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Accurate identification of intrinsically disordered proteins/
regions (IDPs/IDRs) is critical for predicting protein structure
and function. Previous studies have shown that IDRs of
different lengths have different characteristics, and several clas-
sification-based predictors have been proposed for predicting
different types of IDRs. Compared with these classification-
based predictors, the previously proposed predictor IDP-CRF
exhibits state-of-the-art performance for predicting IDPs/
IDRs, which is a sequence labeling model based on conditional
random fields (CRFs). Motivated by these methods, we
propose a predictor called IDP-FSP, which is an ensemble of
three CRF-based predictors called IDP-FSP-L, IDP-FSP-S,
and IDP-FSP-G. These three predictors are specially designed
to predict long, short, and generic disordered regions, respec-
tively, and they are constructed based on different features.
To the best of our knowledge, IDP-FSP is the first predictor
that combines a sequence labeling algorithm with IDRs
of different lengths. Experimental results using two indepen-
dent test datasets show that IDP-FSP achieves better or at least
comparable predictive performance with 26 existing state-of-
the-art methods in this field, proving the effectiveness of
IDP-FSP.
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INTRODUCTION
Proteins/regions whose native states are intrinsically disordered
without a stable 3D structure are called intrinsically disordered pro-
teins/regions (IDPs/IDRs).1,2 IDPs/IDRs are abundant in all species,
especially in eukaryotes.3 IDPs/IDRs are associated withmany biolog-
ical functions,4–6 such as regulation of transcription and translation,
storage of small molecules, cellular signal transduction, and protein
phosphorylation. They execute functions mainly through a disor-
dered state or induced folding when binding to a partner molecule.2

IDPs/IDRs are associated with many diseases,7 such as cardiovascular
disease,8 cancer,5 and genetic diseases.9 Therefore, accurate identifica-
tion of IDPs/IDRs is important for drug design and a better under-
standing of biological processes.

With the help of artificial intelligence and machine learning
techniques,10 some computational predictors have been con-
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structed,1,11–13 including physiochemically based predictors,14,15 ma-
chine learning-based predictors,16,17 template-based predictors, and
meta-predictors.18 More information regarding these methods can
be found in a recent review paper.1

Among these predictors, some predictors are constructed to identify
IDRs of different lengths based on the assumption that IDRs with
different lengths have different characteristics. In general, the intrin-
sically disordered regions are divided into long disordered regions
(LDRs) and short disordered regions (SDRs). LDRs are defined as re-
gions with more than 30 residues, and SDRs are defined as regions
with 30 residues or less. These predictors can be divided into two cat-
egories: (1) predictors designed for LDRs or SDRs only, which do not
work well for predicting LDRs and SDRs, such as POODLE-L,19

POODLE-S,20 and Spritz,21 and (2) predictors designed for both
LDRs and SDRs. Compared with the first-category predictor, these
predictors can achieve better performance when predicting both
LDRs and SDRs, such as VSL1,22 VSL2,23 and SPINE-D.24 The supe-
rior performance of these predictors indicates that length-dependent
predictors can capture the different characteristics of IDRs with vary
lengths. Furthermore, the better performance of the second-category
predictors shows that these length-dependent predictors are comple-
mentary. According to the comparison results presented in a recent
review paper,1 the sequence labeling methods outperform the classi-
fication methods, and the latest proposed IDP-conditional random
field (CRF) predictor25 based on CRFs achieves state-of-the-art
performance.

Inspired by these methods, we propose a predictor called IDP-FSP
based on CRFs. IDP-FSP is a fusion of three CRF-based predic-
tors—IDP-FSP-L, IDP-FSP-S, and IDP-FSP-G—that are specifically
The Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The Influence of Different Ratios of

Positive and Negative Samples on the Performance

of the Proposed Three Predictors

(A–C) IDP-FSP-L (A), IDP-FSP-S (B), and IDP-FSP-G (C).

(D) The sum of the ACC and MCC of the proposed three

predictors in different ratios, used as the performance

measure for selecting the final optimal ratio.
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designed to predict long, short, and generic disordered regions,
respectively. To the best of our knowledge, IDP-FSP is the first predic-
tor that combines a sequence labeling algorithm with IDRs of
different lengths. Experimental results using two independent test da-
tasets show that IDP-FSP achieves better or at least comparable pre-
dictive performance with 26 highly related state-of-the-art predictors
in this field.

RESULTS AND DISCUSSION
The Influence of Different Ratios of Positive and Negative

Samples on Three Length-Dependent Predictors

In this study, a series of training datasets with different ratios of pos-
itive and negative samples is generated by randomly removing nega-
tive samples from the origin training datasets. Different ratios would
affect the performance of the computational predictors, and both ac-
curacy (ACC) and Matthew’s correlation coefficient (MCC) are two
important metrics in this field. The ACC, MCC, and the sum of
ACC and MCC changing curves of the proposed three specialized
predictors with different ratios are shown in Figure 1. We can see
that different ratios have significant effects on the performance of
the predictors IDP-FSP-S and IDP-FSP-G compared with IDP-
FSP-L because the positive and negative ratios of the training datasets
of IDP-FSP-S and IDP-FSP-G are extremely imbalanced. In partic-
ular, IDP-FSP-S and IDP-FSP-G achieve the best performance
when the training datasets are imbalanced, which helps CRFs to
capture the imbalanced information between positive and negative
samples. In Figure 1D, we can see that IDP-FSP-L, IDP-FSP-S, and
IDP-FSP-G achieve the best performance at 1:1, 1:5, and 1:2, respec-
tively. This shows that LDRs, SDRs, and generic disordered regions
have different characteristics.
Molecular Therap
The Influence of Different Window Sizes on

Three Length-Dependent Predictors

The window size represents the length of the
subsequence centered on the target residue,
which is a parameter in the process of feature
extraction. To explore its influence on the
performance of the proposed models, the
ACC, MCC, and the sum of ACC and MCC
changing curves with different window sizes
of our proposed three specialized predictors
are shown in Figure 2. We can see that
different window sizes have little influence on
the performance of these three specialized pre-
dictors. In Figure 2D, we can see that IDP-
FSP-L, IDP-FSP-S, and IDP-FSP-G achieve
the best performance with window sizes of 13, 11, and 13,
respectively.

Fusion of Length-Dependent Predictors Can Improve Predictive

Performance

IDP-FSP is an ensemble of three length-dependent predictors,
including IDP-FSP-L, IDP-FSP-S, and IDP-FSP-G. This fusion
approach has been successfully applied to solve many important tasks
in bioinformatics.26–28 These three specialized predictors are trained
on their respective types of training datasets, and their parameters are
adjusted separately by using their corresponding benchmark test da-
tasets. The performance of IDP-FSP-L, IDP-FSP-S, IDP-FSP-G, and
IDP-FSP on different types of test datasets is shown in Table 1 and
Figure 3, from which the following conclusions can be drawn. (1)
IDP-FSP-L and IDP-FSP-S have better predictive performance on
their corresponding datasets than on other datasets, which fully illus-
trates that LDRs and SDRs have different characteristics. (2) For a
certain type of dataset, the corresponding predictor obtains better
or comparable performance in terms of ACC. IDP-FSP-L, IDP-
FSP-S, and IDP-FSP-G are constructed based on different types of
datasets and use different positive and negative ratios of training data-
sets, which are 1:1, 1:5, and 1:2, respectively. The more negative sam-
ples are in the training dataset, the more negative sample information
is included, leading to higher predictive performance for negative
samples. Therefore, IDP-FSP-S and IDP-FSP-G outperform IDP-
FSP-L for predicting the negative samples. For test datasets STest

all

and STest
short , the proportion of negative samples is much higher than

that of STest
long , and, therefore, the MCC is more dependent on the

predictive performance of negative samples. As a result, the MCC
values obtained by IDP-FSP-S and IDP-FSP-G are higher than that
y: Nucleic Acids Vol. 17 September 2019 397
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Figure 2. The Influence of DifferentWindowSizes on

the Performance of the Proposed Three Predictors

(A–C) IDP-FSP-L (A), IDP-FSP-S (B), and IDP-FSP-G (C).

(D) The sum of the ACC and MCC of the proposed

three predictors in different window sizes, used as the

performance measure for selecting the final optimal win-

dow size.

Table 1. Performance Comparison of IDP-FSP-L, IDP-FSP-S, IDP-FSP-G,

and IDP-FSP on the LDR Test Dataset, SDR Test Dataset, and General Test

Dataset, Respectively

Test Datasetsa Predictors Sn Sp ACC MCC

STest
long

IDP-FSP-L 0.788 0.754 0.771 0.492

IDP-FSP-S 0.446 0.958 0.702 0.501

IDP-FSP-G 0.582 0.916 0.749 0.533

IDP-FSP 0.585 0.923 0.754 0.550

STest
short

IDP-FSP-L 0.662 0.753 0.708 0.228

IDP-FSP-S 0.552 0.961 0.757 0.487

IDP-FSP-G 0.597 0.935 0.766 0.437

IDP-FSP 0.599 0.940 0.770 0.451

STest
all

IDP-FSP-L 0.716 0.753 0.735 0.303

IDP-FSP-S 0.507 0.961 0.734 0.495

IDP-FSP-G 0.590 0.933 0.762 0.478

IDP-FSP 0.593 0.938 0.766 0.493

aThese datasets are described in Equation 1.
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of IDP-FSP-L. (3) IDP-FSP outperforms IDP-FSP-G on every dataset,
indicating that fusing these specialized predictors can effectively
improve predictive performance.

IDP-FSP achieves good performance mainly because the following
two reasons: (1) IDP-FSP is a fusion of three specializes predictors
constructed based on the LDR dataset, SDR dataset, and generic data-
set, respectively. Therefore, IDP-FSP can capture the characteristics
of different IDRs. (4) IDP-FSP is able to capture the complementarity
of the three specialized predictors.

Visualization of Predicted Proteins

In this section, the true structure and the predicted structure of three
proteins are visualized to show the advantages of our proposed
method. These proteins are PDB: 1MSVA, 3KC2B, and 1O0BA.29

For these proteins, the PyMOL (https://pymol.org/2/) software is
used to generate the 3D structure of their ordered regions, and the
3D structure of their disordered regions is drawn manually.

The schematic diagrams of PDB: 1MSVA, 3KC2B, and 1O0BA are
shown in Figures 4, 5, and 6, respectively. According to these figures,
we can observe the following. (1) IDP-FSP-L and IDP-FSP-S can
correctly identify some IDRs incorrectly predicted by IDP-FSP-G.
For example, for the IDR {22, 27} of protein PDB: 1MSVA in Figure 4
and the IDR {268, 288} of protein PDB: 3KC2B in Figure 5, IDP-
FSP-G fails to identify them. However, IDP-FSP is able to identify
them. (2) IDP-FSP-L and IDP-FSP-S can correct some erroneous
IDRs predicted by IDP-FSP-G. For example, for the ordered region
{134, 171} of protein PDB: 1O0BA in Figure 6, IDP-FSP-G predicts
it as an IDR. However, both IDP-FSP-L and IDP-FSP-S predict it
398 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
as an ordered region, correcting the predictive
results of IDP-FSP-G. (3) For some regions,
IDP-FSP is more accurate than IDP-FSP-G.
For example, for the IDR {443, 453} of protein
PDB: 1O0BA in Figure 6, IDP-FSP-G predicts
{438, 454} as an IDR, and IDP-FSP predicts
{443, 453} as an IDR. For the IDR {329, 354}
of protein PDB: 1MSVA in Figure 4, IDP-
FSP-G predicts {342, 345} as an IDR, and
IDP-FSP predicts {328, 354} as an IDR, which
corrects 13 false negatives predicted by IDP-
FSP-G. These observations indicate that IDP-
FSP-L and IDP-FSP-S can capture the charac-
teristics of LDRs and SDRs, respectively, and
can predict some IDRs that IDP-FSP-G fails
to predict. Besides, it is further proven that IDP-FSP can capture
the complementarity of these three length-dependent predictors.

Comparison with the Existing Methods

The proposed method is compared with 26 highly related methods
using two widely used independent test datasets (MxD494 and
SL329). As shown in Tables 2 and 3, IDP-FSP achieves a pre-
dictive performance comparable with two state-of-the-art predictors
and outperforms 24 other highly related predictors. In particular,

https://pymol.org/2/


Figure 3. Performance Comparison of IDP-FSP-L,

IDP-FSP-S, IDP-FSP-G, and IDP-FSP on Different

Types of Test Datasets

(A) ACC comparison of these four predictors on different

test datasets. (B) MCC comparison of these four pre-

dictors on different test datasets. In each subgraph, the

three axes represent datasets, predictors, and perfor-

mance metrics, respectively. The datasets STest
long , S

Test
short ,

and STest
all are described in Benchmark Datasets.
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IDP-FSP outperforms IDP-CRF in predicting MxD494 and SL329.
IDP-CRF is also a CRF-based model. Different from IDP-CRF,
IDP-FSP is a fusion of three CRF-based predictors that are
constructed based on different types of IDRs. This fully demon-
strates the effectiveness of constructing predictors for LDRs, SDRs,
and generic disordered regions. In addition to IDP-CRF, IDP-
FSP achieves performance comparable with MFDp18 on dataset
MxD494 and SPOT-disorder17 on dataset SL329 and outperforms
all other related methods using these two datasets.

Conclusions

In this study, an ensemble predictor, IDP-FSP, is proposed that fuses
three length-dependent predictors specially designed for the predic-
tion of long, short, and generic disordered regions. The experimental
results using different types of test datasets show that LDRs and SDRs
have different characteristics, and there is complementarity between
these three proposed specialized predictors. The experimental results
using two independent test datasets show that IDP-FSP achieves bet-
ter or at least comparable predictive performance with 26 currently
existing state-of-the-art methods. IDP-FSP achieves good perfor-
mance mainly for the following reasons. The proposed three length-
dependent predictors can capture the different characteristics of
different types of IDRs. Therefore, IDP-FSP fusing these specialized
predictors can capture the characteristics of different types of IDRs
and the complementarity among the three specialized predictors.
MATERIALS AND METHODS
Benchmark Datasets

The benchmark dataset used in this study was constructed by Zhang
et al.24 and contains 4,229 proteins, and the similarity between se-
quences is less than 25%. The benchmark dataset is divided into
3,000 proteins for training and 1,229 proteins for testing. In this
study, according to different types of IDRs, the training dataset and
test dataset are divided into two datasets. One is the LDR dataset,
in which each protein contains at least one LDR, and the other is
the SDR dataset, in which each protein contains only SDRs. There-
fore, the benchmark dataset can be formatted as

(
STrain

all =STrain
long WSTrain

short

STest
all =STest

longWSTest
short

; (Equation 1)

where STrain
long represents the LDR dataset in the training dataset

containing 342 proteins, which is used to train IDP-FSP-L;STrain
short rep-

resents the SDR dataset in the training dataset containing 2,658 pro-
teins, which is used to train IDP-FSP-S; andSTrain

all is the union of
Figure 4. A Schematic Diagram of Protein PDB:

1MSVA with IDRs Predicted by IDP-FSP-L, IDP-

FSP-S, IDP-FSP-G, and IDP-FSP

Yellow residues represent ordered residues, and red

residues represent disordered residues. (A) IDRs pre-

dicted by IDP-FSP-L: {1, 31} and {286, 354}, (B) IDRs

predicted by IDP-FSP-S: {1, 6}, {21, 30}, and {328, 354}.

(C) IDRs predicted by IDP-FSP-G: {1, 7} and {342, 354}.

(D) IDRs predicted by IDP-FSP: {1, 7}, {21, 30}, and {328,

354}. (E) True IDRs: {1, 3}, {22, 27}, and {329, 354}. The

curly braces represent the position intervals of IDRs in the

protein sequence.
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Figure 5. A Schematic Diagram of Protein PDB:

3KC2B with IDRs Predicted by IDP-FSP-L, IDP-

FSP-S, IDP-FSP-G, and IDP-FSP

Yellow residues represent ordered residues, and red

residues represent disordered residues. (A) IDRs pre-

dicted by IDP-FSP-L: {1, 12} and {268, 288}. (B) IDRs

predicted by IDP-FSP-S: {1, 12}, {268, 291}, and {348,

352}. (C) IDRs predicted by IDP-FSP-G: {1, 13} and {347,

352}. (D) IDRs predicted by IDP-FSP: {1, 13}, {268, 291},

and {348, 352}. (E) True IDRs: {1, 12} and {268, 288}. The

curly braces represent the position intervals of IDRs in the

protein sequence.
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STrain
long and STrain

short , which is used to train IDP-FSP-G. Similarly, STest
long

represents the LDR dataset in the test dataset containing 144 proteins,
which is used to test IDP-FSP-L, andSTest

short represents the SDR dataset
400 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
in the test dataset containing 1,085 proteins,
which is used to test IDP-FSP-S. STest

all is the
union of STest

long and STest
short , which is used to test

IDP-FSP-G. These different types of datasets
are given in Data S1.

MxD49418,30 and SL32917,31 are two widely
used independent test datasets adopted for
this study to test different methods. To test our method fairly, se-
quences with a similarity of more than 25% between the benchmark
dataset and the two test datasets were removed from the benchmark
Figure 6. A Schematic Diagram of Protein PDB:

1O0BA with IDRs Predicted by IDP-FSP-L, IDP-

FSP-S, IDP-FSP-G, and IDP-FSP

Yellow residues represent ordered residues, and red

residues represent disordered residues. (A) IDR predicted

by IDP-FSP-L: {1, 24}. (B) IDRs predicted by IDP-FSP-S:

{1, 9}, {443, 453}, and {550, 554}. (C) IDRs predicted by

IDP-FSP-G: {1, 26}, {134, 171}, {438, 454}, and {548,

554}. (D) IDRs predicted by IDP-FSP: {1, 24}, {443, 453},

and {550, 554}. (E) True IDRs: {1, 7}, {443, 453}, and

{548, 554}. The curly braces represent the position in-

tervals of IDRs in the protein sequence.



Table 2. Comparison of Different Predictors on Independent Test Dataset

MxD494

Predictora Sn Sp ACC MCC

Rank

ACC MCC

IDP-FSPb 0.670 0.831 0.751 0.465 2 1

IDP-CRF25 0.680 0.821 0.750 0.460 3 2

MFDp18 0.746 0.768 0.757 0.451 1 3

MD53 0.673 0.813 0.743 0.444 4 4

PONDR-FIT54 0.631 0.821 0.726 0.419 7 5

DISOPRED255 0.647 0.800 0.724 0.406 8 6

IUPred-long50 0.581 0.841 0.711 0.405 9 7

PONDR VSL2B23 0.774 0.698 0.736 0.401 5 8

OnD-CRF16,c 0.752 0.711 0.732 0.396 6 9

IUPred-short50 0.522 0.866 0.694 0.389 11 10

RONN56 0.664 0.754 0.709 0.368 10 11

NORSnet57 0.532 0.829 0.681 0.347 12 12

DisEMBL-R58 0.316 0.936 0.626 0.323 16 13

DISpro59,60 0.303 0.940 0.622 0.318 17 14

Ucon61 0.554 0.787 0.671 0.313 13 15

Spritz21 0.494 0.812 0.653 0.293 15 16

FoldIndex14 0.602 0.717 0.660 0.278 14 17

DisEMBL-H58 0.435 0.792 0.614 0.216 18 18

PROFbval62 0.835 0.387 0.611 0.196 19 19

GlobPlot15 0.353 0.826 0.590 0.182 20 20

DisEMBL-C58 0.760 0.414 0.587 0.150 21 21

aIn addition to OnD-CRF, the results of 19 other compared predictors were obtained
from Liu et al.25 and Peng and Kurgan.30
bIDP-FSP-L with the parameters ratio = 1:1 and window size = 13, IDP-FSP-S with the
parameters ratio = 1:5 andwindow size = 11, and IDP-FSP-Gwith the parameters ratio =
1:2 and window size = 9.
cThe results of OnD-CRF were obtained from the web server.

Table 3. Comparison of Different Predictors on Independent Test Dataset

SL329

Predictora Sn Sp ACC MCC

Rank

ACC MCC

IDP-FSPb 0.75 0.89 0.821 0.65 1 2

IDP-CRF25 0.75 0.88 0.817 0.64 2 3

SPOT-disorder17 0.67 0.96 0.815 0.67 3 1

SPINE-D24 0.78 0.85 0.815 0.63 3 4

DISOPRED363 – – 0.795 0.61 5 5

DISOPRED255 0.69 0.90 0.795 0.59 5 6

OnD-CRF16,c 0.79 0.80 0.793 0.58 7 7

MD53 0.66 0.89 0.775 0.58 8 7

PONDR-FIT54 0.61 0.91 0.760 0.55 9 9

IUPred-long50 0.60 0.92 0.760 0.55 9 9

MFDp18 0.88 0.62 0.750 0.51 12 11

DISOClust64 0.81 0.70 0.755 0.51 11 11

NORSnet57 0.54 0.92 0.730 0.51 13 11

IUPred-short50 0.50 0.94 0.720 0.50 14 14

Ucon61 0.59 0.81 0.700 0.42 15 15

DisEMBL58 – – 0.660 0.40 17 16

Dispro59,60 0.28 0.99 0.635 0.40 19 16

PONDR VL-XT49 0.59 0.78 0.685 0.38 16 18

Espritz65 – – 0.605 0.35 20 19

PROFbval62 – – 0.648 0.30 18 20

aIn addition to OnD-CRF, the results of 18 other compared predictors were obtained
from Hanson et al.,17 Zhang et al.,24 and Liu et al.25
bIDP-FSP-L with the parameters ratio = 1:1 and window size = 13, IDP-FSP-S with the
parameters ratio = 1:5 andwindow size = 11, and IDP-FSP-Gwith the parameters ratio =
1:2 and window size = 13.
cThe results of OnD-CRF were obtained from the web server.
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dataset32 by using the Blastclust algorithm33, and the filtered bench-
mark dataset was used to retrain IDP-FSP.

Features

Feature extraction plays an important role in machine learning-based
predictors.34–36 The previously proposed predictor IDP-CRF25 has
proven that CRFs combined with PSSMs, kmer, secondary structure
(SS), and relative solvent accessibility (RSA) are effective for predict-
ing IDPs/IDRs. Therefore, these four state features were adopted for
this study. The features of IDP-FSP-L, IDP-FSP-S and IDP-FSP-G we
used are described in The Framework of IDP-FSP.

Transition Feature

Suppose B= fO; Dg is the label set of residues, where O and D
represent ordered and disordered residues, respectively. The transi-
tion feature for each label pair ðl; l’eBÞ is defined as37

tl;l’
�
yi�1; yi; x; i

�
=

�
1 if yi�1 = l and yi = l’

0 otherwise
; (Equation 2)
where yi�1 and yi are defined as labels for position i-1 and position i
residues, respectively.

State Features

The PSSMs are generated by running PSI-BLAST33 searching against
the nrdb90 database.38 For PSI-BLAST, the parameters E-value and
iteration time are set to 0.001 and 3, respectively, and other parame-
ters are set to default. The final features are obtained by using the
formula39

normðxÞ=
8<
:

0:0 if x%� 5
0:5+ 0:1x if � 5< x < 5

1:0 if xR5
; (Equation 3)

where x is the value of PSSMs. kmer defines the occurrence fre-
quencies of k neighboring residues. The PSSM and kmer (k set
to 1) features of target residue are constructed based on the subse-
quence centered on the target residue.

The SS features are obtained by using the profile-based PSIPRED
v.4.01 package.40 If the profile of a protein is not generated by
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 401
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Figure 7. Flowchart of IDP-FSP

The training process and test process are indicated by

orange arrows and yellow arrows, respectively.
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searching against the nrdb90 database,38 then sequence-based
PSIPRED is used instead of profile-based PSIPRED. The RSA infor-
mation is generated by using the Sable v.2 package.41,42 For the Sable
package, two parameters, SA_ACTION and SA_OUT, are set to SVR
and RELATIVE, respectively, and other parameters are set to default.
For each target residue, both SS and RSA are one-dimensional
features.

CRFs and Implementation

Being widely used in the field of bioinformatics,43–46 CRFs are a prob-
abilistic model proposed by Lafferty et al.37 for labeling sequence data.
In this study, protein sequences and their corresponding label se-
quences are used to train the CRFmodel, which is a conditional prob-
ability model to annotate unlabeled protein sequences. In particular,
CRFs have been adopted and proven to be effective for predicting
IDPs/IDRs.25

FlexCRFs47 are a widely used tool of CRFs. In this study, the modified
FlexCRFs as described in a previous paper48 are adopted, which can
handle real value features. For FlexCRFs, the first-order Markov
CRFs are used, and two parameters, num_iterations and init_
lambda_val, are set to 50 and 0.05, respectively.

The Framework of IDP-FSP

Previous studies have shown that LDRs and SDRs have different
characteristics,21,23,49,50 so constructing specialized predictors for
LDRs and SDRs can effectively improve the predictive performance
of IDPs/IDRs. Therefore, we construct three specialized predic-
tors—IDP-FSP-L, IDP-FSP-S, and IDP-FSP-G—for predicting
long, short, and generic disordered regions, respectively. These
three specialized predictors are built based on CRFs, and the pa-
rameters of CRFs are described in CRFs and Implementation.
The features and parameters adopted in these three predictors
are optimized separately by using their corresponding test datasets.
IDP-FSP-L is constructed based on PSSMs and kmer. IDP-FSP-S
402 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
and IDP-FSP-G are constructed based on all
of the features described in Features. Further-
more, the window sizes and ratios of the three
predictors were optimized separately and are
discussed in The Influence of Different Ratios
of Positive and Negative Samples on Three
Length-Dependent Predictors and The Influ-
ence of Different Window Sizes on Three
Length-Dependent Predictors, respectively.
However, for unlabeled proteins, it is un-
known whether they contain LDRs or SDRs
or both types of IDRs. A predictor designed
for one type of IDRs cannot achieve good per-
formance for other types. To solve this problem, these three
specialized predictors are combined into IDP-FSP via voting. To
illustrate this more intuitively, a flowchart of IDP-FSP is shown
in Figure 7.

Criteria for Performance Evaluation

Two commonly used metrics, sensitivity (Sn) and specificity (Sp), are
used in this study. Because of the imbalance of positive samples
(disordered residues) and negative samples (ordered residues) in
the IDP/IDR datasets, balanced ACC and MCC are also adopted.
They are defined as51,528>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Sn=
TP

TP + FN

Sp=
TN

TN + FP

ACC =
1
2

�
TP

TP + FN
+

TN
TN + FP

�

MCC =
ðTP � TNÞ � ðFP � FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞp

;

(Equation 4)

where TP, TN, FP, and FN represent the number of true positive, true
negative, false positive, and false negative samples, respectively.
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