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Are E-values too optimistic or too pessimistic?

Both and neither!
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Introduction

Ding and VanderWeele,1 hereafter DV, proposed a method

to assess the sensitivity of observed associations to uncon-

trolled confounding. Briefly, this method requires the ana-

lyst to provide guesses of two sensitivity parameters RRUD

and RREU, loosely defined as the maximal strength of asso-

ciation that an uncontrolled (set of) confounder(s) may

have with the outcome and with the exposure, respectively.

DV derived a lower bound for the causal exposure–out-

come risk ratio as a function of these sensitivity parameters

and the observed exposure–outcome risk ratio. By setting

the sensitivity parameters to values that are considered

plausible for the study at hand, one obtains a lower bound

for the causal risk ratio.

In a subsequent paper, VanderWeele and Ding2 coined

the term ‘E-value’ for the common value RRUD ¼RREU of

the sensitivity parameters that gives a lower bound equal to

1; i.e. the E-value shows the minimum size these sensitivity

parameters must have if they are equal and the confounding

that they produce is exactly the inverse of the observed asso-

ciation. For an observed risk ratio RRobs
ED above 1, the E-

value turns out to be RRobs
ED þ RRobs

ED RRobs
ED � 1

� �� �1=2

; it

measures how strong an association the uncontrolled con-

founder must have with exposure and outcome to entirely

explain away RRobs
ED. The larger the E-value, the stronger the

required uncontrolled confounding, and (presumably) the

more trustworthy the result of the study.

DV’s two papers have quickly become influential; as of

28 September 2021, they have 314 and 1431 citations,

respectively, according to Google Scholar. In a systematic

literature review up to the end of 2018, Blum et al.3 found

87 papers presenting 516 E-values, and E-values have now

been recommended as a main basis for evaluating residual

confounding.4 However, the E-value has also been subject

to quite intense debate and criticism.5–13 The critics agree

that the E-value is merely a transform of the observed risk

ratio and thus can mislead because it uses ‘no background

or data information on confounders or prevalences, and no

expectations about unobserved confounders or correla-

tions with controlled confounders’.8

We will elaborate on two important ensuing criticisms.

Ioannidis et al.5 argued that a high E-value may not

provide much assurance because ‘if dozens of unknown

confounders exist, such a [large] composite effect [i.e. such

large values of the sensitivity parameters] might not be to-

tally implausible, even if each confounder’s strength of as-

sociation [with the exposure and the outcome] is modest’.

In contrast, Greenland8 argued that a low E-value may

give an unnecessarily pessimistic impression of the study,

since ‘confounding by unmeasured factors may be weak-

ened considerably due to their associations with strong

controlled confounders (e.g. age and sex)’, and MacLehose

et al.12 argued that ‘the calculation of E-values for un-

known and unsuspected confounders is an exercise in
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unwarranted paranoia, given the lack of history of plausi-

ble associations in epidemiology being completely refuted

by the belated discovery of previously unsuspected con-

founders ’.

At first glance, these ensuing criticisms may seem

somewhat contradictory insofar as Ioannidis et al.5 fear the

E-value can lead to underestimation of uncontrolled con-

founding bias, whereas the other two fear the E-value will

lead to overestimation of the same bias. We aim to reconcile

these two criticisms, and to show that there is no logical con-

flict between them. We will argue that the true values of

DV’s sensitivity parameters can be very large and thus exceed

what would often be considered a high E-value even if the ac-

tual confounding bias is small. From this we further argue

that the E-value can be uninformative in that it can lead to

false optimism when large and false pessimism when small.

In this way, we provide further evidence for the severe con-

cern expressed by MacLehose et al.12 that

The calculation of E-values for known but unmeasured

confounders is irresponsible, as it makes no use of the

information on those covariates that make them plausi-

ble to view as confounders. A desire for sensitivity anal-

yses without assumptions is a desire to do inference in

basic ignorance of background context.

To illustrate our points in a realistic setting, we provide

a simulation based on data from a recently published study

on non-steroidal anti-inflammatory drugs (NSAIDs) and

psychiatric disorders following a cancer diagnosis.14 In a

real study, neither the causal risk ratio nor DV’s sensitivity

parameters are known. However, in our simulation, we are

able to compute these quantities for various scenarios by

assuming that a full set of available confounders is suffi-

cient for confounding control, and dividing this set into

subsets of controlled and uncontrolled confounders of vari-

ous size. Thus, we are able to study how the bias of the ob-

served risk ratio, and the E-value and DV’s lower bound

for the causal risk ratio, vary with different combinations

of controlled/uncontrolled confounders.

Sensitivity parameters and lower bound

We first briefly recap the key components of the sensitivity

analysis by Ding and VanderWeele.1 Let E and D be a binary

exposure and outcome of interest, respectively, e.g. NSAID use

and psychiatric diagnosis before end of follow-up. Let C be a

set of measured confounders that are controlled in the analysis.

The ‘observed’ risk ratio, given C ¼ c, is defined as:

RRobs
EDjc ¼

pðD ¼ 1jE ¼ 1;C ¼ cÞ
pðD ¼ 1jE ¼ 0;C ¼ cÞ :

Writing DðeÞ for the potential outcome for a given pa-

tient if the exposure were set to level e, the ‘true’ (i.e.

causal) risk ratio, given C ¼ c, is defined as:

RRtrue
EDjc ¼

p D 1ð Þ ¼ 1jC ¼ c
� �

p D 0ð Þ ¼ 1jC ¼ c
� � :

Let U be a set of confounders that are not controlled;

typically, U would be unmeasured. If C and U together are

sufficient for confounding control (and the standard

assumptions of consistency and positivity hold), RRtrue
EDjc is

equal to the standardized risk ratio:

P
u pðD ¼ 1jE ¼ 1;C ¼ c;U ¼ uÞpðU ¼ ujC ¼ cÞP
u pðD ¼ 1jE ¼ 0;C ¼ c;U ¼ uÞpðU ¼ ujC ¼ cÞ :

DV defined the sensitivity parameters:

RREUjc ¼ max
u

pðU ¼ ujE ¼ 1;C ¼ cÞ
pðU ¼ ujE ¼ 0;C ¼ cÞ

� �

and

RRUDjc ¼ max
e

maxu pðD ¼ 1jE ¼ e;C ¼ c;U ¼ uÞ
minu pðD ¼ 1jE ¼ e;C ¼ c;U ¼ uÞ

� �
;

and the bounding factor:

BFUjc ¼
RREUjcRRUDjc

RREUjc þ RRUDjc � 1
:

They showed that RRtrue
EDjc is bounded below by:

RRtrue
EDjc �

RRobs
EDjc

BFUjc
;

and they defined the E-value as the common value of

RREUjc ¼ RRUDjc for which the lower bound is 1, which

simplifies as shown before.

Data

We give a brief explanation of the data here; see Hu

et al.14 for details. From the Swedish Cancer Registry,

338 009 patients were identified that were diagnosed with

cancer between 1 July 2006 and 31 December 2013.

Information was obtained on NSAID use within 1 year

before cancer diagnosis (the exposure), dichotomized as

‘no/yes’, and on diagnosis dates of psychiatric disorders

(depression, anxiety or stress) during follow-up (the

outcome). In the original analysis of these data, Hu et al.14
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restricted the follow-up to 1 year after cancer diagnosis,

with censoring at death or emigration. To increase the

number of observed outcome events, we extended the

follow-up in our reanalysis to a maximum of 5 years.

Fourteen baseline covariates were measured: age, calendar

year, cancer type (prostate, breast, gastrointestinal, lung,

skin excluding melanoma, melanoma, kidney þ bladder,

gynaecologic, haematological, other), indicator of inflam-

matory musculoskeletal disorders within 1 year before can-

cer diagnosis, indicator of pain and fever within 1 year

before cancer diagnosis, residency (east, south, north),

chronic disease score (ranging from 0 to 11) based on dis-

pensed medication within 1 year before cancer diagnosis,

sex, occupation (blue-collar, white-collar, not working,

unknown), indicator of cardiovascular disease at cancer di-

agnosis, marital status [unmarried, married, divorced, wid-

ow(er)], cancer stage (early, local spread, regional spread,

metastatic, leukaemia, lymphoma, myeloma, myelodys-

plastic syndrome, myeloproliferative neoplasm, unknown),

indicator of inflammatory system diseases within 1 year be-

fore cancer diagnosis, education level (9 years, college,

high school, unknown).

After various exclusions described by Hu et al.14 and re-

striction to patients with complete information on all vari-

ables listed above, the data set comprises 288 253 patients

of whom 11 357 (3.9%) had psychiatric diagnoses during

follow-up. In their original analysis, Hu et al.14 considered

both aspirin and non-aspirin NSAIDs as exposures. We re-

strict attention to the latter, but for simplicity we from

now on refer to non-aspirin NSAIDs as just NSAIDs.

Among all patients, 63 945 (22.2%) used NSAIDs within

1 year before cancer diagnosis. One may argue that some

of the measured covariates (e.g. cancer stage) could possi-

bly act as mediators for the effect of NSAIDs on psychiat-

ric diagnoses, rather than confounders. Distinguishing

between mediators and confounders is an important issue,

but beyond the scope of this paper. We thus ignore this is-

sue and assume that all baseline covariates are truly con-

founders. For computational reasons, we categorized age

as 24–49, 50–59, 60–69, 70–106 years; calendar year as

2006–2007, 2008–2009, 2010–2011, 2012–2013; and

chronic disease score as 0, 1–3, 3–11; and merged cancer

stage into stage I (early, myeloproliferative neoplasm, lym-

phoma), stage II (local spread, myelodysplastic syndrome,

myeloma, unknown) and stage III (regional spread, meta-

static, leukaemia), and cancer type into type I (melanoma,

prostate, skin excl. melanoma), type II (breast, gastrointes-

tinal, kidney þ bladder, gynaecologic, haematological,

other) and type III (lung). Thus, all 14 confounders were

coded as categorical variables, with at most four levels

each.

Methods

We started with a set of analyses aimed to describe the

associations between the variables in the study. We esti-

mated the pairwise association between the 14 measured

confounders, using the bias-corrected version of Cramer’s

V. This measure of association ranges from 0 (minimal as-

sociation) to 1 (maximal association). We estimated the as-

sociation between the measured confounders and NSAID

use by regressing the latter on all the former simulta-

neously, with multivariable logistic regression. We esti-

mated the association between the measured confounders

and NSAID use, and time to psychiatric diagnosis, by

regressing time to diagnosis on confounders and NSAID

use with multivariable Cox proportional-hazards

regression.

To illustrate the implications of uncontrolled confound-

ing for the E-value, we carried out a simulation based on

the real data. We give a non-technical explanation of the

simulation here, and provide technical details in the online

Supplementary material (available as Supplementary data

at IJE online). In the simulation, we defined the binary out-

come D as the occurrence of a psychiatric diagnosis before

end of follow-up. We provisionally assumed there were no

other confounders for the exposure–outcome association

than the 14 available confounders. Since our focus is on

bias, we ignored statistical uncertainty throughout the sim-

ulation. Readers uncomfortable with this approach may ei-

ther pretend that our sample is identical to the target

population or that each patient in the sample represents a

large number (e.g. thousands) of patients with identical

outcome, exposure and confounder values.

Well-designed observational studies do not select con-

founders randomly, but according to their perceived im-

portance for the exposure–outcome association. To reflect

common practice, we first used a change-in-estimate proce-

dure to order the 14 confounders. For this purpose, we

used the function ‘chestcox’ from the R package ‘chest’,

which adds confounders sequentially to a Cox propor-

tional-hazards model, in each step selecting the confounder

from the remaining set that maximizes the relative change

in the estimated exposure–outcome hazard ratio.15

We next carried out a step-wise analysis in which we

simulated control for an increasingly larger set of con-

founders. In each step k ¼ 0; . . . ;14; we controlled for the

k first confounders selected by the change-in-estimate pro-

cedure. Thus, in the notation of the ‘Sensitivity parameters

and lower bound’ section, the set C of controlled con-

founders increased from the empty set in Step 0 to the set

of all 14 available confounders in Step 14, whereas the set

U of uncontrolled confounders was taken in the opposite

direction. In each step of the analysis, we fitted a logistic
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regression model for the exposure as a function of the con-

trolled confounders, and a Cox proportional-hazards

model for the time to diagnosis as a function of the expo-

sure and the controlled confounders. Using the fitted Cox

model, we computed the observed risk ratio in each step k

of the analysis, i.e. for each set of controlled confounders.

In a real study, the true risk ratio and DV’s sensitivity

parameters are typically not estimable from the observed

data, because the uncontrolled confounders U are unmeas-

ured. However, in our simulation, U was a subset of the 14

available confounders, which allowed us to use the fitted

regression models to compute both the true risk ratio and

the sensitivity parameters, in each step k of the analysis.

These computations are relatively straightforward applica-

tions of the definitions given in the ‘Sensitivity parameters

and lower bound’ section. For instance, the parameter

RREUjc was obtained by using the fitted logistic regression

models to compute the ratio p U ¼ ujE ¼ð 1;C ¼ cÞ=pðU ¼
ujE ¼ 0;C ¼ cÞ for all possible combinations of the uncon-

trolled confounders (i.e. for all levels u), then setting

RREUjc equal to the largest ratio among all these combina-

tions. The parameter RRUDjc was obtained in a similar way

using the fitted Cox regression models. We refer the reader

to the online Supplementary material (available as

Supplementary data at IJE online) for a detailed explana-

tion of these computations. We used the true risk ratio and

the sensitivity parameters, together with the observed risk

ratio, to compute the relative bias of the observed risk ra-

tio, the E-value and the lower bound for the true risk ratio.

Since the outcome is rare, we approximated risk ratios

for the binary outcome D with cumulative hazard ratios

for the time to diagnosis (Rothman et al.,16 Ch. 4). Under

the Cox proportional-hazards model, the observed risk ra-

tio RRobs
EDjc, the true risk ratio RRtrue

EDjc and the sensitivity pa-

rameter RRUDjc thus became approximately constant

across levels c of the controlled confounders C. However,

the sensitivity parameter RREUjc was not constant across c

under the logistic regression model that we used. Since

DV’s lower bound for the true risk ratio holds within each

level c, we used the smallest value of RREUjc over all levels

c when computing the lower bound in each step k, thus

giving the best (i.e. largest) bound among all c-specific

bounds.

Results

Table 1 shows the estimated pairwise associations among

the 14 measured confounders. These range from 0 (e.g. cal-

endar year vs sex) to 0.40 (e.g. cancer type vs sex). Table 2

shows the estimated odds ratios between the measured

confounders and NSAID use, with corresponding P-values.

The odds ratios range from 0.66 (age 70–106 years) to

2.42 (musculoskeletal disorder), and most have P<0.001

showing that the data are far from what would be expected

from a randomized trial. Table 3 shows the estimated haz-

ard ratios associating time to psychiatric diagnosis with the

measured confounders plus NSAID use, with correspond-

ing P-values. The hazard ratios range from 0.35 (age

70–106 years) to 2.13 (cancer type III), and again most

have P< 0.001. These results indicate that the associations

span a fairly wide range. The estimated hazard ratio when

comparing NSAID-user to non-users controlling for all

measured confounders is 1.15 with 95% compatibility

(‘confidence’) interval17–19 (1.10, 1.20). Assuming no other

Table 1 Pairwise associations between the 14 measured confounders

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 0.01 0.1 0.1 0.06 0.03 0.26 0.13 0.39 0.18 0.23 0.07 0.03 0.17

2 0.01 1 0.01 0.02 0.01 0.01 0.02 0 0.01 0.02 0.01 0.07 0 0.03

3 0.1 0.01 1 0.03 0.02 0.02 0.04 0.4 0.04 0.04 0.07 0.32 0 0.04

4 0.1 0.02 0.03 1 0.02 0.01 0.1 0.02 0.08 0.05 0.05 0.04 0.06 0.03

5 0.06 0.01 0.02 0.02 1 0.02 0 0.04 0.04 0 0.02 0.02 0.02 0.03

6 0.03 0.01 0.02 0.01 0.02 1 0.03 0.01 0.04 0.01 0.04 0.01 0 0.07

7 0.26 0.02 0.04 0.1 0 0.03 1 0.05 0.22 0.32 0.11 0.03 0.07 0.13

8 0.13 0 0.4 0.02 0.04 0.01 0.05 1 0.03 0.08 0.22 0.27 0.03 0.03

9 0.39 0.01 0.04 0.08 0.04 0.04 0.22 0.03 1 0.15 0.16 0.04 0.03 0.24

10 0.18 0.02 0.04 0.05 0 0.01 0.32 0.08 0.15 1 0.08 0.03 0.03 0.08

11 0.23 0.01 0.07 0.05 0.02 0.04 0.11 0.22 0.16 0.08 1 0.03 0.02 0.1

12 0.07 0.07 0.32 0.04 0.02 0.01 0.03 0.27 0.04 0.03 0.03 1 0.01 0.04

13 0.03 0 0 0.06 0.02 0 0.07 0.03 0.03 0.03 0.02 0.01 1 0.01

14 0.17 0.03 0.04 0.03 0.03 0.07 0.13 0.03 0.24 0.08 0.1 0.04 0.01 1

Confounders are ordered: 1 age, 2 calendar year, 3 cancer type, 4 indicator of inflammatory musculoskeletal disorders, 5 indicator of pain and fever, 6 resi-

dency, 7 chronic disease score, 8 sex, 9 occupation, 10 indicator of cardiovascular disease, 11 marital status, 12 cancer stage, 13 indicator of inflammatory system

diseases, 14 education level.
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Table 2 Estimated odds ratios associating the measured con-

founders with non-steroidal anti-inflammatory drug use

obtained from multivariable logistic regression with corre-

sponding P-values

Confounder Estimated odds ratio P

Age (years)

24–49 1 –

50–59 1 0.943

60–69 0.9 <0.001

70–106 0.66 <0.001

Calendar year

2006–2007 1 –

2008–2009 0.93 <0.001

2010–2011 0.87 <0.001

2012–2013 0.78 <0.001

Cancer type

I 1 –

II 1.03 0.032

III 1.35 <0.001

Musculoskeletal disorder

No 1 –

Yes 2.42 <0.001

Pain or fever

No 1 –

Yes 1.45 <0.001

Residency

East 1 –

North 1.04 0.002

South 1.04 <0.001

Chronic disease score

0 1 –

1–3 1.05 <0.001

4–11 1.04 0.004

Sex

Male 1 –

Female 1.09 <0.001

Occupation

Blue-collar 1 –

Not working 0.85 <0.001

Unknown 0.88 0.116

White-collar 0.82 <0.001

Cardiovascular disease

No 1 –

Yes 0.89 <0.001

Marital status

Divorced 1 –

Married 0.96 <0.001

Unmarried 0.81 <0.001

Widow(er) 0.84 <0.001

Cancer stage

I 1 –

II 1.07 <0.001

III 1.08 <0.001

(Continued)

Table 2 Continued

Confounder Estimated odds ratio P

Inflammatory disease

No 1 –

Yes 1.25 <0.001

Education

9 years 1 –

High school 1.04 <0.001

College 1.01 0.493

Unknown 1.09 0.034

Confounders are listed in the order selected by the change-in-estimate

procedure.

Table 3 Estimated hazard ratios associating the measured

confounders with non-steroidal anti-inflammatory drug use

and time to psychiatric diagnosis obtained from multivariable

Cox proportional-hazards regression with corresponding

P-values

NSAID use and confounder Estimated hazard ratio P

NSAIDs

No 1 –

Yes 1.15 <0.001

Age (years)

24–49 1 –

50–59 0.7 <0.001

60–69 0.39 <0.001

70–106 0.35 <0.001

Calendar year

2006–2007 1 –

2008–2009 0.9 <0.001

2010–2011 0.73 <0.001

2012–2013 0.51 <0.001

Cancer type

I 1 –

II 1.51 <0.001

III 2.13 <0.001

Musculoskeletal disorder

No 1 –

Yes 1.04 0.093

Pain or fever

No 1 –

Yes 1.8 <0.001

Residency

East 1 –

North 0.67 <0.001

South 0.74 <0.001

Chronic disease score

0 1 –

1–3 1.17 <0.001

4–11 1.33 <0.001

(Continued)
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confounders than these 14, this hazard ratio is approxi-

mately equal to the true risk ratio for the binary event of a

psychiatric diagnosis before end of follow-up.

Our change-in-estimate procedure selected the 14 mea-

sured confounders in the order listed in the ‘Data’ section

and indicated by the caption of Table 1. Figure 1 shows

the results of the step-wise analysis; the observed risk ratio

(top-left panel), the relative bias of the observed risk ratio

(top-right panel), the E-value (middle-left panel), the sensi-

tivity parameters RREUjc (middle-right panel) and RRUDjc
(bottom-left panel) and the lower bound for the true risk

ratio (bottom-right panel) as functions of the number of

controlled confounders. With no confounder control, the

observed risk ratio is equal to 1.24, which gives a quite

modest bias of (1.24–1.15)/1.24¼ 7% and an E-value

equal to 1.79. However, even the minimal (over controlled

confounder levels c) sensitivity parameter RREUjc is very

large (¼9.93), and the sensitivity parameter RRUDjc is

enormous (¼ 261). As a consequence, the lower bound for

the true risk ratio is very small (¼ 0.13) and virtually unin-

formative. As the number of controlled confounders

increases the bias decreases to 0, the E-value decreases to

1.57, the sensitivity parameters decrease to 1 and the lower

bound increases to the true risk ratio. We observe that the

bias decreases quickly with the number of controlled con-

founders; e.g. already at five controlled confounders it is

<1%. The sensitivity parameters RREUjc and RRUDjc de-

crease fairly quickly as well. Notably though, they remain

fairly large and the lower bound consequently remains

fairly uninformative, until most of the 14 confounders are

controlled for. For instance, at 5 controlled confounders,

the lower bound is equal to 0.70 and it does not exceed 1

until 11 out of the 14 confounders are controlled.

Discussion and interpretation of the results

In our simulation, we observed that the sensitivity parame-

ters remained fairly large unless most of the confounders

were controlled for, which is what Ioannidis et al.5 were

concerned about. Yet we also observed that the bias of the

observed risk ratio was quite modest, even when no con-

founders were controlled for, and that the bias quickly be-

came very small when controlling for a few of the most

influential confounders, which is what Greenland8 and

MacLehose et al.12 were concerned about.

To understand why the sensitivity parameters may be

large even when the confounding bias is small, consider the

mathematical definition of the sensitivity parameter

RRUDjc given in the ‘Sensitivity parameters and lower

bound’ section. The risk ratio inside the curly brackets con-

trasts the most extreme ‘opposite’ confounder levels in the

whole space of the uncontrolled confounders, in the sense

that these levels maximize and minimize the risk of the out-

come. If there are several uncontrolled confounders, or if

some of the uncontrolled confounders have more than a

few levels, then there may very well exist an extreme (joint)

level of the confounders for which the risk of the outcome

is very high and another extreme (joint) level for which the

risk is very low, which then gives a large risk ratio RRUDjc.

This may well happen even if these extreme confounder

levels are very rare, in which case the actual confounding

bias may be quite modest, as in our example. The argu-

ment also applies using RREUjc and the result of combining

extreme but rare joint levels for both parameters can ex-

ceed large E-values when little confounding is present.

These results have important practical implications.

When using DV’s sensitivity analysis to construct a lower

bound for the true risk ratio, one might consider very large

values of the sensitivity parameters as plausible (except

perhaps in situations in which one is convinced that the

joint relation of the confounders to the exposure or the

outcome is small). Thus, in these situations one should not

be reassured by a relatively large E-value, since the true

Table 3 Continued

NSAID use and confounder Estimated hazard ratio P

Sex

Male 1 –

Female 1.31 <0.001

Occupation

Blue-collar 1 –

Not working 1.45 <0.001

Unknown 1.23 0.186

White-collar 0.97 0.425

Cardiovascular disease

No 1 –

Yes 1.18 <0.001

Marital status

Divorced 1 –

Married 0.7 <0.001

Unmarried 0.86 <0.001

Widow(er) 0.75 <0.001

Cancer stage

I 1 –

II 1.11 <0.001

III 1.47 <0.001

Inflammatory disease

No 1 –

Yes 1.12 0.065

Education

9 years 1 –

High school 0.98 0.343

College 1.05 0.056

Unknown 0.98 0.823

Confounders are listed in the order selected by the change-in-estimate pro-

cedure. NSAID, non-steroidal anti-inflammatory drug.
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values of the sensitivity parameters may well be even larger.

For instance, in most epidemiological studies there could be

genetic confounding and there is often a potentially huge

number of uncontrolled genotypes. Individually, most of

these may have a very small effect on the exposure or the

outcome; however, when considering the genome as a

whole, there may often exist very rare but extreme combina-

tions of alleles for which the risks of the exposure and out-

come are either very small or very large. As a consequence,

realistic guesstimates of the sensitivity parameters may be

large and so result in a lower bound that is virtually uninfor-

mative, whereas the true confounding will be small due to

the extreme allele combinations being rare.

This indicates that E-values may need to be interpreted

with far more caution than appears to be common prac-

tice. In a systematic literature review, Blum et al.3 found

87 papers presenting 516 E-values. They further observed

that

[t]he median E-value was 1.88, 1.82, and 2.02 for the

43, 348, and 125 E-values where confounding was

deemed likely by the authors of the papers to affect the

results, unlikely to affect the results, or not commented

upon, respectively.

The majority of the papers thus considered an E-value

of �1.82 as reassuringly large, which by chance is almost

identical to the E-value for our data (¼ 1.79) with no con-

trolled confounders. Nonetheless, with multiple uncon-

trolled confounders, the sensitivity parameters can be

much higher than 1.82, which is indeed the case for our

data. Yet the amount of uncontrolled bias cannot be

judged by considering only DV’s sensitivity parameters

RREU:c and RRUD:c; the joint distribution of all the con-

founders (controlled and uncontrolled) is crucial and even

a very large E-value may correspond to little bias.

However, the formal theory of E-values does not reveal

this problem, nor does it provide any guidance for judging

Figure 1 Simulation results. Observed risk ratio (top-left panel; the dashed line indicates the true risk ratio = 1.15), relative bias of the observed risk ra-

tio (top-right panel), E-value (middle-left panel), the sensitivity parameter RREU|c (middle-right panel) and RRUD|c (bottom-left panel), and the lower

bound for the true risk ratio (bottom-right panel) as functions of the number of controlled confounders. The parameters RRUD|c and RREU|c measure

the maximal strength of association that the uncontrolled (set of) confounder(s) U may have with the outcome D and with the exposure E, respec-

tively, conditional on measured confounder levels c.
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the plausible magnitude of bias given the amount of con-

trolled confounding and the expected number of uncon-

trolled confounders.

VanderWeele et al.20 have acknowledged limitations of

E-values including the problem of multiple uncontrolled

confounders. However, they appeared to reach a some-

what different conclusion than us. They gave a fictitious

example in which their sensitivity parameters may plausi-

bly equal 5 and wrote:

If it is thought plausible that a 5-fold increase in the

probability of the outcome could be generated by the

unmeasured confounders conditional on the measured

covariates, then it is perhaps time to leave that study

data alone and pursue other more adequate data

sources.

As argued above, we believe that the sensitivity parame-

ters could easily be equal to 5, or much larger, even though

the actual confounding bias is small. Thus we do not think

that plausible values this large should alone discourage the

researcher from pursuing further data analysis, including

detailed sensitivity analyses.

As a possible way to deal with large sensitivity parame-

ters, VanderWeele et al.20 proposed considering a hypo-

thetical coarsening of the uncontrolled confounders (e.g.

categorization of continuous variables) such that, if control

was made for this coarsened set, then confounding bias

would not be eliminated, but reduced to an acceptable

level of, say, 3%. We agree that such coarsening may likely

bring down the size of the sensitivity parameters by an or-

der of magnitude, and may thus be viewed as providing

some theoretical justification for the seemingly common

practice of being ‘reassured’ by fairly modest (e.g. �1.8)

E-values. However, we also fear that a hypothetical coars-

ening of unmeasured variables may be perceived as rather

abstract and that it may thus be very hard for a practitioner

to speculate about reasonable values for the sensitivity

parameters under such coarsening. Hence, we conjecture

that it may be quite unclear what quantitative conclusions

can be drawn from such coarsening in practice.

VanderWeele and Mathur11 also discussed the problem.

They wrote:

The E-value approach, and sensitivity analysis more

generally, will be most helpful when there is a single

known unmeasured confounder, or when adjustment

has been made for all known measured confounders

but, of course, with the possibility still of an unknown

unmeasured confounder.

Although agreeing with this statement in principle, we

believe that the scenarios alluded to in the statement may

be very uncommon. In most epidemiological studies there

are numerous potential confounders, such as lifestyle

factors, socio-economic factors and genetic factors. Even

with the ‘big data’ available today, we cannot realistically

hope to fully control all or even most of these factors, espe-

cially in light of measurement errors. This does not make

observational research futile. By using subject-matter

knowledge, one may be able to capture the most important

confounders, in which case the obtained estimates may

only have little bias, as in our simulation. Nonetheless,

DV’s sensitivity parameters may still be large, making the

E-value rather uninformative.

As argued above, the discrepancy between the DV’s

bias bounds and the actual bias arises because the parame-

ters in the bound are defined by comparing the most ex-

treme levels of the uncontrolled confounders, without

taking the (likely low) prevalence of these extreme con-

founder levels into account. Indeed, in contrast to many

other sensitivity analyses (Rothman et al.,16 Ch. 19),

E-value analysis does not require the analyst to make any

distributional assumptions about the uncontrolled con-

founders. Ding and VanderWeele1 viewed this assumption-

free feature as a strong advantage. But as noted by

MacLehose et al.,12 it is important to recognize that there

is no free lunch: a method that keeps assumptions to a bare

minimum may also tend to be too conservative and even

uninformative in light of what is likely. This problem may

easily go unnoticed for E-value analysis since the extreme

distribution used to compute it is invisible in its formula-

tion. Furthermore, what should be considered realistic will

vary greatly across contexts. We suspect that these prob-

lems will increase as one includes more bias components in

the bounding exercise (as in Smith et al.21).

To illustrate our points we have used real data. These

data may not be representative in all possible respects and

there may be more or less confounding in other settings.

Nonetheless, we think that our data are not atypical inso-

far as DV’s sensitivity parameters are extremely large. As

argued above, this feature will likely be present in many

other studies—even those in which the confounding bias is

modest, as in our example.

In summary, a naı̈ve optimistic analyst may easily un-

derestimate the values of the sensitivity parameters in the

E-value and thus get lulled into a false sense of security by

the computed E-value. Yet a naı̈ve pessimistic analyst may

easily overestimate the amount of confounding bias by

overlooking its extreme dependence on the confounder dis-

tribution when in fact confounding bias may be quite mi-

nor even if the parameters used in the E-value are large and

correct. We thus fear that the E-value will often be mis-

leading in one direction or the other and should not be con-

sidered a substitute for a contextually well-informed

sensitivity analysis.
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In closing, we wish to emphasize that we are not against

the use of E-values in situations that resemble those

depicted by VanderWeele and Mathur11: when the concern

is with a single known unmeasured potential confounder,

the E-value may serve as a simple and useful device to

check whether further analyses of its confounding potential

are essential, as in that case a large E-value may suffice to

move on to other tasks. We also note that E-value develop-

ers (e.g. VanderWeele and Mathur11 and VanderWeele22)

have, similarly to us, acknowledged the need for contex-

tual reasoning about the relationships among the con-

founders, exposure and outcome, and also the need for

more extensive sensitivity analysis when E-values cannot

supply reliable conclusions.
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