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Abstract: Microvariant genotypes of Ostreid herpesvirus 1 (OsHV-1) are associated with mass mortality
events of Pacific oysters in many countries. The OsHV-1 microvariant (µVar) emerged in France
2008 and caused significant economic losses as it became endemic and displaced the previously
dominant OsHV-1 reference genotype. Recently, considerable genotypic variation has been described
for OsHV-1 microvariants, however, less is known about variation in viral phenotype. This study
used an in vivo laboratory infection model to assess differences in total cumulative mortality, peak
viral load, transmissibility, and dose-response for three OsHV-1 isolates obtained between 2011 and
2015 from endemic waterways in Australia. This followed field observations of apparent reductions
in the severity of mass mortalities over this time. Significantly higher hazard of death and cumulative
mortality were observed for an isolate obtained in 2011 compared to isolates from 2014–2015. In
keeping with other studies, the hazard of death was higher in oysters challenged by injection
compared to challenge by cohabitation and the mortality was higher when the initial dose was
1 × 104 OsHV-1 DNA copies per oyster injection compared to 1 × 102 DNA copies. There was no
difference in the quantity of OsHV-1 DNA at time of death that could be related to isolate or dose,
suggesting similar pathogenetic processes in the individual oysters that succumbed to end-stage
disease. While the isolates examined in this study were biased towards pathogenic types of OsHV-1,
as they were collected during disease outbreaks, the variation in virulence that was observed, when
combined with prior data on subclinical infections, suggests that surveillance for low virulence
genotypes of OsHV-1 would be rewarding. This may lead to new approaches to disease management
which utilize controlled exposure to attenuated strains of OsHV-1.
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1. Introduction

Ostreid herpesvirus 1 is a member of the family Malacoherpesviridae within the order
Herpesvirale [1]. Microvariant genotypes of Ostreid herpesvirus-1 (OsHV-1) are of interna-
tional concern because they cause more severe disease than the reference genotype and
have spread rapidly [2,3]. Compared to the reference genome (GenBank accession number
AY509253), the microvariants have been characterized by a deletion in the microsatellite
locus upstream of open reading frame 4 (ORF 4) and several variations to the genome,
including polymorphisms in ORF 4 (C region) and ORF 42/43 which encode an inhibitor
of apoptosis [2]. Since the emergence of the microvariant genotypes in France in 2008 [4],
OsHV-1 has spread between regions and across hemispheres with mass mortality outbreaks
in Europe [5,6], New Zealand [7], and Australia [8,9]. In regions where the microvariant
genotypes have been detected, they have become endemic and caused recurrent seasonal
disease which is more severe than previous summer mortality events [10]. The microvariant
genotypes have replaced the reference genotype, becoming the dominant cause of global
mortality events in Pacific oysters [4,11]. The high mortality and seasonal reoccurrence of
disease caused by OsHV-1 has led to significant economic losses in many countries and
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is driving the restructure of many Pacific oyster industries, which accounts for a large
proportion of global edible oyster production [3].

In regions where OsHV-1 has become endemic, disease expression varies year-to-year
and there can be significant differences in the level of mortality in different locations. Epi-
demiological studies have shown this is driven by the multifactorial nature of the disease,
depending on risk factors relating to the environment and the host [12–14]. Importantly,
not all OsHV-1 infections result in mortality [15,16]. This includes a growing appreciation
of the polymicrobial pathogenesis of the disease subsequent to immune suppression due
to OsHV-1 infection [17]. Several host factors contribute to the expression of OsHV-1,
including the genotype [18,19] and the age and size of the oysters [20,21]. Abundant
food is a risk factor for higher mortality in oysters as rapid growth and high metabolic
demand can enhance disease, although disease resilience can also be promoted through
building the oysters’ energetic reserves [22]. Food availability can also enhance OsHV-1
transmission [23].

Concerning the environment, water temperature is a key factor for disease expres-
sion with mortality events observed between 16–24 ◦C in Europe [24,25] and 22–25 ◦C
in Australia [3,12]. Salinity also impacts OsHV-1 disease expression because the osmo-
conformation of oysters can result in detrimental metabolic changes depending on the rate
of change of salinity [26] and virus transmission by impacting the persistence of OsHV-1
infectivity [27]. Physical stresses, including handling during farming procedures and differ-
ences between water and air temperature, can increase OsHV-1 mortality [6,28]. Changes to
farm management have been implemented to alter the host and environmental risk factors
and minimize disease impacts. For example, raising the height of growing infrastructure
decreased the immersion time for oysters in an intertidal environment, impacting growth,
feeding, and exposure time for transmission of OsHV-1 [29].

Increased surveillance has identified considerable genotypic variation within the
OsHV-1 species. Partial genomic sequences have revealed multiple genotypic variants
within the microvariant and reference genome clusters [30], including considerable viral di-
versity in oysters without signs of disease [31]. While there has been less study of complete
genomes, one microvariant genotype was shown to be 94.4% similar across 205 kilobases
compared to the reference genome [32]. OsHV-1 genomic diversity is higher over greater
geographical distance and more genotypic variation has been described in South Korea and
China compared to Europe [33]. In China, the genome of Acute Viral Nervous Necrosis
(AVNV), which causes severe mortality in adult Farrer’s scallops (Chlamys farreri) was
shown to be a variant within the species OsHV-1 [34]. An additional variant was also
identified in blood clams (Scapharca broughtonii) [35], illustrating the considerable scope for
differences in OsHV-1 phenotype. However, the implications of this genotypic diversity on
OsHV-1 disease outcomes requires further investigation. Phenotypic variation of OsHV-1
at a finer scale was suggested by differential mortality of Pacific oysters from a common
source when they were infected with genotypically distinct OsHV-1 after placement in dif-
ferent locations in France [36]. Under experimental conditions, mortality of oyster families
from well characterized breeding programs had different disease outcomes when exposed
to a French OsHV-1 microvariant isolate compared to a non-microvariant OsHV-1 isolate
from the United States, albeit under very different environmental conditions [37]. Similarly,
differential mortality under experimental conditions was demonstrated for two different
OsHV-1 microvariant strains originating from France and Australia [38].

The impact of OsHV-1 has been severe in two oyster producing waterways in New
South Wales (NSW), Australia. The initial outbreaks in the Georges and Hawkesbury
Rivers arose from probable single-point introductions of microvariant OsHV-1 and caused
mortality exceeding 95%, with both farmed and wild Pacific oysters affected [8,9]. On-going
surveillance in these estuaries revealed that OsHV-1 was endemic with recurrent seasonal
outbreaks of disease [16]. The host population remained low due to reduced stocking
of farmed Pacific oysters, generating selection pressures for OsHV-1 that may explain,
in part, the reported diminution in mortality rates and prevalence of infection over the
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period 2012 to 2017 [16]. The present study was designed to evaluate whether attenuation
of OsHV-1 could explain decreasing severity of disease in these endemically infected
waterways. Isolates of OsHV-1 collected several years apart were evaluated for differences
in phenotype using a standardized laboratory infection model for in vivo infection of
Pacific oysters (Figure 1). Phenotypic differences between isolates were identified based on
total cumulative mortality, transmissibility, incubation period, and peak viral load.
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Figure 1. Experiment design to compare isolates of microvariant OsHV-1. Primary inoculae were prepared from oyster
tissues collected during Pacific oyster mortality disease surveillance that were stored at −80 ◦C. Primary in vivo passage
of each isolate by injection of Pacific oysters from the same hatchery and batch origin was used to reduce the impact of
storage time, stage of infection, and status of primary host. The virulence and transmissibility of each OsHV-1 isolate was
then compared using injection challenge with three doses of the secondary inoculae and by cohabitation with these injected
oysters in replicate tanks.

2. Materials and Methods
2.1. Oysters

Triploid juvenile Pacific oysters (six months of age; shell length 3–4 cm) were sourced
from a commercial hatchery (Shellfish Culture, Tasmania, Batch SPL16A) and grown under
commercial conditions by a farmer in Patonga Creek, NSW. Using the same batch of oysters
grown under identical conditions ensured the genotype and previous environmental
experience of the oysters was not a factor when comparing the disease outcome. These
oysters had not been previously exposed to OsHV-1 based on: certification of freedom from
OsHV-1 at the source hatchery by the government authority in Tasmania; no detections of
mortality caused by OsHV-1 at the farm location during long-term surveillance [3]; and
negative qPCR tests on a subsample of oysters when they entered the laboratory (n = 30).

2.2. Laboratory Housing

Oysters were randomly distributed to eight tanks for the primary OsHV-1 amplifica-
tion (n = 8) or to 26 tanks for the detailed comparison of OsHV-1 isolates (n = 40 per tank)
and were acclimated to the physical containment level 2 aquatic animal facility for seven
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days. Each tank contained 15 L artificial seawater (ASW) at 30–31 ppt salinity (Red Sea salt)
and was maintained separately with an individual airlift biofilter. The water temperature
was maintained at 22 ◦C by immersing tanks in circulating water baths [39]. Oysters were
fed twice daily with 2 ml/tank of Shellfish Diet 1800 (Reed Mariculture, Campbell, CA,
USA). Water quality was monitored every second day and adjustments were performed
as required by water exchange to maintain pH > 8.0 and ammonia, nitrite, and nitrate
levels <0.25 ppm. Oysters within each tank were randomly assigned to either challenge
by injection (n = 20) or challenge by cohabitation (n = 20), based on their position in the
tanks. The injected oysters were identified by engraving a small notch on the upper shell.
Treatment groups were randomly assigned to tanks.

2.3. Isolates of OsHV-1

Oysters infected with OsHV-1 obtained during previous research were selected to
represent the greatest available range in time and geographical location of outbreaks
(Table 1). The samples were obtained from disease outbreaks where Pacific oyster mortality
syndrome was confirmed by the presence of microvariant OsHV-1 according to the OIE
definition [2]. These oysters were stored as whole soft tissues at −80 ◦C. Samples stored as
tissue homogenates without cryoprotectants were not included as OsHV-1 could not be
amplified in vivo from these samples (data not shown).

Table 1. Archived oyster tissue samples (−80 ◦C) collected in the field from which primary inoculae (clarified and filtered
mantle and gill homogenates) were prepared for injection of naïve Pacific oysters (n = 8 per group). These experimentally
infected oysters provided the first in vivo passage OsHV-1 (secondary inoculae) used to compare the isolates.

Region Sampled Date Collected Clinical Signs (%) 1 OsHV-1 qPCR
Positive (%) OsHV-1 Quantity 2 Identity in Further

Evaluation

Georges River, NSW 24/11/2011 100 100 1.15 × 104 OsHV-1_Georges_2011

Georges River, NSW 24/02/2014 100 100 4.01 × 104 OsHV-1_Georges_2014

Hawkesbury River, NSW 11/11/2015 100 100 4.76 × 104 OsHV-
1_Hawkesbury_2015

1 The experiment was completed when mortality was 50% when the remaining oysters were examined for clinical signs (gaping); 2 Average
OsHV-1 genome copies/mg in gill and mantle tissue.

Secondary inoculae were prepared for the main experiment as fresh tissue homogenates
from in vivo passage of the primary inoculae to minimize possible variation between the
OsHV-1 stocks based on duration of storage, stage of infection, and the age/size of the
original host.

2.3.1. Primary Inoculae

The primary inoculae were freshly prepared, clarified, and filtered homogenates of
mantle and gill tissue. Oysters were thawed at 4 ◦C, opened by removing the superior
valve and the excised gill and mantle tissues were weighed and placed into a stomaching
bag with 10× volume of sterile ASW. Tissues were homogenized in a stomaching machine
(MiniMix, Interscience, France) at maximum speed for 1 min. The homogenate was then
transferred into 50 mL sterile tubes and centrifuged at 1000× g for 10 min at 4 ◦C (Beckman
Coulter, Brea, CA, USA). The supernatant was diluted with three volumes of ASW and
filtered successively through 5 µm, 0.8 µm, 0.45 µm filters and twice through a 0.22 µm
syringe filter (Sartorius, Göttingen, Germany). The clarified tissue homogenate was then
stored briefly at 4 ◦C awaiting quantification of OsHV-1 DNA by real-time quantitative
PCR (qPCR) prior to use. Tissues were processed in a class 2 biosafety cabinet with cross
contamination between specimens and control groups prevented by use of autoclaved or
sterile disposable equipment and surface disinfection using 1% Virkon-S for 15 min.

2.3.2. Secondary Inoculae

The secondary inoculae were prepared by passage of the primary inoculum in vivo.
Oysters that had been acclimated at 22 ◦C for three days (n = 8) were relaxed by immersion



Viruses 2021, 13, 946 5 of 13

in 50 mg/L MgCl2, in 1 L of artificial sea water and 4 L of distilled water after being
removed from water for 12 h. The primary inoculae were diluted with ASW to contain
104 OsHV-1 DNA copies in 100 µL and were injected into the adductor muscle using a
1 mL syringe and 25-gauge needle. Twice daily examination identified dead oysters as
those that were gaping and failed to close when removed from the water for 2 min; these
were stored at −80 ◦C. Remaining oysters were collected when mortality reached 50% and
were stored at −80 ◦C. Secondary inoculae were prepared from pools of gill and mantle
from all of these oysters using the same method as the primary inoculae. OsHV-1 DNA in
the resulting inoculums was quantified by qPCR (Table 1). The negative control inoculum
was prepared from OsHV-1 free Pacific oysters using the same method and dilution factors
described above.

2.4. Assessment of Virulence and Transmissibility of OsHV-1 Isolates

For each isolate there were two replicate tanks for each of three doses of OsHV-1.
Twenty oysters per tank were infected by injection and 20 per tank were exposed through
cohabitation. Sample size was designed to identify a 20% difference in mortality with 80%
power and 95% confidence (https://epitools.ausvet.com.au/twoproportions (accessed on
18 May 2019). Oysters for injection were relaxed with MgCl2 and injected with 100 µL
of the secondary inoculum diluted to contain 1.0 × 104, 1.0 × 103, or 1.0 × 102 OsHV-1
genome copies per injection. Oysters were assessed twice daily by visual inspection and
dead oysters were removed and stored at −80 ◦C. All oysters that survived to 14 days post
injection were also stored at −80 ◦C until qPCR analysis.

A previously described qPCR was used to determine the concentration of OsHV-1
DNA in each inoculae. The first five oysters to die in each replicate tank for each challenge
method and a selection of five oysters from each replicate tank that survived until the end
of the trial were tested to evaluate the quantity of OsHV-1 in each treatment group.

2.5. Detection and Quantification of OsHV-1 DNA

Quantification of OsHV-1 DNA was according to previously described methods
based on homogenization of equal parts of gill and mantle tissue (0.08–0.12 g) by bead
beating and purification of nucleic acids using the MagMAXTM-96 Viral RNA Isolation
Kit (ThermoFisher Scientific, Waltham, MA, USA) and a MagMax Express-96 magnetic
particle processor [23]. The qPCR assay described by Martenot et al. [40] was used as
previously described with duplicate 25 µL reactions prepared using the Path-ID qPCR kit
(ThermoFisher Scientific) and thermocycling with an Mx3000 P Real-time PCR machine
(Stratagene, La Jolla, CA, USA) [23]. Samples were considered positive for OsHV-1 when
the ROX normalized and the baseline corrected FAM signal increased exponentially above
the threshold and the quantity in positive samples was determined using a quantitative
curve for the standard (plasmid pOSHV1-Breg).

2.6. Statistical Analysis

Total cumulative mortality between tanks was compared by ANOVA. The time of
death for cohabitation was adjusted by −60 h from the time of injection to approximate the
time of exposure to OsHV-1. Kaplan Meyer survival curves were prepared for each isolate,
dose, and challenge method in R Studio using the ‘survfit’ function in the ‘survival’ package
(https://cran.r-project.org/web/packages/survival/index.html (accessed on 5 October
2019)). Survival curves were assessed for significance using a log rank test (p < 0.05). A Cox
proportional hazards model was prepared considering the factors isolate, challenge method,
and dose, with tank as a random effect using the ‘coxph’ function in the ‘survival’ package
for R [41]. The quantities of OsHV-1 DNA measured by qPCR were log10 transformed to
meet the assumption of normality. Box plots with the median and quartiles were used to
display the quantity in each treatment group. The quantity of OsHV-1 DNA at the time of
death was compared using a general linear model with the factors OsHV-1 isolate, injection

https://epitools.ausvet.com.au/twoproportions
https://cran.r-project.org/web/packages/survival/index.html
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dose, and challenge method, with tank as a random effect. Differences in the quantity of
viral DNA between groups were assessed using the least significant difference method.

3. Results

In vivo amplification of OsHV-1 was achieved from the three archived samples of
whole oyster tissues. There was 50% mortality and 100% morbidity (gaping) 72 h after
injection of primary inoculae for each sample. The average quantity of OsHV-1 DNA in
gill and mantle tissue was >104 genome copies.mg−1 (Table 1).

When oysters were challenged with the secondary inoculae, mortality was first ob-
served in injected oysters 48 h post-injection (pi) and 36 h after that in the cohabitating
oysters. Mortality peaked between 48 and 144 h pi, with low level mortality continuing
until the completion of the trial at 276 h pi (Figure 2). The total cumulative mortality
was significantly higher for the 2011 isolate (OsHV-1_Georges_2011; 90.3%) compared to
the 2014 (OsHV-1_Georges_2014; 74.3%) and 2015 isolates (OsHV-1_Hawkesbury_2015;
74.8%) (Table 2). Although, there was variation between the replicate tanks and the dif-
ferent starting doses (Table 2). Considering the range of doses and the challenge method,
the survivor probability was lower for the isolate OsHV-1_Georges_2011 compared to
OsHV-1_Hawkesbury_2015 (Table 3).

The mortality of oysters challenged by injection was higher than by cohabitation,
irrespective of isolate and dose (Figure 2a). Mortality was dose responsive with the lowest
dose used (102 OsHV-1 DNA copies per injected oyster) close to the 50% lethal dose in
this experimental setting (Figure 2b). Oysters injected with the lowest dose had a higher
survivor probability compared to oysters injected with the higher doses of OsHV-1. The
survivor probability was also higher for oysters challenged by cohabitation compared to
injected oysters (Figure 2c).

The hazard of death for oysters challenged with the 2011 isolate (OsHV-1_Georges_2011)
was significantly higher than for the 2015 isolate (OsHV-1_Hawkesbury_2015) (Table 3).
The two Georges River isolates (2011 and 2014) were not discernibly different in this stan-
dard infection model. This was influenced by the lowest injection dose for the 2014 isolate
not generating any mortality in one of the replicate tanks. However, there was evidence of
infection in this tank with OsHV-1 replication observed in the injected oysters (3/5 tested
positive; up to 4.0 × 104 OsHV-1 DNA copies/mg). There was also transmission to the
cohabitating oysters with 2/5 testing positive (1.6 × 103 and 5.8 × 103 OsHV-1 DNA
copies/mg).

The quantity of OsHV-1 DNA in oysters that died was 1.4 × 103–3.8 × 103 OsHV-1
DNA copies/mg (95% confidence interval for the mean) at the time of death. This was
much higher compared to the quantity present in oysters that survived to the end of
the trial and were positive for OsHV-1 (2.5 × 101–1.0 × 102 OsHV-1 DNA copies/mg,
p < 0.001). The prevalence of OsHV-1 in surviving oysters at the end of the trial was low
(12%). There was no difference in the quantity of OsHV-1 DNA at time of death for the
three different isolates (Figure 3a; p = 0.22). For those oysters that died, the initial injection
dose did not impact the amount of viral DNA at the time of mortality (Figure 3b; p = 0.97).
However, oysters challenged by cohabitation had a higher viral load (3.36 × 103) compared
to those challenged by injection (2.30 × 102) (Figure 3c; p < 0.001). The cause of death of all
challenged oysters in this trial was attributed to OsHV-1.

There was no mortality in oysters challenged by injection with the negative control
or the oysters cohabitating with these, and all qPCR tests for controls were negative
for OsHV-1.
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Figure 2. Kaplan Meyer survival curves for three OsHV-1 isolates after Pacific oysters were challenged by injection and
cohabitation. Survivor probability was determined using secondary inoculae prepared as tissue homogenates from Pacific
oyster challenged by injection with archived field samples. (a) Comparison of OsHV-1 isolates collected at different times
from two different rivers; (b) Comparison of challenge method with time adjusted by −60 h for cohabitating oysters to
allow for the longer incubation period with exposure from injected oysters; (c) Comparison of different doses used for the
half of the oysters in each replicate tank that were challenged by injection. Data from replicate tanks were pooled. Each
factor was significant (log rank test p < 0.05).

Table 2. Total cumulative mortality in duplicate tanks for each isolate with three different doses for injection. Approximately
half of the oysters in each tank were challenged by injection and the remainder were challenged by cohabitation in the
same tank.

Isolate Dose 1

Total Cumulative Mortality (%)

Range in Duplicate Tanks (%)
Injected Oysters Cohabitating Oysters

n Mortality (%) n Mortality (%)

OsHV-1_Georges_2011

1.0 × 104 90–93 20 90 19 89
21 100 19 84

1.0 × 103 92–95 19 95 19 89
24 100 15 87

1.0 × 102 83–90 22 91 18 72
21 95 18 83

OsHV-1_Georges_2014

1.0 × 104 79–93 20 85 19 74
22 95 18 89

1.0 × 103 87–88 20 100 23 78
20 90 19 84

1.0 × 102 0–84 19 89 18 78
19 0 20 0

OsHV-1_Hawkesbury_2015

1.0 × 104 88–90 23 91 18 83
25 88 16 94

1.0 × 103 69–75 20 90 16 56
19 100 20 40

1.0 × 102 46–78 23 61 18 100
20 60 21 33

1 OsHV-1 DNA copies/injected oyster.
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Table 3. Hazard ratios predicted from a Cox proportional hazards model.

Factor Level
Hazard Ratio

Point Estimate 95% Confidence Interval

Isolate
OsHV-1_Georges_2011 1.37 1.01–1.86
OsHV-1_Georges_2014 1.06 0.63–1.79

OsHV-1_Hawkesbury_2015 1 - -

Challenge method Injection 1.30 1.02–1.65
Cohabitation 1 - -

Dose
(OsHV-1 genome

copies/injected oyster)

1.0 × 102 0.44 0.24–0.79
1.0 × 103 0.78 0.57–1.07

1.0 × 104 1 - -
1 Reference category.
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4. Discussion

This study demonstrated different disease phenotypes for OsHV-1 isolates using a
standardized laboratory infection model to compare peak viral load, transmissibility, and
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oyster survival. An increased hazard of death was shown to be associated with an isolate
obtained shortly after the index case of POMS in Australia (OsHV-1_Georges_2011) com-
pared to a later OsHV-1 isolate from the Hawkesbury River (OsHV-1_Hawkesbury_2015).
This method will be useful for further assessment of the phenotypic relevance of the con-
siderable genotypic diversity within OsHV-1 [11,30,31]. Variation in the complete genomes
of OsHV-1 indicate several factors which are likely to impact virulence, including the pres-
ence/absence of some genes, variability in the amino acid sequence coded by open reading
frames, and variability in regions that function to regulate viral gene expression [32]. The
genotypic variation in OsHV-1 provides a mechanism for viral evolution which can be in-
fluenced by host species as well as temporal and geographic separation [42]. Considerable
selection pressure was expected for the OsHV-1 microvariant in Australia, through seasonal
recurrence with a substantial reduction in the size of the Pacific oyster population in the
NSW estuaries where it has become endemic [16]. The phenotypic differences between the
isolates of OsHV-1 in this trial give rise to several research questions about the genomic
mechanisms and options for industrial applications of low or avirulent field strains in
disease management.

Considerations of the virulence of OsHV-1 should embrace an understanding of
the polymicrobial nature of the pathogenesis of the disease. It has been reported that
OsHV-1 causes disease through immune suppression leading to a fatal bacteremia [17].
Interestingly, the difference in pathogenicity of the OsHV-1 isolates in the present study
did not correspond to differences between the peak viral load in oysters that died. A
low dose of OsHV-1 (102 viral copies per injection) resulted in a lower hazard of death
than higher doses (103–104 viral copies per injection), consistent with previous trials [43].
Although there was a clear dose-dependent response, the initial injection dose did not
impact the amplification of OsHV-1 to peak titre. Furthermore, there was more OsHV-1
DNA in oysters that died after exposure by cohabitation compared to those which were
injected, despite the injected treatments having a higher hazard of death. These key
findings support an understanding that mortality resulting from OsHV-1 infection is more
complex than the amount of virus that is amplified [44]. For example, previous studies
indicate that environmental factors can alter the composition of the microbiome associated
with oysters which in turn influences the course of disease [45] and, currently, there are
no histopathological lesions that are specific for OsHV-1 disease [46]. The influence of
energetic reserves on metabolism [14] and immune mechanisms, such as autophagy [47],
are also key to the expression of disease. The present study design was able to control for
these factors by keeping host and environment constant.

Increased virulence of microvariant OsHV-1 led to these genotypes dominating sam-
ples collected from diseased oysters in France after 2008, largely replacing the reference
genotype [4,11]. The genotypic changes contributing to higher virulence included a deletion
in the microsatellite locus upstream and several polymorphisms in ORF4 [11] but greater
complexity of OsHV-1 genotypic variation was documented around this time [48]. The
interaction and competition between all genotypes in the field remains unknown. Evidence
of co-infection with a microvariant and reference genotype in subclinical infection [49]
suggests that multiple strains can cause infection during a single season. Importantly,
there was higher genotypic diversity in OsHV-1 from apparently healthy oysters in Italy
compared to viruses characterized elsewhere from disease outbreaks [31]. It was hypoth-
esized that the evolution of OsHV-1 into a more virulent genotype may have developed
in Europe due to the intensive farming resulting in an increased number of susceptible
hosts and increased animal movement [32]. In some cases, conditions suitable for OsHV-1
with high virulence are encouraged by the practice of stocking greater numbers of oysters
on farms to compensate for disease losses [3]. Conversely, Pacific oyster farming in the
OsHV-1 affected Georges and Hawkesbury River estuaries in Australia was replaced by the
non-susceptible oyster species, Saccostrea glomerata, resulting in a dramatically reduced po-
tential host population. Here, a declining trend in cumulative mortality and prevalence of
OsHV-1 [16] might reflect a shift towards an attenuated or avirulent genotype more suited
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than the highly virulent microvariant isolates for the changed conditions [16]. Further,
there is evidence that the recurrent seasonal outbreaks reported in Europe and Australia
are perpetuated by subclinical OsHV-1 infection during cooler months [49,50], favoring
long-term success of OsHV-1 with lower virulence.

Several years elapsed between the collection of the microvariant OsHV-1 isolates ex-
amined in this study. This provided considerable opportunity for evolution for a virus that
can replicate to high peak titre less than two days after infecting a host [44]. Even though
the present study was biased towards collection of OsHV-1 from clinical disease, lesser
virulence corresponded with the later timepoint. Viral attenuation might be attributed to
the “trade-off hypothesis”, where benefits to the fitness of a virus are obtained through
reduced virulence at the expense of reduced transmissibility [51]. Whole genome and viral
transcriptome sequencing are recommended to identify genotypic differences that can be
tested to explain differences in the phenotype of OsHV-1. This knowledge, and a better
understanding of the field ecology of OsHV-1, will be important for disease management
where OsHV-1 is endemic because eradication of OsHV-1 is impractical due to expense
and the high risk of re-infection [52]. Characterization of attenuated OsHV-1 strains by
genome analysis and phenotyping studies may lead to methods for disease management in
commercial farms through controlled exposure. Preliminary studies using virulent OsHV-1
under a specific temperature regime has shown that this is possible [53].

5. Conclusions

Variation in the virulence of isolates of OsHV-1 was identified in this study that
matched epidemiological observations of waning disease severity over time in the sam-
pling location. This was despite using isolates obtained in surveys biased towards detection
of pathogenic types of OsHV-1. Considerable genetic diversity of OsHV-1 is being docu-
mented globally together with selection pressure for viral fitness associated with changes
to management of Pacific oyster farms. While genotyping was beyond the scope of this
study, genotypic comparison of isolates of varying virulence may lead to identification
of the virulence factors in OsHV-1. This may lead to new management strategies which
utilize controlled exposure to attenuated strains of OsHV-1.
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