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Abstract

Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611) acts by down-regulating
transferrin receptor-1 (TfR1) via receptor degradation. In this investigation, we show that another small molecule, ferristatin
II (NSC8679), acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural
domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II
induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without
ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding
receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug’s activity. Rats treated with
ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal 59Fe uptake, lower serum iron and
transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of
TfR1 by ferristatin II appears to be due to induced hepcidin gene expression.
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Introduction

Iron is involved in various processes of cellular homeostasis

including DNA synthesis and repair, ATP synthesis, and oxygen

transport [1]. It is essential for life and depletion of iron restricts

growth of cells [2,3,4]. Iron is absorbed from the diet by duodenal

enterocytes and is transported to the periphery bound to

transferrin (Tf). At neutral pH, holo-Tf binds to receptors on the

cell surface [5]. This complex undergoes clathrin-dependent

endocytosis and is delivered to early endosomes [6]. Within the

low pH environment of the endosome, iron is released from Tf.

Iron is reduced from ferric iron (Fe3+) to ferrous iron (Fe2+) by the

ferrireductase Steap3 [7,8]. Ferrous iron is then transported into

the cytosol via divalent metal transporter-1 (DMT-1) [9], ZIP14

[10] and/or TRPML [11]. The ligand-receptor complex, devoid

of iron, is recycled back to the plasma membrane where apo-Tf

dissociates and continues the cycle of iron acquisition and delivery

to peripheral tissues [12,13].

There are two known Tf receptors, TfR1 and TfR2. At the

cellular level, TfR1 is ubiquitously expressed and is largely

responsible for Tf-mediated delivery of iron to peripheral tissues

[14]. TfR1 is a constitutively recycling receptor that undergoes

clathrin-mediated endocytosis with or without its ligand [12,15]. It

is widely held that the presence of TfR1 identifies the endocytic,

sorting and recycling compartments of most cells. Often marked

by fluorescently labeled Tf or receptor immunoreactivity, TfR1 is

frequently used as a reference marker for these domains [16,17].

The interactions of TfR1 with the clathrin machinery also provide

a paradigm for how membrane proteins engage with coated pits

and become internalized by coated vesicles [18]. In particular,

receptor interactions with the clathrin adaptor protein AP-2 have

been studied at the molecular and structural level [19,20,21]. At

the plasma membrane, interactions with the AP-2 adaptor

complex mediate assembly of clathrin triskelions that form a

budding coated pit that is pinched off by dynamin to generate a

coated vesicle [22,23].

At the systemic level, regulation of iron homeostasis has been

elucidated through studies of hereditary hemochromatosis [24].

Mutations in HFE [25], transferrin receptor-2 [26], ferroportin

[27], hepcidin [28], or hemojuvelin [29] have been identified in

different forms of human disease. Iron metabolism is regulated

through a complex network of protein-protein interactions

between these factors. Although TfR1 is ubiquitously expressed

and plays a key role in iron delivery through receptor-mediated

endocytosis of diferric transferrin, HFE and TfR2 play a more

specialized role in the liver where they have been shown to act as

upstream regulators of hepcidin synthesis [30]. A model has been

proposed wherein HFE interactions with TfR1 limit its association

with TfR2 [31]. When iron levels increase, saturation of Tf

promotes receptor binding, which in turn competitively displaces

HFE from TfR1 to allow its interaction with TfR2 [32]. Over-
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expression of HFE in the livers of mice increases hepcidin

expression, supporting the notion that levels of endogenous protein

are limiting [30,33].

Hepcidin, a 25 amino acid peptide hormone, is secreted

primarily by the liver and regulates systemic iron status [34]. The

peptide binds to the iron exporter ferroportin (Slc40a1), inducing

its internalization and lysosomal degradation [35]. This mecha-

nism controls intestinal iron efflux and recycling of iron from

macrophages [36,37]. Concordantly, hepcidin synthesis increases

with iron loading and decreases with iron deficiency [38,39].

Hepcidin levels are inappropriately low in hemochromatosis

patients with mutations in HFE [40] and TfR2 [41].

Genetic approaches to understanding iron homeostasis have

been complemented by the recent development of pharmacolog-

ical tools to either inhibit or activate transport and regulatory

factors involved in iron metabolism [42]. One approach to further

our understanding of the regulation of iron transport and

homeostasis at the molecular level is through the use of small

molecule inhibitors. Using a cell-based fluorescence screening

strategy, ferristatin (NSC306711) was initially identified as an

inhibitor of Tf-mediated iron delivery [43]. Characterization of

ferristatin’s action revealed that it promoted the degradation of

TfR1 in a nystatin-sensitive fashion. Internalization and receptor

down-regulation of TfR1 in the presence of ferristatin occurred in

a clathrin- and dynamin-independent manner [44]. These results

were unexpected given the established role of clathrin-mediated

endocytosis in TfR1 membrane trafficking, but were specific to

this receptor since ferristatin did not alter LDL receptor trafficking

[44]. More recently, NSC8679 (referred to here as ferristatin II)

was identified as a polysulphonated dye not only structurally

related to ferristatin but with functional similarities as well [45].

This investigation was undertaken to characterize ferristatin II

action and the nature of the nystatin-sensitive clathrin-indepen-

dent mechanism for TfR1 down-regulation. The alternative lipid

raft mediated trafficking and degradation pathway revealed by the

ferristatins may hold clinical potential to limit iron acquisition.

This idea is supported by results of in vivo experiments that reveal a

systemic effect on iron metabolism upon treatment with ferristatin

II.

Materials and Methods

Ethics Statement
This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Harvard Medical Area Animal Care

and Use Committee (Animal Experimentation Protocol AEP

#04692).

Cell Culture
HeLa cells were grown in Dulbecco’s minimal essential medium

(DMEM) containing 50 U/mL penicillin, 50 mg/mL streptomy-

cin, L-glutamine, and 10% fetal bovine serum (FBS, Sigma).

TRVb cells [46] (a kind gift of Dr. Timothy E. McGraw, Weill

Medical College, Cornell University) were grown in Ham’s F-12

medium containing 10% FBS. Stably transfected TRVb cells

containing either WT TfR1, Y20C/F23A TfR1 or D3–28 TfR1

were grown in Ham’s F-12 containing 5 g/L glucose, 400 mg/mL

G418 and 5% FBS. Hep3B cells stably expressing human TfR2

[47] were maintained in minimal essential medium (MEM)

containing 1 mM sodium pyruvate, 0.1 mM non-essential amino

acids, 10% FBS and 400 mg/mL G418.

Ferristatin II Treatment: In vitro
Ferristatin II (NSC8679) was obtained from Sigma (Product No.

C1144, also called Chlorazol Black or Direct Black 38). For

treatment with ferristatin II, cells were first washed three times

with phosphate-buffered saline containing 1 mM MgCl2 and

0.1 mM CaCl2 (PBS++) and then washed once with serum-free

medium. Fifty mM ferristatin II or DMSO control was added to

cells in serum free medium. To inhibit lysosomal degradation of

TfR1, cells were treated overnight with 10 nM Bafilomycin A1

(Sigma, B1793). To disrupt lipid rafts, cells were pretreated for 20

minutes with 25 mg/mL nystatin (Sigma) before addition of

ferristatin II. Cells were incubated at 37uC with 5% CO2 for 4

hours unless otherwise stated.

Ferristatin II Treatment: In vivo
Male Sprague-Dawley rats (3-wk-old) were injected twice daily

for 1 or 3 days with ferristatin II (up to maximum of 40 mg/kg) or

saline as a vehicle control. On day 2 or day 4, rats were injected

once and fasted for 6 hours. At the start of the fasting period, rats

were housed in metabolic cages for 6 h to collect urine. For 59Fe

tracer studies, on day 4 rats were fasted for 4 h prior to

administration of 59Fe by gavage (1 ml/g body weight of a solution

of 30 mCi/ml, diluted in 20 mM Tris, 150 mM NaCl, pH 5.7

with 10 mM freshly dissolved ascorbate). Blood samples were

taken at intervals from 15 min to 1 h and radioactivity was

determined by gamma counting. At the end of the study, rats were

euthanized by isoflurane overdose followed by exsanguination for

collection of tissues to analyze iron status.

Western Blot Analysis
After incubation with ferristatin II as described above, cells were

washed three times with ice cold PBS++ and lysed in NET lysis

buffer (150 mM NaCl, 5 mM EDTA, 10 mM Tris pH 7.4 and

1% Triton X-100) containing protease inhibitors (Protease

Inhibitor Set lll, Calbiochem) for 20 minutes on ice. Lysates were

cleared at 16,0006g for 10 minutes at 4uC and 20–60 mg of the

supernatant were loaded on 8% SDS-polyacrylamide gels. Livers

from rats treated with ferristatin ll or vehicle control were

homogenized in RIPA buffer (10 mM Tris, pH 7.4, 150 mM

NaCl, 1.0 mM EDTA, 0.1% SDS, 1.0% Triton X-100, 1.0%

sodium deoxycholate) containing protease inhibitors (Halt,

Thermo Scientific) and 100 mg samples were electrophoresed on

10% SDS-polyacrylamide gels. After electrophoresis, samples were

transferred to nitrocellulose or PVDF membrane, blocked with 5%

non-fat milk and immunoblotted using monoclonal mouse anti-

TfR1 antibody H68.4 (1:500 or 1:1000, Invitrogen), sheep anti-

TfR1 antibody (1:5000, [48]) monoclonal mouse anti-TfR2

antibody 9F81C11 (1:1000, Santa Cruz Biotechnology) or mouse

anti-Flag (1:1000, Sigma). As a loading control, blots were probed

with mouse anti-actin C4 clone (1:10,000, MP Biomedicals) or

mouse anti-tubulin (1:10,000, Sigma). Secondary antibody,

IRDye800 or IRDye680 conjugated donkey anti-mouse, donkey

anti-rabbit or donkey anti-sheep (1:10,000, LI-COR) was used to

detect immunoreactivity using an Odyssey Infrared Imaging

System (LI-COR). Relative intensities of protein bands were

normalized to actin using Odyssey version 2.1 software.

G647A TfR1 Mutagenesis and Transfection Experiments
The pcDNA3/G647A TfR1 plasmid was generated using

QuikChange XL site-directed mutagenesis (Strategene, La Jolla,

CA) using a template of pcDNA3/TfR1 and primers of 5’- CTG

TAT TCT GCT CGT GCA GAC TTC TTC CGT GC -3’ and

5’- GCA CGG AAG AAG TCT GCA CGA GCA GAA TAC AG

Ferristatin II Promotes Degradation of TfR1
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-3’ following manufacturer’s instructions. TRVb cells were

transiently transfected to express either wild type TfR1 (2 mg

plasmid DNA) or the G647A TfR1 point mutant (2 mg plasmid

DNA) using LipofectAMINE2000 (Invitrogen) according to

manufacturer’s instructions. Cells were split 24 hours post-

transfection into 6-well plates and treated with ferristatin II the

following day. HeLa cells were transfected with HFE containing a

Flag tag (0.5 mg plasmid DNA) or pcDNA vector control (0.5 mg

plasmid DNA) as described above.

125I-Transferrin Surface Binding
TRVb cells were grown to 90% confluency in Ham’s F-12

medium containing 10% FBS. Cells were transfected as described

above with WT TfR1 or G647A TfR1. After 24 hours, cells were

plated into 6 well dishes and incubated for an additional 24 hours.

Cells were chilled on ice for 15 min and washed twice in ice-cold

serum-free Ham’s F-12 medium. Cell monolayers were incubated

on ice in serum-free Ham’s F-12 medium containing 20 mM

Hepes, pH 7.4, 2 mg/ml ovalbumin, and 500 nM 125I-Tf with or

without 5 mM unlabeled Tf to displace non-specifically bound

ligand. After incubation on ice for 2 hours, cells were washed 4

times with PBS++ and lysed with solubilization buffer (0.1% Triton

X-100, 0.1% NaOH). Cell-associated radioactivity was measured

by gamma counting. Data were adjusted to protein levels

determined by Bradford assay.

Fluorescence Microscopy
TRVb cells transfected with WT TfR1 or G647A TfR1 were

plated onto poly-L-Lysine coated cover slips 24 hours post

transfection and incubated for an additional 24 hours at 37uC,

5% CO2. Cells were washed with PBS++ and fixed with 4%

paraformaldehyde. Cells were incubated with PBS (non-permea-

bilized) or PBS +0.1% Triton X-100 (permeabilized), washed with

1% NH4Cl and blocked with 5% goat serum. The cells were then

immunoreacted with mouse anti-human transferrin receptor,

OKT9 (eBioscience), followed by goat anti-mouse Alexa 488

(Invitrogen). Cells were imaged using a Zeiss Observer Z1

Axioscope microscope.

RNA Isolation, cDNA Synthesis and Quantitative PCR
Total RNA was isolated using TRIZOL reagent (Invitrogen)

according to the manufacturer’s instructions. An additional step

with Phenol/Chloroform/8-Quinolinol was used to further purify

the RNA. Five mg RNA were reverse transcribed using Super-

Script lll First-Strand Synthesis System (Invitrogen) using random

hexamers and oligo(dt)20 primers. Gene expression was analyzed

by quantitative real-time PCR using Power SYBR Green PCR

Master Mix (Applied Biosystems) on an Applied Biosystems 7300

Real Time PCR System. The cDNA was diluted 1:40 and 6 ml was

used as template in a 15 ml reaction volume. The conditions used

were: 40 cycles 95uC for 15 s, 55uC for 30 s, and 72uC for 30 s.

Analysis was performed in triplicate for each sample. A

dissociation curve analysis was performed to detect non-specific

products. 36B4 was used as a reference gene. All primers were

used at a final concentration of 200 nM. The primers used were:

hepcidin 5’-TGACAGTGCGCTGCTGATG-3’ (forward), 5’-

GGAATTCTTACAGCATTTACAGCAGA-3’ (reverse); 36B4

5’-AGATGCAGCAGATCCGCAT-3’ (forward) and 5’-

GTTCTTGCCCATCAGCACC-3’ (reverse). Calculations for

relative quantification were done using the comparative CT

method (DDCT).

Urinary Monoacetylbenzidine Determination
Rat urine was centrifuged, reduced with ascorbic acid at 1 mg/

ml, acidified to pH #3.0 using concentrated HCl and bound to a

Strata-X-C SPE column (Phenomenex). After washing, the sample

was eluted with 5% ammonium hydroxide in methanol, concen-

trated in a speedvac and analyzed using HPLC with a Zorbax

Eclipse Plus Phenyl-Hexyl column (Agilent Technologies). The

mobile phase was a step gradient starting with 95% 10 mM

ammonium acetate, pH 4.7 and 5% acetonitrile; reaching 35%

ammonium acetate, 65% acetonitrile after 15.5 mins. A flow rate

of 1 ml/min and a detection wavelength of 290 nm were used.

Fractions corresponding to the monoacetylbenzidine (MAB)

elution time were collected from a standard, control and ferristatin

ll treated urine samples and further analyzed by LCMS (The

Small Molecule Mass Spectrometry Facility at the FAS Center for

Systems Biology, Harvard University), confirming the peak

corresponded to the molecular mass of MAB.

Other Assays
Urinary creatinine was determined using the Creatinine

Reagent Set (Pointe Scientific Inc.) using a modification of the

manufacturer’s instructions. The working reagent (100 ml) was

added to urine samples or a serial dilution of a creatinine standard

(5 ml). After incubation at room temperature for 20 mins, the OD

was read at 510 nm. These values were used to normalize urinary

MAB levels. Serum alanine aminotransferase (ALT) and aspartate

aminotransferase (AST) levels were determined using Infinity ALT

and AST reagents (Thermo Scientific) according to the manufac-

turer’s instructions. Assays for hematocrit and liver non-heme iron

concentrations were performed as previously described [49].

Serum iron levels were determined as described [50].

Results

Ferristatin II Induces Degradation of TfR1
Previous screening of the National Cancer Institute’s small

molecule Diversity Set library identified ferristatin (NSC30611) as

an inhibitor of Tf-mediated iron uptake [43]. Ferristatin’s

mechanism of action includes down-regulation of TfR1 by a lipid

raft pathway that promotes receptor degradation [44]. Subsequent

analysis of structural orthologs determined similar properties were

associated with a second iron transport inhibitor NSC8679,

disodium 4-amino-3-((49-((2,4-diaminophenyl)azo)-4-biphenyly-

l)azo-5-hydroxy-6-(phenylazo)-2,7-naphthalene disulfonate [45].

In this report, we refer to the second compound as ferristatin II.

The influence of ferristatin II on Tf-mediated iron uptake was

characterized in vitro using HeLa cells. Dose-dependent inhibition

of cellular 55Fe uptake was observed when cells were treated with

up to 100 mM ferristatin II for 4 hours at 37uC in the presence of
55Fe-Tf (Figure 1A). The IC50 value of , 12 mM was similar to

previous results obtained for ferristatin [44]. Western blot analysis

confirmed that under these conditions, TfR1 was degraded

(Figure 1B). The dose-dependent loss of TfR1 correlates with

the reduction in iron uptake activity over this concentration range

and provides a molecular explanation for lower cellular 55Fe

uptake from Tf due to reduced receptor levels. Degradation of

TfR1 was time-dependent with approximately 60–70% of

receptors lost within 4 hours of treatment with 50 mM ferristatin

II (Figure 1C).

Ferristatin II does not Degrade TfR2 or HFE
TfR1 is known to associate with HFE at the plasma membrane

and during endocytosis [51,52]. It is thought that Tf binding to

TfR1 promotes dissociation of HFE from TfR1 and promotes its

Ferristatin II Promotes Degradation of TfR1
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interactions with TfR2, a close homolog of TfR1 [53]. To

investigate the specificity of ferristatin II, Hep3B cells stably

expressing TfR2 were treated with ferristatin II for 4 hours.

Although endogenous TfR1 was degraded, levels of TfR2 were not

decreased. (Figure 2A). It has been previously shown that

exogenous expression of epitope-tagged HFE can be used to

monitor its interaction with TfR1 [51,52]. Therefore HeLa cells

were transfected to transiently express flag-tagged HFE, then

treated with ferristatin II. Levels of flag-tagged HFE were

unaffected by ferristatin II while TfR1 was still degraded

(Figure 2B). These results show that ferristatin II selectively

induces the loss of TfR1.

Ferristatin II Induced Degradation of TfR1 is Sensitive to
Bafilomycin and Nystatin

It has been previously shown that ferristatin-induced TfR1

degradation is blocked by lysosomal inhibitors [44]. In a similar

fashion, bafilomycin A1, which raises the pH in intracellular

compartments, also blocks TfR1 degradation induced by

ferristatin (Figure 3A). These findings are consistent with the

idea that receptors are internalized for degradation. Past studies

with ferristatin also have shown that endocytosis through lipid

Figure 1. Ferristatin II induces degradation of TfR1 in vitro.
Panel A: HeLa cells were treated for 4 hours with indicated
concentrations of ferristatin II in the presence of 40 nM 55Fe-Tf. Shown
are means 6 SEM for triplicate values. Panel B: HeLa cell lysates were
collected for Western blotting to determine Tf receptor levels. Panel C:
Time course studies were carried out with cells treated with 50 mM
ferristatin II for up to 6 hours.
doi:10.1371/journal.pone.0070199.g001

Figure 2. Ferristatin II does not degrade TfR2 or HFE. Panel A:
Lysates from Hep3B cells stably expressing TfR2 were collected for
Western blotting after 4 hours of 50 mM ferristatin II treatment. Ratios
of band density for TfR1/Actin or TfR2/Actin are normalized to vehicle
control (DMSO) in the absence of ferristatin II. The bar graph
summarizes data from four separate experiments (n = 11 TfR1/Actin
p,0.001, determined by two-tailed Student’s t test, n = 12 TfR2/
Actin). Panel B: HeLa cells were transfected to express HFE-flag as
described in Materials and Method. Cells were then incubated 4 h
with or without 50 mM ferristatin II. Tubulin is shown as a loading
control and the indicated values were normalized to control lanes in
the absence of ferristatin II. The bar graph represents multiple
transfections (n = 8, p,0.001 for TfR1/Actin determined by two-tailed
Student’s t test).
doi:10.1371/journal.pone.0070199.g002
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raft domains was necessary for TfR1 degradation [44]. To

explore the possible role of lipid rafts in ferristatin II’s mechanism

of action, we used the cholesterol binding agent nystatin to

disrupt lipid rafts [54,55]. The effects of ferristatin II on TfR1

degradation were antagonized by the presence of nystatin

(Figure 3B).

TfR1 Domains Necessary for Clathrin Pathway
Interactions are not Necessary for Ferristatin II Induced
Degradation

Two ‘‘internalization defective’’ TfR1 mutants were studied.

Y20C/F23A TfR1 harbors point mutations within the receptor’s

endocytic motif, while D3–28 TfR1 is a deletion mutant lacking 25

amino acids of the domain [21]. This domain is responsible for

interaction with AP-2 and the clathrin machinery. Previous

investigations by McGraw and coworkers established stable

expression of these mutants in TRVb cells, which lack endogenous

Tf receptors [46]. Effects of ferristatin II on TRVb cells expressing

the Y20C/F23A or D3–28 TfR1 mutants were compared to

TRVb1 cells expressing wild-type TfR1 as a control (Figure 4A).

Both receptor mutants were degraded upon ferristatin II

treatment, although the time course of degradation was delayed

compared to wild-type TfR1 (Figure 4B).

Tf Blocks Ferristatin II Action
Since it is known that clathrin-mediated endocytosis of TfR1

occurs regardless of receptor occupancy [56,57,58], we examined

the effects of Tf on TfR1 degradation by ferristatin II. In the

presence of holo-Tf, the action of ferristatin II to induce

degradation of TfR1 was blocked (Figure 5). There are at least

two possible explanations for the observed antagonism: ferristatin

II competes with holo-Tf for binding to TfR1 or Tf acts as a non-

specific antagonist of ferristatin II action. Therefore, a receptor

point mutant, G647A TfR1, was constructed to probe the

receptor’s ligand-binding domain. Gly647 resides in the RGD

sequence previously shown to be critical for Tf binding [59,60].

The ability of ferristatin II to degrade wild type and G647A TfR1

was tested in TRVb cells. Transiently expressed G647A TfR1 was

distributed in these cells in a fashion similar to wild type as shown

by immunofluorescence microscopy (Figure 6A). As predicted, the

mutant receptor failed to bind 125I-labeled Tf (Figure 6B). Cells

transiently transfected to express either wild-type receptor or the

G647A mutant were treated with or without 50 mM ferristatin II

in the presence or absence of holo-Tf. Western blot analysis

confirmed that holo-Tf blocked ferristatin II induced degradation

of wild-type TfR1 but it did not interfere with G647A TfR1

degradation (Figure 6C). Therefore, binding of ligand to the

receptor blocks ferristatin II action.

Effects of Ferristatin II in vivo
To examine whether effects of ferristatin II observed in vitro

reflect its activity in vivo, rats were injected twice daily with vehicle,

0.2, 10 and 40 mg/kg of the drug for one or three days, then once

in the morning of the second or fourth day prior to tissue

collection. Monoacetylbenzidine, a known metabolite [61], was

detected in urine after 4 days of treatment at higher doses. Serum

ALT and AST activities were measured to assess possible liver

damage; serum ALT was slightly elevated at the highest dose but

AST was not significantly affected (Figure 7). These results

demonstrate the drug is metabolized by acetylation with minimal

toxicity over the time course and doses administered in our

experiments.

Significant changes in liver non-heme iron levels were not

observed over the course of ferristatin II treatment (Figure 7).

However, Tf saturation and serum iron levels were reduced after

2 days of treatment and significantly lower at all concentrations

tested for the 4 day treatments. Western blot analysis revealed

TfR1 levels were significantly reduced in livers from treated rats

compared to vehicle-injected controls, consistent with the action

of ferristatin II to degrade receptors in vitro (Figure 8A). It has

been proposed that dissociation of HFE from TfR1 promotes

synthesis of the iron regulatory hormone hepcidin [31,32].

Hepcidin then acts on the iron exporter ferroportin to reduce

systemic iron levels. qPCR analysis revealed that hepcidin

synthesis was enhanced in rats treated with ferristatin II with ,
9-fold increase in mRNA levels relative to control (vehicle-

injected) rats (Figure 8B). Reduced intestinal iron absorption was

also observed in rats treated with ferristatin II in uptake

experiments that determined the amount of 59Fe in blood after

intragastric gavage (Figure 8C).

Discussion

It has been long established that TfR1 enters cells through

clathrin-mediated endocytosis [6]. This pathway is particularly

well understood in the context of cellular iron delivery [62].

However, under some circumstances cell surface proteins like

epidermal growth factor receptor (EGFR) [63], the glucose

transporter GLUT4 [64] and TGF-b family members [65] are

internalized via lipid rafts in addition to clathrin dependent

mechanisms. Early observations with the first iron transport

inhibitor, ferristatin, indicated that like these other membrane

proteins, TfR1 could undergo lipid raft mediated internalization

[44]. Ferristatin induced degradation of TfR1 was sensitive to

Figure 3. Ferristatin II induced degradation is bafilomycin and
nystatin sensitive. Panel A: HeLa cells were treated overnight with
10 nM bafilomycin A1 prior to 4 h treatment with or without 50 mM
ferristatin II in the presence of 10 nM bafilomycin A1. Blot is
representative of several experiments. Panel B: HeLa cells were pre-
treated for 30 minutes with 25 mg/mL nystatin or left untreated. After
incubation, cells were treated with 50 mM ferristatin II for 4 hours.
Shown below are the density ratios for TfR1/Actin normalized to control
lanes (DMSO treated) in the absence of ferristatin II. Shown is a
representative blot from several similar experiments.
doi:10.1371/journal.pone.0070199.g003
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filipin and nystatin, two cholesterol-depleting drugs that implicate

a role for lipid rafts. Although nystatin-sensitivity has been noted

in some examples of clathrin-mediated endocytosis [66], knock-

down of clathrin did not interfere with TfR1 degradation induced

by ferristatin [44], further supporting the function of the lipid raft

pathway in the drug’s action. Our characterization of ferristatin

II activity reveals that this second member of the ferristatin family

of iron transport inhibitors induces degradation of TfR1 both

in vivo and in vitro. The loss of receptors explains why cells in

culture treated with ferristatin II have lower 55Fe uptake from Tf.

Our results further confirm sensitivity of the degradation pathway

to nystatin. Our studies of TRVb1 cells stably expressing various

receptor mutants defective in clathrin-mediated endocytosis [21]

suggest that elements of the TfR1 cytoplasmic domain necessary

for clathrin-mediated endocytosis may not be required for

ferristatin II-induced degradation. These independent lines of

evidence indicate that ferristatin II mediates degradation of TfR1

by a non-clathrin pathway, and a role for lipid rafts is suggested

by the sensitivity to cholesterol depletion.

The importance of lipid rafts in iron metabolism and signaling is

just beginning to be elucidated. For example, degradation of the

iron exporter ferroportin induced by the iron regulatory hormone

hepcidin is disrupted by cholesterol depletion [67] and ferroportin

has been shown to fractionate in detergent-resistant membrane

fractions with flotillin or caveolin-1, both markers of lipid rafts

[67]. Finally, the cholesterol binding protein CD133 is known to

influence Tf uptake in Caco-2 cells [68]. Such evidence suggests a

prominent role for lipid rafts in the regulation of iron metabolism.

Regulation of the lipid raft pathway by iron status provides an

additional layer in the complex regulation of iron transport. The

ability to pharmacologically induce an alternative TfR1 mem-

brane trafficking mechanism through lipid rafts provides an

Figure 4. Ferristatin induced degradation is independent of an interaction with the clathrin endocytic machinery. Panel A: TRVb cells
stably transfected to express WT TfR1, Y20C/F23A TfR1, or D3–28 TfR1 were treated for 4 hours with 50 mM ferristatin II. Density ratios for TfR1/Actin
normalized to control lanes (DMSO treated) in the absence of ferristatin II are indicated for each lane. Nonconsecutive lanes are separated by a white
space. Individual blots are separated by a black bar. All blots were probed using a sheep-TfR1 antibody raised against the ectodomain of TfR1. Panel
B: Time course of WT TfR1, Y20C/F23A TfR1 and D3–28 TfR1 degradation after 0–4 hour incubation with 50 mM ferristatin II. Shown are mean TfR1/
Actin ratios 6 SEM from 3 separate experiments performed in duplicate.
doi:10.1371/journal.pone.0070199.g004

Figure 5. Tf blocks ferristatin II induced receptor degradation.
HeLa cells were treated for 4 hours with 50 mM ferristatin II with or
without 1 mg/mL Tf. Shown below are the density ratios for TfR1/Actin
normalized to control lanes (DMSO treated) in the absence of ferristatin
II. Shown is a representative blot with similar results observed on
several separate occasions.
doi:10.1371/journal.pone.0070199.g005
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interesting new avenue to modulate the delivery of iron with

potential clinical application.

Unlike clathrin-mediated TfR1 endocytosis, which occurs

independent of receptor occupancy, the presence of Tf antag-

onizes ferristatin II-induced degradation. The finding that

G647A TfR1 with defective ligand binding is susceptible to

ferristatin II suggests that Tf may occlude the drug’s interactions

with wild-type TfR1. Alternatively, Tf interactions with the

receptor could induce conformational changes that block

ferristatin II binding to a distal domain, possibly including the

cytoplasmic domain. Further work is necessary to more precisely

define structural elements of TfR1 that contribute to targeting by

ferristatin II. Our results indicate these effects are quite specific

since ferristatin II does not affect protein levels of TfR2

expressed in Hep3B cells. Although structurally related, TfR1

and TfR2 differ in domain interactions with both HFE and Tf

[47]. Sensitivity to degradation by ferristatin II marks another

structural distinction between the two receptors that should be

further explored.

The ability of ferristatin II to reduce TfR1 levels in vivo was

confirmed by administering the drug to rats at doses up to 40 mg/

kg. Serum iron and transferrin saturation were lowered after 2

days of treatment, and significantly reduced at all concentrations

of ferristatin II tested after 4 days of treatment. These effects were

associated with a ,50% decrease in the protein level of TfR1 in

liver. Notably, hepatic non-heme iron content did not change. The

lack of change in hepatic iron despite hypoferremia is consistent

with a block in iron mobilization. Our intragastric gavage

experiments show that rats treated with ferristatin II also have

reduced intestinal uptake of 59Fe to the blood. Both of these

observations can be explained by the observed up-regulation of

hepcidin, a regulatory hormone of iron metabolism [38]. Hepcidin

interacts with the iron exporter ferroportin to induce its lysosomal

degradation, thereby blocking dietary absorption [35] and release

of iron stores [69]. Hepcidin is known to be induced by increasing

Tf saturation under high iron conditions which triggers dissoci-

ation of HFE from TfR1 [31] coupled to its association with

stabilized TfR2 [32]. Since ferristatin II degrades TfR1 but not

HFE, we hypothesize the action of ferristatin II releases HFE to

promote hepcidin synthesis. In this scenario, receptor degradation

rather than high iron promotes HFE association with TfR2, and

possibly activates other factors that regulate hepcidin expression

[70,71]. As shown in Figure 9, under basal conditions, HFE is

bound to TfR1. As levels of iron saturated Tf increase, Tf out-

competes HFE for binding to TfR1. Released HFE can bind TfR2

to initiate a signaling cascade promoting hepcidin synthesis. In the

presence of ferristatin II, the degradation of TfR1 liberates HFE to

bind TfR2 and induce hepcidin synthesis in the liver. This action

appears to be independent of high iron, since rats treated with

ferristatin II display hypoferremia yet continue to upregulate

hepcidin synthesis.

It is important to consider that other targets of ferristatin II

action may contribute to the effects we observe. In vitro studies

have shown that ferristatin II also inhibits transport of iron by

DMT1 [45], and this transporter plays an important role in apical

iron uptake by enterocytes [72,73]. Inhibition of DMT1 activity

would reduce iron absorption, leading to lower serum iron and

transferrin saturation independent of hepcidin’s action on

ferroportin. On the other hand, some reports have suggested that

hepcidin also regulates DMT1 function in the intestine [74], so

that direct suppression of DMT1 might also arise due to hepcidin

induction by ferristatin II. Regardless of the precise target(s),

inhibition of import and/or export of iron across the intestinal

mucosa provides a rational explanation for the reduced level of

circulating iron observed in rats treated with ferristatin II. The

idea that increased hepcidin blocks iron mobilization from stores,

a known action of the hormone (67), is also consistent with the

observation that non-heme iron levels in liver are not altered by

ferristatin II treatment.

Several other pharmacological tools now have been developed

to target the hepcidin axis [75], including ‘‘mini-hepcidins’’ that

down-regulate ferroportin [76,77], BMP inhibitors that block

Smad signaling [78,79], and agents that perturb Stat signaling

Figure 6. Ferristatin II induces degradation of ligand binding
mutant G647A TfR1. Panel A: TRVb cells were transfected with 1 mg
WT TfR1 or G647A TfR1, plated on poly-L-lysine coated cover slips and
fixed with 4% paraformaldehyde. Cells were immunoreacted with OKT9
(a-TfR1) followed by goat anti-mouse Alexa 488 and imaged using a
Zeiss Observer Z1 Axioscope microscope. Panel B: TRVb cells were
transfected as in (A) in 6-well plates and incubated for 48 hours (see
Experimental Procedures for details). Cells were then chilled, washed
and incubated with 500 nM 125I-Tf in the absence or presence of 5 mM
unlabeled Tf for 2 hours. After washing and lysis, cell associated
radioactivity was measured by c-counting. Absolute deviation for
duplicate values for cells with 500 nM 125I-Tf (open bars) or 500 nM 125I-
Tf +5 mM Tf (closed bars) is shown. Inset: Western blot confirms
equivalent expression levels for WT and G647A TfR1. Panel C: TRVb cells,
transfected with WT or G647A TfR1 were treated for 4 hours with 50 mM
ferristatin II with or without 1 mg/mL Tf. Shown below are the density
ratios for TfR1/Actin normalized to control lanes (DMSO treated) in the
absence of ferristatin II. Nonconsecutive lanes are separated by a white
space. Blot is representative of several experiments (n = 6, WT and
G647A TfR1).
doi:10.1371/journal.pone.0070199.g006
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Figure 7. Effects of ferristatin ll in vivo. Rats were treated with vehicle control (saline) or 0.2, 10 or 40 mg/kg ferristatin ll for 2 or 4 days as
described in Experimental Procedures. Shown are mean values 6 SEM (n = 4) for body weight (*P = 0.022), liver non-heme iron, Tf saturation
(*P = 0.018, 0.002 and 0.006 for 0.2, 10 and 40 mg/kg, respectively) and serum iron levels (*P = 0.016, 0.002 and 0.005 for 0.2, 10 and 40 mg/kg,
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[80,81]. The ferristatins are unique in targeting TfR1 degradation

[43,44]. We previously have shown that degradation of the

receptor induced by ferristatin occurs through a lipid raft-

dependent mechanism [44]. Recently, the antimalarial agent

dihydroartemisinin was shown to degrade TfR1 [82]. Depletion of

cellular iron through this mechanism was proposed to account for

this drug’s anticancer effects. Interestingly, down-regulation of

TfR1 by dihydroartemisinin also was shown to proceed via a lipid

raft mechanism. The alternative TfR1 membrane trafficking

mechanism revealed by use of small molecule inhibitors provides

an intriguing new pathway to potentially regulate iron metabolism

in a number of different disease states.
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Figure 8. Ferristatin II alters iron homeostasis in vivo. Panel A: Liver lysates from rats injected with saline or 40 mg/kg ferristatin ll for 4 days
were immunoblotted to determine TfR1 levels. Actin was used as a loading control. Bar graph shows normalized TfR1/actin ratio as the mean 6 SEM
(n = 7; *P,0.001 determined by two-tailed Student’s t test). Panel B: Liver RNA was isolated, reverse transcribed and qPCR performed as described
under Experimental Procedures. Data were normalized to levels of 36B4. Shown are means 6 SEM (n = 5–7; *P,0.001 determined by two-tailed
Student’s t test). Panel C: To determine intestinal iron absorption, control and treated rats were fasted for 4 h and 59Fe was administered by gavage.
Blood samples were drawn at indicated times and radioactivity was determined by gamma counting. Shown are means 6 SEM for control (open
circles; n = 4–6) and ferristatin ll (closed circles; n = 7–8; *P = 0.01 and **P = 0.05 determined by two-tailed Student’s t test).
doi:10.1371/journal.pone.0070199.g008

respectively) measured after a 6 h fasting period. P values were determined by one-way ANOVA followed by Tukey’s test as a post hoc comparison.
Monoacetylbenzidine (MAB) levels in rat urine were determined by HPLC and normalized to creatinine levels (arbitrary units). Shown are means 6
SEM (AU = arbitrary units; ND = not detected. Serum ALT and AST activities were determined using ALT and AST reagents (Thermo Scientific) for rats
injected for 4 days with vehicle or 40 mg/kg ferristatin II. Shown are means 6 SEM (n = 3–6; *P = 0.033 determined by two-tailed Student’s t test).
doi:10.1371/journal.pone.0070199.g007
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