data reports

7045 measured reflections

 $R_{\rm int} = 0.063$

200 parameters

 $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

2316 independent reflections 1860 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

OPEN 🗟 ACCESS

Crystal structure of 2-(*p*-tolyl)-6-(trifluoromethyl)benzo[*b*]thiophene-3carbonitrile

N. C. Sandhya,^a S. Naveen,^b N. K. Lokanath^c and S. Ananda^a*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India. *Correspondence e-mail: sananda@yahoo.com

Received 30 April 2015; accepted 5 May 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{17}H_{10}F_3NS$, the dihedral angle between the fused benzothiophene ring system (r.m.s. deviation = 0.042 Å) and the benzene ring is 29.78 (11)°. The crystal structure features $C-H\cdots F$ and very weak $C-H\cdots N$ hydrogen bonds, which generate (001) sheets.

Keywords: crystal structure; benzo[b]thiophene; hydrogen bonding.

CCDC reference: 1063141

1. Related literature

For background to benzothiophene derivatives, see: Bettinetti et al. (2002); Roberts & Hartley (2004).

2. Experimental

2.1. Crystal data

(

N a k

$C_{17}H_{10}F_3NS$	$V = 1425.03 (10) \text{ Å}^3$
$A_r = 317.33$	Z = 4
Aonoclinic, $P2_1/c$	Cu $K\alpha$ radiation
= 13.7576 (5) Å	$\mu = 2.29 \text{ mm}^{-1}$
P = 14.5343 (6) Å	T = 293 K
= 7.1353 (3) Å	$0.30 \times 0.27 \times 0.25 \text{ mm}$
$B = 92.817 \ (3)^{\circ}$	

2.2. Data collection

Bruker X8 Proteum diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{min} = 0.546$ $T_{max} = 0.598$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.141$ S = 1.062316 reflections

Table 1	
Hvdrogen-bond geometry (Å.	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$C3-H3\cdots N11^{i}$	0.93	2.62	3.411 (4)	143
$C22-H22C\cdots F15^{ii}$	0.96	2.45	3.375 (4)	162

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

Acknowledgements

The authors are thankful to Institution of Excellence, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7416).

References

- Bettinetti, L., Schlotter, K., Hübner, H. & Gmeiner, P. (2002). J. Med. Chem. 45, 4594–4597.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Roberts, C. F. & Hartley, R. C. (2004). J. Org. Chem. 69, 6145-6148.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o382 [doi:10.1107/S2056989015008671]

Crystal structure of 2-(*p*-tolyl)-6-(trifluoromethyl)benzo[*b*]thiophene-3-carbonitrile

N. C. Sandhya, S. Naveen, N. K. Lokanath and S. Ananda

S1. Comment

Benzo[*b*]thiophene derivatives are important heterocyclic compounds because of their various applications in medicinal chemistry. They represent an important heterocyclic core and are shown to display a range of promising pharmacological properties such as antipsychotic, antidepressive, antithrombolytic, dopamine receptor antagonist and 5-lipoxygenase inhibitor. Number of 2-arylbenzo[*b*]thiophene derivatives have indeed, these sulfur heterocycles are essential components of clinically important drugs such as Clopidogrel (Bettinetti *et al.*, 2002), Raloxifene (Roberts & Hartley, 2004) and Zileuton.

S2. Experimental

To a solution of 2-(2-chlorophenyl)acetonitrile (1.0 mmol), methyl benzodithioate (1.0 mmol) in DMF (2 ml), K_3PO_4 (2.0 mmol), pivalic acid (1.5 mmol), cuprous iodide (0.2 mmol) were added. The mixture was stirred at 80°C and progress was monitored by TLC. When the dithioesters could no longer be detected, the reaction mixture was extracted with EtOAc (3 × 10 ml). The organic layer was dried over anhydrous Na₂SO₄. The solvent was then removed under reduced pressure and the residue was purified by silica gel chromatography. White solid single crystals were obtained from slow evaporation of its solvent.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atom, with C–H = 0.93–0.97 Å, and with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figure 1

A view of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A view along the *a* axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 2 for details).

2-(p-Tolyl)-6-(trifluoromethyl)benzo[b]thiophene-3-carbonitrile

Crystal data	
$C_{17}H_{10}F_{3}NS$	F(000) = 648
$M_r = 317.33$	$D_{\rm x} = 1.479 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Cu K α radiation, $\lambda = 1.54178$ Å
Hall symbol: -P 2ybc	Cell parameters from 2316 reflections
a = 13.7576(5) Å	$\theta = 6.4 - 64.7^{\circ}$
b = 14.5343 (6) Å	$\mu = 2.29 \text{ mm}^{-1}$
c = 7.1353 (3) Å	T = 293 K
$\beta = 92.817 (3)^{\circ}$	Block, colourless
$V = 1425.03 (10) Å^3$	$0.30 \times 0.27 \times 0.25 \text{ mm}$
Z = 4	
Data collection	
Bruker X8 Proteum diffractometer	Detector resolution: 18.4 pixels mm ⁻¹ φ and ω scans
Radiation source: Rotating Anode	Absorption correction: multi-scan
Graphite monochromator	(SADABS; Bruker, 2013)

$T_{\min} = 0.546, \ T_{\max} = 0.598$	$\theta_{\rm max} = 64.7^{\circ}, \ \theta_{\rm min} = 6.4^{\circ}$
7045 measured reflections	$h = -15 \rightarrow 15$
2316 independent reflections	$k = -15 \rightarrow 16$
1860 reflections with $I > 2\sigma(I)$	$l = -8 \rightarrow 6$
$R_{\rm int} = 0.063$	
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.141$	neighbouring sites
S = 1.06	H-atom parameters constrained
2316 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0726P)^2 + 0.2459P]$
200 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.43$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.51842 (5)	0.17833 (5)	0.23250 (10)	0.0214 (2)	
F13	0.10569 (13)	-0.01265 (15)	0.0632 (4)	0.0518 (8)	
F14	0.14077 (13)	0.11887 (16)	-0.0469 (3)	0.0450 (7)	
F15	0.11752 (13)	0.10360 (17)	0.2439 (3)	0.0484 (8)	
N11	0.64047 (19)	-0.14957 (19)	0.3600 (4)	0.0297 (9)	
C2	0.4251 (2)	0.0996 (2)	0.1944 (4)	0.0202 (9)	
C3	0.3272 (2)	0.1178 (2)	0.1485 (4)	0.0212 (9)	
C4	0.2634 (2)	0.0444 (2)	0.1373 (4)	0.0210 (9)	
C5	0.2957 (2)	-0.0459 (2)	0.1679 (4)	0.0217 (9)	
C6	0.3920 (2)	-0.0643 (2)	0.2103 (4)	0.0203 (8)	
C7	0.4583 (2)	0.0087 (2)	0.2249 (4)	0.0178 (8)	
C8	0.5601 (2)	0.0069 (2)	0.2816 (4)	0.0174 (8)	
C9	0.6018 (2)	0.0928 (2)	0.2949 (4)	0.0183 (8)	
C10	0.6079 (2)	-0.0785 (2)	0.3267 (4)	0.0204 (9)	
C12	0.1574 (2)	0.0636 (2)	0.0993 (4)	0.0253 (9)	
C16	0.7014 (2)	0.1180 (2)	0.3613 (4)	0.0182 (8)	
C17	0.7798 (2)	0.0588 (2)	0.3430 (4)	0.0198 (9)	
C18	0.8717 (2)	0.0826 (2)	0.4144 (4)	0.0236 (9)	
C19	0.8890 (2)	0.1655 (2)	0.5074 (4)	0.0235 (9)	
C20	0.8107 (2)	0.2255 (2)	0.5220 (4)	0.0217 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C21	0.7190 (2)	0.2025 (2)	0.4506 (4)	0.0194 (8)	
C22	0.9878 (2)	0.1887 (2)	0.5939 (5)	0.0306 (10)	
H3	0.30560	0.17760	0.12600	0.0250*	
H5	0.25120	-0.09410	0.15940	0.0260*	
H6	0.41310	-0.12450	0.22910	0.0240*	
H17	0.77040	0.00260	0.28230	0.0240*	
H18	0.92320	0.04210	0.39990	0.0280*	
H20	0.82050	0.28200	0.58110	0.0260*	
H21	0.66800	0.24390	0.46190	0.0230*	
H22A	0.99640	0.15870	0.71340	0.0460*	
H22B	0.99300	0.25410	0.61070	0.0460*	
H22C	1.03700	0.16810	0.51280	0.0460*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0194 (4)	0.0164 (4)	0.0281 (4)	-0.0001 (3)	-0.0009 (3)	0.0010 (3)
F13	0.0215 (9)	0.0385 (13)	0.0941 (17)	-0.0028 (9)	-0.0107 (10)	-0.0047 (12)
F14	0.0293 (10)	0.0607 (15)	0.0442 (12)	0.0123 (10)	-0.0052 (9)	0.0178 (11)
F15	0.0285 (10)	0.0782 (17)	0.0390 (11)	0.0161 (10)	0.0059 (9)	-0.0160 (11)
N11	0.0321 (15)	0.0196 (16)	0.0369 (16)	0.0022 (12)	-0.0027 (12)	0.0019 (13)
C2	0.0237 (15)	0.0198 (16)	0.0171 (14)	-0.0014 (12)	0.0024 (11)	-0.0003 (13)
C3	0.0214 (14)	0.0211 (17)	0.0210 (14)	0.0051 (12)	0.0011 (12)	-0.0005 (13)
C4	0.0223 (15)	0.0258 (17)	0.0149 (13)	-0.0007 (13)	0.0005 (11)	-0.0005 (13)
C5	0.0244 (15)	0.0211 (17)	0.0196 (14)	-0.0038 (12)	-0.0001 (12)	-0.0010 (13)
C6	0.0268 (15)	0.0145 (15)	0.0198 (14)	-0.0004 (12)	0.0026 (12)	0.0003 (12)
C7	0.0216 (14)	0.0207 (16)	0.0111 (13)	0.0011 (12)	0.0023 (11)	0.0016 (12)
C8	0.0203 (14)	0.0170 (15)	0.0149 (13)	0.0012 (12)	0.0017 (11)	-0.0007 (12)
C9	0.0220 (14)	0.0191 (16)	0.0142 (13)	0.0006 (12)	0.0041 (11)	-0.0006 (12)
C10	0.0199 (14)	0.0220 (18)	0.0191 (15)	-0.0039 (13)	-0.0011 (12)	-0.0006 (13)
C12	0.0240 (15)	0.0254 (18)	0.0265 (16)	0.0002 (13)	0.0002 (13)	-0.0017 (14)
C16	0.0206 (14)	0.0174 (16)	0.0166 (13)	-0.0004 (12)	0.0005 (11)	0.0015 (12)
C17	0.0219 (15)	0.0169 (16)	0.0209 (14)	-0.0001 (12)	0.0034 (12)	-0.0013 (13)
C18	0.0229 (15)	0.0240 (17)	0.0241 (15)	0.0042 (13)	0.0026 (12)	-0.0007 (13)
C19	0.0237 (15)	0.0293 (18)	0.0175 (14)	-0.0019 (13)	0.0003 (12)	0.0033 (13)
C20	0.0240 (15)	0.0223 (17)	0.0187 (14)	-0.0044 (13)	0.0011 (12)	-0.0009 (13)
C21	0.0204 (14)	0.0186 (16)	0.0195 (14)	0.0003 (12)	0.0032 (11)	0.0022 (13)
C22	0.0251 (16)	0.037 (2)	0.0295 (16)	0.0014 (14)	-0.0015 (13)	-0.0015 (16)

Geometric parameters (Å, °)

S1—C2	1.731 (3)	C16—C17	1.391 (4)
S1—C9	1.735 (3)	C16—C21	1.399 (4)
F13—C12	1.335 (4)	C17—C18	1.384 (4)
F14—C12	1.328 (4)	C18—C19	1.390 (4)
F15—C12	1.326 (4)	C19—C20	1.394 (4)
N11—C10	1.146 (4)	C19—C22	1.503 (4)
С2—С3	1.396 (4)	C20—C21	1.378 (4)

C2—C7	1.411 (4)	С3—Н3	0.9300
C3—C4	1.381 (4)	С5—Н5	0.9300
C4—C5	1.399 (4)	С6—Н6	0.9300
C4—C12	1.496 (4)	С17—Н17	0.9300
C5—C6	1.371 (4)	C18—H18	0.9300
C6—C7	1.400 (4)	С20—Н20	0.9300
C7—C8	1.439 (4)	C21—H21	0.9300
C8—C9	1.375 (4)	C22—H22A	0.9600
C8—C10	1 434 (4)	C22—H22B	0.9600
C9-C16	1.131(1)	C^{22} H ²² D	0.9600
	1.1/1(1)		0.9000
C2—S1—C9	92.44 (14)	C17—C16—C21	117.9 (3)
S1—C2—C3	127.7 (2)	C16—C17—C18	120.6 (3)
S1—C2—C7	111.3 (2)	C17—C18—C19	121.6 (3)
C3—C2—C7	121.0 (3)	C18—C19—C20	117.6 (3)
C2—C3—C4	118.1 (3)	C18—C19—C22	121.4 (3)
C3—C4—C5	121.3 (3)	C20—C19—C22	121.0 (3)
C3—C4—C12	118.5 (3)	C19—C20—C21	121.2 (3)
C5—C4—C12	120.2 (3)	C16—C21—C20	121.1 (3)
C4—C5—C6	120.9 (3)	С2—С3—Н3	121.00
C5—C6—C7	119.2 (3)	C4—C3—H3	121.00
C2-C7-C6	119.6 (3)	C4—C5—H5	120.00
C_{2} C_{7} C_{8}	111 3 (2)	C6-C5-H5	120.00
C6-C7-C8	1290(3)	C5-C6-H6	120.00
C7 - C8 - C9	123.6(3)	C7—C6—H6	120.00
C7 - C8 - C10	120.6(3)	$C_{16} - C_{17} - H_{17}$	120.00
C_{9} C_{8} C_{10}	125.8(3)	C18 - C17 - H17	120.00
$S_{1} = C_{2} = C_{3}$	123.0(3) 111.4(2)	C17 - C18 - H18	110.00
$S_1 = C_2 = C_1 C_2$	111.4(2) 119.8(2)	C19 - C18 - H18	119.00
$S_1 = C_2 = C_{10}$	119.8(2) 128.7(3)	$C_{10} = C_{10} = H_{10}$	119.00
111 - 10 - 69	126.7(3) 175.6(3)	$C_{13} = C_{20} = H_{20}$	119.00
$R_{11} = C_{10} = C_{0}$	1/5.0(5) 106.2(2)	$C_{21} = C_{20} = H_{20}$	120.00
F13 - C12 - F14	100.3(2)	$C_{10} = C_{21} = H_{21}$	120.00
F13-C12-F15	100.1(2)	$C_{20} = C_{21} = H_{21}$	119.00
F13-C12-C4	112.7(2)	C19 - C22 - H22A	109.00
F14	106.5(2)	C19—C22—H22B	109.00
F14—C12—C4	112.6 (2)	C19—C22—H22C	109.00
F15	112.2 (2)	H22A—C22—H22B	109.00
C9—C16—C17	121.9 (3)	H22A—C22—H22C	110.00
C9—C16—C21	120.1 (3)	H22B—C22—H22C	109.00
	175 ((2)		0.5 (4)
C9—S1—C2—C3	175.6 (3)	$C_2 - C_7 - C_8 - C_9$	0.5 (4)
C9—S1—C2—C7	-1.4 (2)	C2-C/-C8-C10	177.7 (3)
C2 - S1 - C9 - C8	1.7 (2)	Co-C/-C8-C9	-175.0(3)
C2—S1—C9—C16	-175.3 (2)	C6-C7-C8-C10	2.2 (5)
S1—C2—C3—C4	-175.5 (2)	C/C8C9S1	-1.6 (3)
C/C2C3C4	1.2 (4)	C/C8C9C16	175.2 (3)
S1—C2—C7—C6	176.7 (2)	C10—C8—C9—S1	-178.6 (2)
S1—C2—C7—C8	0.8 (3)	C10—C8—C9—C16	-1.8(5)

	C4-C5-C6-C7 $0.7 (4)$ $C22-C19-C20-C21$ $-176.9 (3)$ $C5-C6-C7-C2$ $-0.5 (4)$ $C19-C20-C21-C16$ $0.1 (4)$	C3-C2-C7-C6 $C3-C2-C7-C8$ $C2-C3-C4-C5$ $C2-C3-C4-C12$ $C3-C4-C5-C6$ $C12-C4-C5-C6$ $C3-C4-C12-F13$ $C3-C4-C12-F14$ $C3-C4-C12-F15$ $C5-C4-C12-F13$ $C5-C4-C12-F14$ $C5-C4-C12-F15$ $C4-C12-F15$ $C4-C5-C6-C7$ $C5-C6-C7$	$\begin{array}{c} -0.5 (4) \\ -176.4 (3) \\ -1.0 (4) \\ 176.5 (3) \\ 0.1 (4) \\ -177.4 (3) \\ 170.3 (3) \\ 50.1 (4) \\ -70.0 (3) \\ -12.2 (4) \\ -132.4 (3) \\ 107.5 (3) \\ 0.7 (4) \\ -0.5 (4) \end{array}$	$\begin{array}{c} S1-C9-C16-C17\\ S1-C9-C16-C21\\ C8-C9-C16-C17\\ C8-C9-C16-C17\\ C9-C16-C17-C18\\ C21-C16-C17-C18\\ C9-C16-C21-C20\\ C17-C16-C21-C20\\ C17-C16-C21-C20\\ C16-C17-C18-C19\\ C17-C18-C19-C20\\ C17-C18-C19-C22\\ C18-C19-C20-C21\\ C22-C19-C20-C21\\ C19-C20-C21-C16\\ \end{array}$	$\begin{array}{c} -154.1 (2) \\ 27.8 (4) \\ 29.4 (5) \\ -148.7 (3) \\ -177.0 (3) \\ 1.2 (4) \\ 176.8 (3) \\ -1.5 (4) \\ 0.4 (4) \\ -1.8 (4) \\ 176.6 (3) \\ 1.5 (4) \\ -176.9 (3) \\ 0.1 (4) \end{array}$
--	---	---	--	--	---

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3…N11 ⁱ	0.93	2.62	3.411 (4)	143
C22—H22 <i>C</i> ···F15 ⁱⁱ	0.96	2.45	3.375 (4)	162

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) *x*+1, *y*, *z*.