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Abstract

Breast cancer is the second-most common cancer and second-leading cause of cancer

mortality in American women. The dysregulation of microRNAs (miRNAs) plays a key role in

almost all cancers, including breast cancer. We comprehensively analyzed miRNA expres-

sion, global gene expression, and patient survival from the Cancer Genomes Atlas (TCGA)

to identify clinically relevant miRNAs and their potential gene targets in breast tumors. In our

analysis, we found that increased expression of 12 mature miRNAs—hsa-miR-320a, hsa-

miR-361-5p, hsa-miR-103a-3p, hsa-miR-21-5p, hsa-miR-374b-5p, hsa-miR-140-3p, hsa-

miR-25-3p, hsa-miR-651-5p, hsa-miR-200c-3p, hsa-miR-30a-5p, hsa-miR-30c-5p, and

hsa-let-7i-5p —each predicted improved breast cancer survival. Of the 12 miRNAs, miR-

320a, miR-361-5p, miR-21-5p, miR-103a-3p were selected for further analysis. By correlat-

ing global gene expression with miRNA expression and then employing miRNA target pre-

diction analysis, we suggest that the four miRNAs may exert protective phenotypes by

targeting breast oncogenes that contribute to patient survival. We propose that miR-320a

targets the survival-associated genes RAD51, RRP1B, and TDG; miR-361-5p targets

ARCN1; and miR-21-5p targets MSH2, RMND5A, STAG2, and UBE2D3. The results of our

stringent bioinformatics approach for identifying clinically relevant miRNAs and their targets

indicate that miR-320a, miR-361-5p, and miR-21-5p may contribute to breast cancer

survival.

Introduction

Breast cancer is the second-most common cancer and second-leading cause of cancer mortal-

ity in American women. [1] The number of new breast cancer cases is estimated to reach

249,260, and the number of deaths related to breast cancer is estimated to surpass 40,000 in the

United States for 2016. [2] Challenges facing the effective management and treatment of breast

cancer include chemoresistance as well as distant site metastasis, which is the leading cause of

death within breast cancer cases. [3,4] Increasing our understanding of breast tumor biology
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can lead to the development of improved diagnostic and prognostic tools, as well as more effi-

cacious therapies for breast cancer.

MicroRNAs (miRNAs) are 22–25 nucleotide RNA segments that engage in post-transcrip-

tional regulation by targeting messenger RNA sequences. [5] The regulatory network of spe-

cific genes and miRNAs is often multifaceted because multiple miRNAs may regulate the same

gene while at the same time a single miRNA can target multiple genes. [6] Given the regulatory

abilities of miRNAs in processes such as cell proliferation, adhesion, and migration, the dysre-

gulation of miRNAs has proven to play a significant role in cancer, including breast cancer.

[7–9] The role of miRNAs in breast cancer presents a promising approach for better compre-

hending breast cancer development, chemoresistance, and metastasis.

In recent years, the use of data-mining and bioinformatics for genomics analyses has

increased immensely due to the introduction of new technologies and large-scale efforts to

construct useful databases. The Cancer Genome Atlas (TCGA) represents one of the largest

collections of genomic data for breast cancer, possessing both clinical and molecular informa-

tion for over 1000 breast cancer cases. [10] The goals of this study were to implement a bioin-

formatics approach combining clinical and molecular data to identify miRNAs with

prognostic value and to explore the potential gene targets of these miRNAs.

Materials and Methods

Identify miRNAs whose expression is correlated with breast cancer

survival

From the breast cancer project of TCGA, the miRNA (Illumina) HiSeq dataset and overall sur-

vival dataset were downloaded from TCGA data portal. The miRNA HiSeq dataset contained

759 patient samples. Only those mature miRNAs that had expression values in >90% of sam-

ples were further evaluated. This led to a subsequent analysis of 309 mature miRNAs. Both a

generalized linear model (glm) and a linear model (lm) analysis were performed between the

miRNA HiSeq dataset and overall survival using the coding language R.

The miRNAs with FDR<0.05 and those possessing matching directionalities to survival in

both the glm and lm analyses were overlapped. Finally, the miRNAs with the lowest FDR val-

ues in both analyses were chosen as our miRNAs of interest. The overall selection pipeline for

identifying the miRNAs of interest is outlined in Fig 1A.

The Kaplan—Meier method and log-rank test was also applied to the breast cancer TCGA

data to further assess the clinical relevance of the four miRNAs of interest. Comparisons

between patients with low and high miRNA expression were made by separating patients into

either the low expression group (n = 379) or high expression group (n = 380) based on the

median value of the miRNA’s expression. Survival analysis was performed using GraphPad

Prism (Prism Software Corp., Irvine, CA). Log-rank P < 0.05 was considered statistically

significant.

Identify potential gene targets of miR-320a, miR-361-5p, miR-21-5p and

miR-103a-3p through TCGA breast cancer gene expression datasets

Two gene expression profiles—RNA-Seq HiSeq V1 and V2—were downloaded from TCGA

data portal. The two RNA-Seq datasets were investigated for batch effects with the TCGA

Batch Effects Tool developed by MD Anderson Cancer (http://bioinformatics.mdanderson.

org/tcgabatcheffects), which utilizes batch IDs to generate the Dispersion Separability Crite-

rion (DSC); higher DSC values indicate greater dispersion between batches than within

batches while lower values indicate weak batch effects. The V1 dataset contained gene
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expression profiles for 881 patients while the V2 dataset contained gene expression profiles for

1215 patients. The two datasets represented two versions of gene expression information from

the same sample pool, in which the algorithms for measuring relative gene expression were dif-

ferent. Given the V1 and V2 datasets were both valid expression datasets, we analyzed the two

separately against the miRNAs of interest. Once again, when applying a filter for genes that

contain values in >90% of samples, the V1 dataset retained 17214 genes while the V2 dataset

retained 16009 genes for analysis. The pipeline for finding the gene targets of the miRNA is

shown in Fig 1B.

Fig 1. Selection pipeline for miRNAs of interest and finding miRNA-gene interactions in TCGA. A) Selection

pipeline to identify clinically relevant miRNAs in breast cancer. Expression data for miRNA and overall survival data

(rectangular shapes) were obtained from TCGA breast cancer dataset. Intermediate lists (trapezoid shapes) and

findings (oval shapes) derived from our TCGA analysis. B) Selection pipeline to discover possible miRNA-gene

interactions. Data retrieved from other sources (rectangular shapes) were obtained from TCGA or miRDB.

Intermediate lists (trapezoid shapes) and findings (oval shapes) derived from our analysis.

doi:10.1371/journal.pone.0168284.g001
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We performed linear regressions between each of the four miRNAs of interest and the gene

expression datasets. In other words, each miRNA was analyzed in relation to the V1 dataset

and the V2 dataset independently. The results for each miRNA-gene relationship were then fil-

tered by FDR<0.20 and for negative correlations because miRNAs traditionally exert negative

regulation on direct gene targets. An overlap of between the separate V1 and V2 analyses for

each of our miRNAs of interest produced a list of potential miRNA-gene relationships.

Predict the compatibility of miRNAs with the selected genes and confirm

the oncogenic roles of these genes

The miRNA-gene relationships were validated by testing the compatibility between the

miRNA sequences and gene sequences using the miRNA target prediction tool miRDB. [11,

12] The lists of predicted gene targets for the miRNAs were then overlapped with the genes

that were produced from the correlation results from TCGA data to find the potential regula-

tory networks of the four breast cancer-associated miRNAs. Lastly, the gene targets produced

from the overlap were analyzed for their correlation to survival by a linear regression. The

miRNA-gene interactions that were found to be clinically relevant were then further con-

firmed by utilizing additional miRNA target prediction tools such as TargetScan (http://www.

targetscan.org/vert_71/) and DIANA (http://diana.imis.athena-innovation.gr/DianaTools/

index.php). Both the HiSeq V1 and V2 gene expression profiles were evaluated in relation to

breast cancer patient survival.

Results

Analysis of TCGA miRNA expression identified miRNAs associated with

breast cancer survival

To identify clinically relevant miRNAs in breast cancer, the miRNA HiSeq profile was down-

loaded from TCGA and a correlation analysis was performed (using both the glm and lm func-

tion of R) with breast cancer survival. In the glm analysis, the expression of 14 mature

miRNAs were correlated with survival (FDR<0.05). The lm analysis revealed 15 such miRNAs

(FDR<0.05). The directionality of the two lists of miRNAs were compared and overlapped to

yield 12 common miRNAs (Table 1). All 12 of the miRNAs were positively correlated to sur-

vival, meaning that higher expression of the miRNAs was associated with improved survival.

The four miRNAs that shared the lowest FDR were miR-320a, miR-361-5p, miR-21-5p and

miR-103a-3p.

To further explore the clinical contributions of miR-320a, miR-361-5p, miR-21-5p, and

miR-103a-3p to breast cancer survival, we generated Kaplan-Meier curves for each of the four

miRNAs. Relatively high levels of miR-320a, miR-361-5p, miR-21-5p and miR-103a-3p were

significantly associated with longer overall survival (for miR-320a, P = 0.0026; for miR-361-5p,

P = 0.0021; for miR-21-5p, P = 0.0048; for miR-103a-3p, P = 0.0054). The Kaplan—Meier plots

for miR-320a, miR-361-5p, miR-21-5p and miR-103a-3p are presented in Fig 2.

Analysis of potential miRNA-gene interactions for miR-320a, miR-361-

5p, miR-21-5p and miR-103a-3p through TCGA global gene expression

To explore the underlying biology of the observed miRNA-survival relationships in breast can-

cer, we then evaluated the potential gene targets of each of the four miRNAs. As described in

the methods, two different versions of gene expression data (HiSeq V1 and V2) were utilized.

Analysis completed by the TCGA Batch Effects Tool developed by MD Anderson Cancer Cen-

ter revealed that both the V1 (DSC = 0.222, P<0.0005) and V2 (DSC = 0.273, P<0.0005)
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Table 1. List of overlapping miRNAs that correlated with breast cancer survival in TCGA.

Overlapping

miRNA

Linear Model miRNA-Survival Generalized Linear Model miRNA-Survival

P-Value False Discovery Rate (FDR

<0.05)

Coefficient

(Estimate)

P-Value False Discovery Rate (FDR

<0.05)

Coefficient

(Estimate)

hsa-miR-320a 0.00018 0.034 1.72E-05 0.00021 0.021 4.06E-04

hsa-miR-361-5p 0.00124 0.034 4.02E-05 0.00095 0.021 9.07E-04

hsa-miR-21-5p 0.00089 0.034 3.52E-08 0.00109 0.021 7.37E-07

hsa-miR-103a-3p 0.00151 0.034 3.16E-07 0.00105 0.021 7.92E-06

hsa-miR-374b-5p 0.00160 0.034 1.76E-04 0.00183 0.042 3.33E-03

hsa-miR-140-3p 0.00471 0.041 5.24E-06 0.00090 0.021 2.31E-04

hsa-miR-25-3p 0.00179 0.041 9.00E-07 0.00165 0.042 1.87E-05

hsa-miR-651-5p 0.00525 0.041 1.809E-03 0.00227 0.042 5.41E-02

hsa-miR-200c-3p 0.00271 0.041 6.97E-07 0.00290 0.044 1.40E-05

hsa-miR-30a-5p 0.00395 0.041 9.94E-08 0.00360 0.044 2.56E-06

hsa-miR-30c-5p 0.00362 0.041 1.05E-05 0.00383 0.044 2.03E-04

hsa-let-7i-5p 0.00544 0.041 2.09E-05 0.00424 0.044 4.29E-04

doi:10.1371/journal.pone.0168284.t001

Fig 2. Kaplan-Meier survival plots for (A) miR-320a, (B) miR-361-5p, (C) miR-21-5p and (D) miR-103a-3p. The overall survival

of BRCA patients was used for the survival analysis. Expression values of a miRNA were dichotomized into low and high expression

using the median value of each specific miRNA. The solid line represents the low expression group and the dashed line represents

the high expression group. The symbol ** signifies a log rank P-value < 0.05.

doi:10.1371/journal.pone.0168284.g002
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datasets had DSC< 0.5, indicating that batch effects in the gene expression data were weak.

We performed separate linear regressions between each of the miRNAs of interest and the two

gene expression datasets. The process of identifying the gene targets of the miRNAs can be

found in Fig 1B.

After filtering for FDR<0.20, the negatively correlated miRNA-gene relationships for each

of the 4 miRNAs were overlapped between those generated using the RNA-Seq V1 and V2

datasets. This yielded the following relationships: miR-320a retained 152 miRNA-gene rela-

tionships; miR-361-5p retained 66 miRNA-gene relationships; miR-21-5p retained 387, and

miR-103a-3p retained 62 miRNA-gene relationships.

Employing miRNA target prediction tools to pinpoint the possible gene

targets of miR-320a, miR-361-5p, miR-21-5p and miR-103a-3p in breast

cancer

A miRNA-gene interaction prediction tool, miRDB, was accessed to further narrow down the

potential gene targets of each miRNA. miRDB yielded 581 targets for miR-320a; 340 targets

for miR-361-5p; 240 targets for miR-21-5p; and 433 targets for miR-103a-3p. The overlap of

these predicted targets and our TCGA gene expression analysis yielded 5 genes for miR-320a,

4 genes for miR-361-5p, 9 genes for miR-21-5p, and 1 gene for miR-103a-3p (S1 Table, along

with relevant literature for each of the genes highlighted).

These final potential target genes were then evaluated for their association with breast can-

cer survival. We expected the genes to possess negative correlations with survival, acting as

potential oncogenes that the miRNAs target in breast cancer. Expression of all of the genes

except for NCEH1 and SYNGR2 possessed negative directionalities to survival, and 8 of the

negative correlations were statistically significant (p<0.05) in at least the V1 or V2 gene

expression dataset (Table 2). As predicted targets of miR-320a, RAD51 and RRP1B were signif-

icantly correlated with worse patient survival in both expression profiles, while TDG was sig-

nificantly correlated in the V2 dataset. A predicted target of miR-361-5p, ARCN1 possessed a

significant negative correlation to survival in the V2 gene expression profile. Of the 9 genes

that miR-21-5p potentially targets in breast cancer, MSH2 and RMND5A were significantly

correlated with worse survival in both datasets, while STAG2 and UBE2D3 were significant in

the V2 dataset. All eight miRNA-gene pairs identified by miRDB were evaluated using addi-

tional miRNA predictions tools: TargetScan and DIANA. We found every miRNA-gene pair

to be corroborated by at least TargetScan and/or DIANA, in addition to the original miRDB

prediction.

Table 2. Gene targets of the four miRNAs that correlate with breast cancer patient survival.

miRNA of

Interest

Gene miRNA-Gene Gene-Survival

V1 Expression

P-Values

V1 Coefficient

(Estimate)

V2 Expression

P-Values

V2 Coefficient

(Estimate)

V1 Expression

P-Values

V2 Expression

P-Values

miR-320a RAD51 0.00099 -99.1897 3.35E-07 -0.91591 0.02285 0.00077

RRP1B 0.00262 -56.0061 6.55E-07 -0.21012 0.06015 0.00071

TDG 0.00183 -61.8748 7.25E-08 -0.52252 0.24221 0.00979

miR-361-5p ARCN1 0.00054 -6.68539 7.72E-13 -0.03011 0.13597 0.00247

miR-21-5p MSH2 0.00032 -11808.4 1.88E-12 -112.194 0.04184 0.00070

RMND5A 0.00182 -6872.72 6.80E-14 -79.7111 0.04832 0.00025

STAG2 0.00300 -15179.1 1.93E-14 -65.7826 0.06023 0.00048

UBE2D3 0.00390 -3272.45 2.03E-07 -29.326 0.13203 0.01033

doi:10.1371/journal.pone.0168284.t002
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Discussion

The aim of this study was to discover breast cancer-associated miRNAs that significantly cor-

relate with patient survival, and to propose the targets of the selected miRNAs within breast

tumors. We accomplished this goal by employing a bioinformatics approach to one of the larg-

est collections of molecular and clinical data for breast cancer via TCGA. Through our analy-

sis, we propose that miR-320a, miR-361-5p, miR-21-5p may contribute to breast cancer

survival by the negative regulation of breast oncogenes.

The initial correlation analysis between breast cancer survival and miRNA expression

yielded 12 significant miRNAs: miR-320a, miR-361-5p, miR-103a-3p, miR-21-5p, miR-374b-

5p, miR-140-3p, miR-25-3p, miR-651-5p, miR-200c-3p, miR-30a-5p, miR-30c-5p, and let-7i-

5p. We focused our subsequent analysis on four of the most significant miRNAs; however, five

of the other miRNAs identified have been suggested in breast cancer literature to possess

tumor-suppressing properties, supporting the method we employed for discovery. One study

performed in triple negative breast cancer study found that high levels of miR-374b-5p corre-

late with favorable outcomes and that miR-374-5p expression suppresses cell invasion in vitro.

[13] Expression of miR-140 is found to be increasingly downregulated in breast cancer patho-

genesis and progression, and miR-140 has been described to target the Wnt and SOX stem cell

pathways to modulate breast cancer stem cell formation. [14–16] Low expression of miR-200c

has been found to be associated with poor survival, and that upregulation of miR-200c inhibits

cell proliferation and modulates cancer stem cell behavior. [17–20] miR-30a is a putative

tumor suppressor that has been shown to negatively regulate processes such as cell prolifera-

tion and the epithelial-mesenchymal transition in breast cancer. [21–25] Lastly, higher miR-

30c is associated with improved tamoxifen response in ER+ advanced breast cancers, and has

been demonstrated to target cytoskeleton genes that are involved with cell invasion. [26, 27] In

addition to confirming that these miRNAs appear to exert a protective phenotype in breast

cancer, we undertook an in-depth investigation of the most significant miRNAs from our anal-

ysis—miR-320a, miR-361-5p, miR-21-5p, and miR-103a-3p—to identify clinically relevant

gene targets.

The result that miR-320a is associated with tumor-suppression is consistent with both

breast cancer literature and literature from other cancers. The miRNA has been demonstrated

to inhibit breast cancer metastasis and invasion [28, 29] while also sensitizing breast cancer

cells to chemotherapy [30, 31]. Additionally, miR-320a has been observed to be an indepen-

dent prognostic factor where decreased miR-320a expression is correlated with lower survival

in invasive breast cancer. [32] The anti-proliferative and tumor-suppressing effects of miR-

320a have also been recorded in lung cancer [33], prostate cancer [34], gastric cancer [35], leu-

kemia [36, 37], and nasopharyngeal carcinoma [38].

Our finding that higher miR-361 expression is a significant prognostic factor for improved

survival is among the first in breast cancer. One breast cancer study had found that miR-361

was overexpressed in PARP1-upregulating BRCA-germline mutated and sporadic breast can-

cers. [39]. Another breast cancer study that examined 28 breast cancer samples observed that

miR-361 upregulation was indicative of metastatic breast cancer, but an association with

metastasis does not imply a statistically significant association with prognosis. [40] In addition,

miR-361 has been found to be downregulated in hepatocellular carcinoma, and its expression

has been shown to suppress cell proliferation and migration in hepatocellular, colorectal, gas-

tric, and prostate cancer. [41–43]

Surprisingly, our TCGA analysis found that miR-21 was associated with improved breast

cancer survival. This miRNA is widely regarded as an oncomiR in cancer literature. Upregula-

tion of miR-21-5p has been associated with breast cancer pathogenesis, invasion, and

MicroRNAs as Breast Cancer Prognosis Markers
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metastasis. [44–50] Additionally, miR-21 overexpression has been found to promote breast

cancer proliferation in vitro. [51] Upon examination of 344 primary breast cancer patients,

Qian et al. reported that high miR-21 expression was associated with features of aggressive dis-

ease. However, they found no association between patient survival and miR-21 expression

among all patients [52]. Based on this and other studies, we speculated that miR-21 is indeed

an oncomiR. However, survival outcomes are a combined result of disease progression and

response to treatment. It is plausible that the breast cancer patients who had more aggressive

disease (as indicated by elevated miR-21 expression) were perhaps more responsive to certain

treatments. Unfortunately, given the sparse treatment information in TCGA, this hypothesis is

difficult to be assessed. Nonetheless, one needs to take into consideration that prognosis pre-

dictors may not directly relate to disease aggressiveness.

The literature for the role of miR-103 in cancer favors that miR-103 acts as an oncomiR

rather than a tumor suppressor. High expression of miR-103 in relation to breast cancer has

been correlated with metastasis, tumor relapse, and poor outcome. [53–56] On the other hand,

one breast cancer study has found that miR-103 inhibits cancer stem cell formation in triple

negative breast cancer. [57]

Of the five genes miR-320a was found to target in breast tumors, RAD51, TDG, and RRP1B
are associated with poor patient survival. RAD51 plays a central role in DNA repair by forming

a complex with BRCA2, but its overexpression in breast cancer has been found to be associated

with poor prognosis. [58, 59] In breast cancer cell lines, overexpression of RAD51 has been

shown to drive genomic instability and tumorigenesis as excess RAD51 actually hampers the

ability of cells to repair DNA. [60] Given RAD51’s oncogenic role, the targeting of RAD51 as a

cancer therapy is currently being explored for difficult-to-treat cancers such as triple negative

breast cancer. [61, 62] TDG is a base excision repair enzyme that is believed to protect CpG

islands from aberrant DNA methylation and to promote the demethylation of enhancers and

promoters. [63] Interestingly, we observed that higher expression of TDG correlated with

poorer breast cancer survival even though loss of TDG has been proposed to be involved in

multiple myeloma [63, 64], pancreatic adenocarcinoma [63, 65], and rectal cancer [66]. RRP1B
is another gene that significantly correlated with poor survival in TCGA, yet the gene is

believed to interact with metastasis modifier genes to induce tumor suppression. [67, 68] It is

important to note that the expression relationship of genes with cancer incidence cannot be

translated directly to be equivalent to cancer prognosis. Our findings for TDG and RRP1B
indicate that the two genes may possess unknown in vivo interactions that are associated with

improved survival.

One of the four potential gene targets of miR-361-5p in breast cancer, ARCN1 was found in

our HiSeq V2 gene expression analysis to be significantly correlated with poor patient survival.

The gene has been highlighted as a key determinant for sensitivity to the glycolytic inhibitor

2-deoxyglucose (2DG) in cancer cells, in which ARCN1 knockdown sensitized cells to 2DG.

[69] Although not statistically significant (p = 0.22 in V2), ELL3 also possessed a negative cor-

relation with breast cancer survival. Indeed, ELL3 has been shown to increase cell proliferation,

induce chemoresistance, and increase cancer stem cell populations, potentially through the

MEK-extracellular signal-regulated kinase signaling pathway. [70]

The increased expression of the four genes UBE2D3, RMND5A, STAG2, and MSH2,

which were predicted to be targets of miR-21-5p, all correlated with poorer survival. While

UBE2D3 has been described to be an in vitro tumor suppressor for its role in modulating

radiosensitivity [71, 72] and proliferation [73], the in vivo data of TCGA suggested that

higher UBE2D3 expression predicts poorer clinical outcomes. One study has shown that the

targeting of RMND5A significantly attenuates HeLa cell migration. [74] STAG2 contributes

to the cohesion complex and has been proposed as a prognostic biomarker for bladder and
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pancreatic cancer. [75–77] MSH2 appears to play a complex role in breast cancer biology in

which expression of the gene can be associated with tumor suppression [78, 79] or oncogen-

esis [80–82] depending on the context. One possible explanation is that MSH2 may be down-

regulated as a breast cancer becomes invasive, but then MSH2 expression becomes

associated with breast cancer progression as the continued proliferation of tumor cells

requires increased DNA mismatch repair. [83]

In summary, we have identified several miRNAs that are related to the survival of breast

cancer. We propose that the miRNAs that relate to better prognosis may exert a protective

phenotype by the silencing of breast oncogenes. Further research and validation experiments

to explore the clinical and biological roles of miR-320a, miR-361-5p, miR-21-5p and miR-

103a-3p may yield a better understanding of the mechanisms underlying breast cancer growth,

metastasis, and survival.

Supporting Information

S1 Table. List of gene targets predicted for miR-320a, miR-361-5p, miR-21-5p and miR-

103a-3p. Bolded font indicates that the gene was significantly correlated with breast cancer

patient survival.
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