10.1371/journal.pone.0096415.g006
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parameter regions, i.e., asynchronous region, transition region,

synchronous region and oscillatory region at certain LRC

probability P~1:0 are exposed clearly. And the remarkable

enhancement of synchronization transitions induced by LRCs

under moderate time delay is also indicated explicitly. From Fig 8

the optimal combinations of time delay and LRC probability on

synchronization transitions in delayed Newman-Watts SWNNs

are revealed intuitively, which may has a useful impact for actual

biological systems.

The Universality of Time Delay Induced Synchronization
Transitions

In order to test the universality of time delay induced

synchronization transitions, heterogeneous Newman-Watts

SWNNs are considered. Diversity is introduced to system

parameter b, i.e., the values of bi are different in the network.

And it satisfies the following Gaussian distribution:

vbiw~b,v(bi{b)(bj{b)w~s2d(i{j): ð10Þ

The value of b is fixed at 0.07. Here s is the standard deviation

of the Gaussian probability distribution of system parameter b. It

indicates the strength of the diversity in delayed Newman-Watts

SWNNs. Fig. 9(a) shows the dependence of synchronization

parameter �RR on time delay t for different diversity s at LRC

probability P~1:0. Although synchronization transition becomes

Figure 7. Dynamical analysis of lag synchronization and LRC induced synchronization transitions. (a) Dependence of similarity function
S on time shift tS . The minimal value of S appears at tS0~0:363, which indicates the lag synchronization between neurons 79 and 78 of Fig. 6(c). (b)
Projection of the attractor on the time shifted plane (v78(tztS0), v79(t)). It demonstrates that the state of neuron 79 is delayed in time with respect to
neuron 78. (c) Time series u of neurons 79 (without LRC, shown by black curve), 78 and 80 (two neighboring neurons of 79, shown by red and blue
curves). The red dotted and blue dashed curves denote time series u of neurons 65 and 93 (the two LRD neurons of 78 and 80) with time delay
translation, respectively. Lag synchronization is discovered in delayed Newman-Watts SWNN and the mechanism is also revealed. (d) The LRD
proportion p between adjacent intervals for different LRC probability P (corresponding to Figs 6(a)–(d)).
doi:10.1371/journal.pone.0096415.g007

Figure 8. The combined effects on synchronization transitions.
Dependence of synchronization parameter �RR on time delay t and LRC
probability P.
doi:10.1371/journal.pone.0096415.g008
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less profound as diversity increases, similar time delay induced

synchronization transitions can be observed in heterogeneous

Newman-Watts SWNNs. More importantly, all these synchroni-

zation transitions appear at approximatively same t. It indicates

that time delay plays a significant role in synchronization

transitions in Newman-Watts SWNNs. Moreover, to further test

the generality of our findings, the following new coupling form is

used:

dui(t)

dt
~{

1

E
ui(t)½ui(t){1�½ui(t){

vi(t)zb

a
�

zD(
Wi,j

Wi,jzCK

{ui(t)),

ð11Þ

where

Wi,j~½ui{1(t)zuiz1(t){2ui(t)�z½uj(t{t){ui(t)�: ð12Þ

This type of coupling has been widely used in neural models and

excitable complex networks. In simulations, we set CK~0:5.

Fig. 9(b) displays the dependence of synchronization parameter �RR
on time delay t. Similar time delay induced synchronization

transitions can also be observed for the new coupling form. Now

we can conclude that time delay induced synchronization

transitions in Newman-Watts SWNNs are a robust phenomenon.

The results revealed in present paper are universal.

Conclusions

In conclusion, time delay and long-range connection induced

synchronization transitions in Newman-Watts small-world neuro-

nal networks are systematically investigated by synchronization

parameter and space-time plots. We have found four distinct

parameter regions, i.e., asynchronous region, transition region,

synchronous region and oscillatory region, at certain LRC

probability P~1:0 as time delay is increased. Interestingly,

desynchronization and oscillating behaviour of the order param-

eter are observed in oscillatory region. More importantly, the

mechanisms of synchronous oscillations and the transition from

non-synchronization to complete synchronization are discussed.

We consider the spatiotemporal patterns obtained in delayed

Newman-Watts SWNNs are the competition results between long-

range drivings and neighboring interactions. And our point of view

has been verified by LRD proportion, which can also reveal the

four distinct parameter regions clearly. In addition, for moderate

time delay, the synchronization of neuronal network can be

enhanced remarkably by increasing LRC probability. Further-

more, lag synchronization has been found between weak

synchronization and complete synchronization as LRC probability

P is a little less than 1.0. Finally, the two necessary conditions,

moderate time delay and large numbers of LRCs, are exposed

explicitly for synchronization in delayed Newman-Watts SWNNs.

As we know that synchronization transitions in neuronal

networks are very important issues in related research fields and

are associated with some specific physiological functions. A

systematical investigation of synchronization transitions induced

by time delay and long-range connection is expected to be useful

both for theoretical understandings and practical applications. The

results obtained in the present paper are universal. Similar time

delay induced synchronization transitions can also be observed for

heterogeneous Newman-Watts SWNNs and the new coupling

form. We do hope that our work will be a useful supplement to the

previous contributions and will have a useful impact in related

fields.
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