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Abstract

Background: Existing large-scale metabolic models of sequenced organisms commonly include
enzymatic functions which can not be attributed to any gene in that organism. Existing
computational strategies for identifying such missing genes rely primarily on sequence homology to
known enzyme-encoding genes.

Results: We present a novel method for identifying genes encoding for a specific metabolic
function based on a local structure of metabolic network and multiple types of functional
association evidence, including clustering of genes on the chromosome, similarity of phylogenetic
profiles, gene expression, protein fusion events and others. Using E. coli and S. cerevisiae metabolic
networks, we illustrate predictive ability of each individual type of association evidence and show
that significantly better predictions can be obtained based on the combination of all data. In this
way our method is able to predict 60% of enzyme-encoding genes of E. coli metabolism within the
top 10 (out of 3551) candidates for their enzymatic function, and as a top candidate within 43% of
the cases.

Conclusion: We illustrate that a combination of genome context and other functional association
evidence is effective in predicting genes encoding metabolic enzymes. Our approach does not rely
on direct sequence homology to known enzyme-encoding genes, and can be used in conjunction
with traditional homology-based metabolic reconstruction methods. The method can also be used
to target orphan metabolic activities.

Background the metabolic enzymes have lead to development of com-
Comprehensive and accurate reconstruction of the meta-  putational methods for metabolic reconstruction. The
bolic networks remains an important problem for both ~ most common approach is to identify genes encoding a
newly sequenced and well-studied organisms [1,2]. The  specific metabolic enzyme by establishing sequence
challenges posed by the experimental determination of = homology to functionally characterized enzymes in other
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a. lllustration of the missing gene problem. Metabolic network neighborhood of a missing metabolic enzyme is shown. The
neighborhood comprises layers with increasing radii (3 layers shown, indicated by shading). Majority of the enzyme-encoding
genes in the neighborhood are known. b. lllustration of the self-rank validation test. Ability to predict known enzyme-encoding
genes is tested by measuring its self-rank - the rank of a true enzyme-encoding gene in the candidate set. The candidates are
ordered according to overall strength of their functional association with the metabolic network neighborhood of the enzyme.
The overall association strength is a combination of layer association scores that measure strength of functional association of
the candidate gene with known enzyme-encoding genes in a single layer of the metabolic neighborhood (3 layers, as illustrated
in a.). The candidate set contains all genes that are not already part of the metabolic network.

species [3]. Although such sequence homology methods
have been remarkably successful overall, they fail to iden-
tify enzymes encoded by genes with poor sequence
homology to known metabolic enzymes, and result in
partially reconstructed metabolic networks. In some cases
sufficient biological evidence exists to believe that a par-
ticular pathway is present in the organism, however genes
associated with key reaction steps can not be identified.
The problem of identifying genes encoding for a specific
metabolic function in such partially reconstructed net-
works has been referred to as the "missing gene" problem
[4]. The case for a missing gene can be based either on
direct experimental evidence for a particular enzymatic
function in the organism, or on variety of comparative
and computational analysis of known metabolic path-
ways, biochemical constraints and environmental condi-

tions [4,5]. We note that the problem of identifying
missing genes, considered in this manuscript, is different
from the traditional problem of functional gene annota-
tion, which aims to assign function to a given gene.

Computational strategies for identifying missing meta-
bolic genes rely on refined sequence homology analysis
[2,6] and consideration of functional association evidence
linking candidate genes with known enzyme-encoding
genes [4]. For example, PathwayTools hole-filler devel-
oped by Green et al. [6], prioritizes candidates obtained
from an initial sequence homology search by using,
among other factors, information on whether the candi-
date gene is located adjacent to, or in the same transcrip-
tional unit as known enzyme-encoding genes of related
metabolic function. In some cases, strong genome context
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association evidence, such as clustering of genes on the
chromosome, or co-occurrence of genes in phylogenetic
lineages, has played a key role in identifying metabolic
genes in several organisms [7-9].

An extensive set of tools has been developed to detect and
catalog general pair-wise functional associations between
genes based on a combination of genome context meth-
ods and other evidence, such as co-expression or protein
interactions [10,11]. Combinations of heterogeneous
association evidence have been used for general func-
tional inference [12], prediction of protein complexes
[13-15] and synthetic lethal interactions [16]. A recent
work by Yamanishi et al. [17] relied on a combination of
genomic, mRNA expression and localization evidence,
together with information on chemical compatibility to
reconstruct metabolic pathways from known metabolic
enzymes. While it has been suggested that genome context
associations can be used for general prediction of missing
enzyme-encoding genes [4,18], methods for systematic
targeting of missing genes have not been characterized.
We develop a method for generating such predictions
based on combination of genome context and other func-
tional association evidence, and show that it is effective
for majority of the enzymatic functions in E. coli and S.
cerevisiae.

In an earlier study we have described a method for identi-
fying missing enzyme-encoding genes based on gene co-
expression and local structure of metabolic network [19].
The candidate genes for encoding a missing metabolic
enzyme were evaluated based on the overall similarity of
their expression profile with the expression of the meta-
bolic network neighborhood of the missing enzyme (Fig-
ure 1a). The local property of gene co-expression, which
formed the basis of this method, is also observed for other
types of functional associations, in particular for associa-
tions established by genome context [20]. In this work we
show that such approach can be extended to identify met-
abolic enzyme-encoding genes from a number of different
types of functional association evidence, including phylo-
genetic profile co-occurrence, physical clustering of genes
on the chromosome and protein interaction data. We
note that the presented method does not rely on sequence
homology to known enzymes, and its predictions are
complementary to the traditional methods of metabolic
reconstruction.

We illustrate the performance of each individual type of
association evidence by testing how well the method is
able to predict known enzyme-encoding genes of E. coli
[2] and S. cerevisiae [21] metabolic models (see Methods).
A set of candidate genes, containing all non-metabolic
genes in an organism, is evaluated and prioritized by eval-
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uating overall association of each candidate gene with the
neighborhood of the missing metabolic enzyme (Figure
1b). The overall association is calculated by combining
associations with each layer of the metabolic neighbor-
hood. Specifically, for a missing enzyme with a metabolic
neighborhood consisting of layers {L,, L,, Ly}, each can-

didate gene x is evaluated by a combination of layer asso-

ciation scores, score;, (x), that measure the strength of

functional associations of candidate gene x with known
enzyme-encoding genes in the neighborhood layer L; (see

Methods). The individual layer association scores are
combined using one of two methods (ADT or DLR) to
obtain a measure of overall association of candidate gene
x with the metabolic network neighborhood of the miss-
ing enzyme.

To assess the performance of our method we rely on a self-
rank measure, which is the rank of a known enzyme-
encoding gene among the set of candidates prioritized for
its own metabolic function (see Methods). We develop
techniques for combining multiple types of association
evidence and show that significantly better prediction per-
formance can be achieved based on combined association
evidence.

Results

Similarity of phylogenetic profiles

A number of earlier studies have explored using patterns
of gene co-occurrence or absence in the phylogenetic lin-
eages to infer functional association between gene pairs
[22,23]. The basic premise of the method is that a func-
tion is likely to be encoded by several associated genes;
therefore lineages maintaining only some of these genes
will have lower evolutionary fitness. For instance,
enzymes catalyzing successive steps of a linear metabolic
pathway are likely to be present together in an organisms
relying on that metabolic pathway, and absent together
from an organisms that does not require that pathway.

A phylogenetic profile of a given gene on a set of N
genomes can be encoded as binary string of length N,
with each position marking presence (1) or absence (0) of
an ortholog in the corresponding genome. Functional
association between a pair of genes is assessed by the
degree of similarity of their phylogenetic profiles. A
number of different distance measures have been used to
calculate such similarity, including Hamming string dis-
tance, mutual information and hypergeometric distribu-
tion [11,22,24,25]. We find that the performance of
different distance measures is very similar (see Additional
file 1). These profile similarity measures do not take into
account variable degree of divergence between genomes
comprising the orthology dataset. This is particularly clear
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Performance of different phylogenetic profile datasets and corrections. The predictive performance of the algorithm is illus-
trated by showing the fraction of known enzyme-encoding genes (x axis) predicted within different self-rank thresholds (y
axis). For instance, dashed performance curve in subfigure a. (BLAST:xHG) shows that 30% of the test enzymes appear within
the top 10 (out of 3352) candidates for their enzymatic function. a. Algorithm performance in predicting known E. coli meta-
bolic enzymes based on the phylogenetic profile associations with the Istlayer of the metabolic network neighborhood. Per-
formance of a regular hypergeometric distribution is shown (HG), together with extended hypergeometric (xHG) and folding
(xHG+folding) corrections. The scores are calculated on the BLAST-based dataset. b. The self-rank performance of the Ist
layer phylogenetic profile score, calculated using extended hypergeometric distribution with folding is shown for BLAST-based,
KEGG-based and COG orthology datasets. The performance of the COG orthology dataset is corrected for the metabolic
gene coverage bias.

in the case of Hypergeometric distribution measure
[11,25], which assumes that ortholog occurrences are
independently and identically distributed across the set of
included genomes (see Methods).

The identity assumption would suggest that the total
number of ortholog occurrences within each genome
should be approximately the same, and the distribution of
the number of orthologs should form a single, narrow
peak around an average ortholog number. The empirical
distribution (see Additional file 2), however, is quite dif-

02 e —-= E coli:DLR H

ferent from the expected form, lacking a peak around the | E coli: ADT
mean, and showing substantial density over almost an 0.1k ——w S‘ cerevisiae: DLR -

entire range of ortholog numbers. When the identity e S, cerevisiae: ADT

fraction of genes with self-rank
below threshold

assumption is relaxed, profile similarity probability is 0 L L :
described by the Extended Multivariable Hypergeometric 0 5 10 15 20 25 30
distribution [26]. Because probability functions of this self-rank threshold

distribution have not been derived in a closed form, we
developed a numerical algorithm for estimating these
probabilities (see Methods).

Figure 3
Comparison of ADT and DLR methods for combining multi-
ple association evidence types. Fraction of enzymes pre-

) . o ) dicted within different self-rank thresholds is shown for E. coli
Bias stemming from the violation of the independence  3nq 5. cerevisiae metabolic enzymes. Predictions are based on

assumption can be minimized by exclusion or reduction  the combined association evidence (see Methods, Table 1),
of closely related species in the ortholog occurrence data-  using two different methods: DLR (dashed curves), and ADT
set. We employ a method similar to previously published  (solid curves).

work [10], which reduces the bias by folding together phy-
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Enzyme predictions based on individual and combined types of association evidence (see Methods, Table I). Fraction of known
enzymes predicted within different self-rank thresholds is shown for a. E. coli metabolism and b. S. cerevisiae metabolism. Each
curve indicates a probability (y axis) with which a true enzyme-encoding gene will be predicted within top n (x axis) candidates
for its enzymatic function. The total number of candidates is 3352 for E. coli and 5253 for S. cerevisiae. Different curves demon-
strate predictive performance of various types of association evidence. Predictions are generated based on functional associa-
tion with the first three layers of the metabolic network neighborhood, using ADT classifier with |0-fold validation.

logenetic branches containing closely related species, and
using an ortholog occurrence pattern based on the agree-
ment within the folded branch (see Methods).

The effect of both corrections on the ability to predict
enzyme-encoding genes in E. coli is illustrated by the
cumulative self-rank distributions (see Methods) in Figure
2a. The extended hypergeometric distribution correction
for the variable genome divergence from E. coli target
genome (violation of the identity assumption) provides a
noticeable improvement in prediction performance (8%
at self-rank threshold of 50). On the other hand, the fold-
ing method correcting for variable divergence with the set
of query genomes (violation of independence assump-
tion) does not significantly improve the results.

The phylogenetic profile co-occurrence method depends
on identification of orthologous genes across potentially
diverse lineages. Existing investigations have used a vari-
ety of methods, including readily available Clusters of
Orthologous Groups (COG) database [27,10,25], closest
homologs [11], and best bi-directional homology pairs
[24]. The results presented in our work rely on two alter-
native sets of orthology data. The first set comes from
KEGG SSDB database [28], and includes closest homologs
and best bi-directional hits as determined by the Smith
and Waterman algorithm (we will refer to it as KEGG-

based dataset). The second set was constructed based on
results of BLAST [29] queries against a "non-redundant”
set of known protein sequences maintained by NCBI (see
Methods). The set also includes information on reverse
BLAST searches to determine best bi-directional hits
(referred to as BLAST-based dataset).

Predictive performance of different orthology datasets is
compared in Figure 2b. We note that coverage of the COG
orthology data is biased towards genes encoding known
metabolic enzymes (see Additional file 16), and the self-
rank performance of this dataset was estimated by nor-
malizing with respect to the non-metabolic gene coverage.
Figure 2b shows that profile associations calculated using
BLAST-based dataset provide better predictions of
enzyme-encoding genes than association based on the
KEGG orthology dataset. We also find that in the case of
both datasets better performance is attained when using
best bi-directional homology pairs instead of closest
homologs (see see Additional file 3).

As a consequence of gene duplications, metabolism con-
tains a significant number of paralogous enzyme pairs
[30]. In many cases, such enzymes continue to catalyze
the same reactions (see Additional file 4). Such pairs will
frequently have similar or identical orthology mappings,
and their inclusion can lead to a significant bias in estima-
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tion of the predictive performance (see Additional file 5).
The results presented in this work, therefore, exclude self-
ranks of any metabolic enzymes that have high sequence
homology to any other metabolic enzyme in the organism
(see Methods).

Co-expression of orthologous genes

The approach for identifying enzyme-encoding genes
based on the similarity of mRNA expression profiles [19]
can be extended to include co-expression information of
orthologous genes in other organisms. Conservation of
mRNA co-expression across different species has been
investigated by a number of recent studies [31-34]. For
example, analysis of co-expressed gene pairs between S.
cerevisiae and C. elegans shows statistically significant (P
value < 10-3) level of conservation [32]. Although the
number of pairs with highly conserved co-expression is
small, incorporating ortholog co-expression can provide
significant improvements to the accuracy of functional
predictions based on the mRNA expression data [31,32].

We find that enzyme-encoding gene predictions based on
the co-expression of E. coli orthologs in S. cerevisiae (see
Methods) achieve good performance on the enzymes cov-
ered by such dataset. Although S. cerevisiae orthologs can
be identified for only 40.1% of E. coli metabolic genes,
combining native and ortholog co-expression scores pro-
vides noticeable improvements. Combination of native
and ortholog co-expression increases the fraction of met-
abolic enzymes predicted within the top 50 candidates
from 27% to 36% (see Additional file 6). Similarly, using
E. coli expression data improves prediction results for
enzyme-encoding genes of S. cerevisiae metabolic net-
work. Overall self-rank performance based on combined
co-expression data is included in Figure 4.

Clustering of genes on the chromosome

Relative positions of genes on the chromosome have also
been successfully used to infer functional associations.
Most notably, analysis of prokaryotic genomes focused on
identifying pairs of orthologs located close to each other
on the chromosome, as well as sets of such pairs
[10,35,36]. Such clustering is also observed in the eukary-
otic genomes, even though they lack well-defined operon
structures. A recent study by Lee et al. [37] analyzed clus-
tering of genes in KEGG pathways for 5 distant eukaryotic
species. The study demonstrated that depending on the
genome, 30% to 98% of the pathways exhibit statistically
significant levels of gene clustering on the chromosome. A
variety of methods have been developed for identifying
chromosome gene clusters and evaluating their signifi-
cance [38]. To generate association scores we use a simple
statistical evaluation strategy based on the chromosome
gene order, which allows for computationally efficient
treatment of large number of genomes (see Methods).

http://www.biomedcentral.com/1471-2105/7/177

The self-rank performance based on the chromosome
clustering association is shown in Figure 4. The overall
performance for known E. coli metabolic enzymes is bet-
ter than for the S. cerevisiae enzymes, which is expected
given the prominent role of operons in prokaryotic tran-
scriptional regulation.

Other association measures

Interacting proteins encoded by separate genes in some
species, may sometimes occur as a single, multi-domain
fusion protein in other species. Detecting fusion of non-
homologous proteins in another organism has been
shown to be a significant predictor of functional associa-
tion between genes [39-41]. Our calculations of a fusion
association score are based on a combination of fusions
detected at several sequence homology thresholds (see
Methods, Additional file 7. The overall performance of the
method is included in Figure 4. Although protein fusion
associations are only able to predict relatively small frac-
tion of enzyme-encoding genes (18% for E. coli), almost
all of predicted enzymes are returned within the top 20
candidates.

A number of metabolic reactions are catalyzed by well
established protein complexes, such as the phosphofruc-
tokinase complex. Furthermore, metabolic processes
commonly involve interactions between multiple meta-
bolic enzymes. For instance, the phosphofructokinase
alpha subunit encoded by Pfk1 also interacts with a prod-
uct of Fbal, fructose-biphosphate adolase II, catalyzing an
adjacent reaction in the glycolysis pathway [42]. Large
protein-protein interaction datasets have been generated
by studies using yeast two-hybrid systems [43,44] and,
more recently, mass spectrometry-based techniques
[45,46]. In the framework of our approach, candidate
genes can be evaluated by assessing the overall amount of
interactions between a candidate gene and the metabolic
network neighborhood of a missing enzyme. To assess
confidence of individual interactions, our analysis makes
use of the probabilistic protein interaction dataset from
Jansen et al. [13], which combines results of four high-
throughput interaction datasets [43-46]. The performance
of our prediction method on the protein interaction data
is significantly lower than that of other association scores,
nevertheless it is above of what is expected from a random
association score (Figure 4b).

Functional association can be also assessed through simi-
larity of deletion mutant phenotypes under a large set of
environmental conditions. For example, deletions of
genes that are adjacent to each other in a linear metabolic
pathway are likely to result in identical mutant pheno-
types. A recent work by Dudley et al. [47] experimentally
measured growth phenotypes of 4710 S. cerevisiae
mutants under 21 experimental conditions, including dif-
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ferent carbon sources, nutrient limitations, stress and oth-
ers conditions. We tested the performance of our
prediction algorithm on a set of 53 known metabolic
enzyme-encoding genes for which high-confidence data
was available (see Additional file 8). While the results
illustrate predictive power of phenotypic profile associa-
tions, overall contribution of this score to the predictions
of unidentified enzyme-encoding genes is very small. This
is expected, because available high-confidence pheno-
typic data covers only 14% of S. cerevisiae genes.

Overall enhancements of the individual association scores
Description of a metabolic network neighborhood can be
enhanced by considering relative strength of metabolic
connections established by different metabolites. Metabo-
lites connecting many enzyme-encoding genes pairs
establish, on average, weaker functional associations [20].
The performance of our predictive method can be
improved by weighting the contribution of each neighbor
in evaluating the overall association of a candidate gene
with the metabolic network neighborhood of a missing
enzyme. The weight is assigned according to the total
number of enzyme pairs associated with a connecting
metabolite (see Methods).

Distributions of association scores between a given gene
and all other genes in an organism tend to differ from one
gene to another. For instance, a gene whose orthologs can
be identified in many organisms will typically have more
high-confidence chromosome clustering associations
than a gene with relatively few detected orthologs. This
introduces bias when evaluating overall association with
a metabolic network neighborhood. The association-rank
rescaling (see Methods) reduces this bias by translating
raw association scores into probabilities of metabolic
adjacency, calculated based on the rank of raw association
score within a distribution of all scores for a particular
gene. The rescaling procedure also reduces the number of
false positives by considering raw association score of a
gene pair with respect to organism-wide score distribu-
tions of both genes and choosing a more conservative
adjacency probability value.

The effect of metabolite-weighting and association-rank
corrections on the self-rank performance is shown in
Additional file 9. The predictive performance of all associ-
ation scores is improved by either correction, with the
exception of the protein fusion score, where application
of metabolite weighting results in weaker performance.

Predictions based on combined association evidence

Enzyme-encoding gene predictions based on the individ-
ual association scores can be combined to achieve better
performance. Normalizing relative strength of different
association scores requires informative priors. Such priors
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can be either constructed manually, for example by con-
sulting experts [12], or learned from known test-cases.
This problem has been extensively considered with
respect to confidence in pair-wise gene functional associ-
ations, and test cases for learning the priors were based on
known functional groupings, such as GO annotations
[48] or membership in KEGG pathways [10]. For the cur-
rent problem of prioritizing enzyme-encoding gene candi-
dates, such priors can be learned from known enzyme-
encoding genes [6].

Towards the goal of integrating multiple types of associa-
tion evidence, we have developed two distinct methods.
The first approach is based on a direct likelihood-ratio
(DLR) evaluation of the association score probability dis-
tributions. The likelihood that a given candidate gene
encodes the desired metabolic enzyme is calculated under
the simplifying assumptions that individual association
scores are independent and monotonic. The monotonic
assumption states that for every association score, the like-
lihood of association increases monotonically with the
absolute value of the score. Both assumptions allow for
useful approximations, but in general can be shown to be
incorrect. For example, clustering of genes on the chromo-
somes in E. coli is statistically significantly correlated with
the similarity in expression profiles (Spearman rank corre-
lation P value < 10-19), violating the independence
assumption. The DLR method calculates overall likeli-
hood ratio of a candidate gene encoding the desired
enzyme as a product of likelihood ratios for each individ-
ual association score (see Methods).

The second approach uses a general machine learning
method called Adaboost [49,50], and does not rely on
independence or monotonicity of the association scores.
The generated classifiers are in the form of alternating deci-
sion trees (ADT), which are generalization of decision
stumps, decision trees, and their combination [51] (see
Additional file 10). In addition to flexible semantic repre-
sentation, ADT-based classifiers provide a real-valued
measure of confidence, called classification margin, which
can be related to the probability of a given classification
being correct [52]. The Adaboost method has been suc-
cessfully applied to several large-scale biological prob-
lems, including detection of transcription factor binding
motifs and prediction of regulatory response [53,54].

We find that in identifying missing metabolic genes both
ADT and DLR methods achieve comparable levels of per-
formance (Figure 3). The ADT method performs slightly
better on E. coli metabolic enzymes, and DLR on S. cerevi-
siae. Success of the DLR method relative to a general clas-
sifier, such as ADT, suggests that the derived association
scores are largely consistent with the underlying assump-
tions of monotonicity and independence, and allow qual-
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ity predictions to be made based on a straightforward
evaluation of the score probability distributions. The ADT
method, however, does not require such assumptions,
and may be used to incorporate in the future a wide vari-
ety of unrestricted descriptors, such as sequence homol-
ogy data or expression variability [19].

Prediction performance of individual functional associa-
tion scores and their combination using ADT method is
shown for E. coli metabolic enzymes in Figure 4a. The fig-
ure illustrates that predictions based on the combined evi-
dence are clearly superior to what is achieved by any
individual type of functional association evidence, with
43% of known enzymes predicted as number one candi-
dates for their enzymatic function, and 60% within the
top 10 candidates. Associations based on the chromo-
some clustering provide the best predictions of any single
evidence type, and are able to predict almost half of the
metabolic enzymes within the top 10 candidates. It is also
important to note that different association evidence
types are not redundant - none of the predictions based
on a particular association score are completely covered
by the predictions of another association score (see Addi-
tional file 11). Predictions for 16 unknown and recently
identified enzyme-encoding genes that are specified as
missing in the E. coli metabolic model are given in Addi-
tional file 17.

Individual and combined prediction performance for
enzymes of S. cerevisiae metabolic network is illustrated in
Figure 4b. Relative to E. coli predictions, co-expression
score in S. cerevisiae tends to perform better; however
chromosome clustering and phylogenetic profile associa-
tion scores perform worse. The overall level of perform-
ance is also lower, with approximately 60% of the
enzymes predicted within top 50 candidates (compared
to 71% in E. coli). The performance difference can be par-
tially attributed to lower number of candidate genes in E.
coli (3351 as opposed to 5252 in S. cerevisiae) and wider
availability of the genomic data for bacterial organisms.
For instance, chromosome clustering associations were
calculated on a dataset that contains nearly a hundred
bacterial species and only a handful of eukaryotic
genomes.

As earlier studies have utilized pre-defined metabolic
pathways to establish functional context of a missing
gene, we compared performance of predictions based on
layered metabolic neighborhoods with predictions based
on KEGG pathway membership. A set of KEGG metabolic
pathways for a particular organism provides a list of reac-
tions and enzymes analogous to the E. coli and S. cerevisiae
metabolic models used throughout this manuscript. Such
pathways also represent pre-defined, functionally mean-
ingful partitions of the metabolic network. To compare
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predictive performance, the candidates were evaluated
based on the functional associations with genes in the rel-
evant KEGG pathway, instead of the metabolic network
neighborhood. We find that associations with layered
metabolic neighborhoods are more informative in both E.
coli and S. cerevisiae metabolic models than associations
with enzymes in shared KEGG pathways (Additional file
12). For E. coli the difference in fraction of predicted
enzymes is greatest at low self-ranks (200% at self-rank of
1), and decreases for higher self-ranks (18% at self-rank of
50). This is expected because metabolic neighborhoods
are determined specifically for the desired enzymatic func-
tion and prioritize neighbors into layers of decreasing
functional relevance.

Conclusion

The results presented in this work demonstrate that the
gene encoding a specific metabolic function can be effec-
tively identified from combined functional association
with the metabolic network neighborhood of the desired
function. This indicates that the relationships established
by the local structure of the metabolic network impose
constraints on a wide range of natural processes, such as
gene expression or evolutionary processes on both molec-
ular and genomic scales. Our tests used a combination of
genome context and expression data to identify known E.
coli metabolic enzymes, predicting them within the top 10
(out of 3352) candidates in 60% of the cases. We show
that in the case of both E. coli and S. cerevisiae, combining
multiple types of association evidence results in a signifi-
cantly better prediction performance than that of any
individual association score.

In validating the performance of our method, we relied on
the functional associations established by the metabolic
network neighborhood as the sole source of information
about the desired enzymatic activity. In practice, addi-
tional clues regarding activity or physical properties of the
unidentified enzyme can be often used to narrow down
the set of candidates. These additional clues may provide
restrictions on the phylogenetic profile pattern, protein
size, presence or absence of membrane spanning regions
or specific protein domains. For example, the recently
identified E. coli arabinose-5-phosphate isomerase, yrbH
[55], is predicted as a 10th candidate among all genes, but
is the only candidate within the top 50 with a putative
sugar isomerase domain (see Additional file 17).

The presented approach is limited in its ability to predict
additional functions for the enzyme-encoding genes
already present in the metabolic model. Specifically, eval-
uating an enzyme-encoding gene from the metabolic
neighborhood of a desired enzymatic function as a candi-
date for that function, would typically result in a high
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score regardless of whether the gene actually encodes a
desired enzyme.

Sequence homology to known proteins remains the pri-
mary method of identifying missing enzymes [4,56]. Pre-
dictions based on the association evidence considered in
this work are complementary to homology-based meth-
ods, and can be used to target enzymes that have not been
identified in any organism (referred to as globally missing
enzymes by Osterman et al. [4]). Integration of genome
context information into the refined sequence homology
searches has been shown to improve the predictions [6].
It will be important to analyze how incorporation of
diverse association evidence presented in this work would
improve the performance, in particular in with respect to
the difficult cases of weak or ambiguous sequence homol-
ogy. The overall performance of the presented method can
be improved in a number of ways. The datasets underlying
individual scores can be expanded. Genome divergence
corrections for the chromosome clustering score are also
likely to improve the results. Further extensions can pro-
vide better identification in the cases where multiple miss-
ing genes appear within the same metabolic
neighborhood. This should be particularly helpful for
enzyme identification in poorly studied organisms. In
such organisms, the performance of the method will be
determined by how much is known about the metabolic
neighborhood of the specific enzymatic function. We
hope that the presented method, and its future deriva-
tions, will be important in completing metabolic models
of different organisms.

Methods

Metabolic neighborhoods and network representation
Metabolic network was represented as a graph, with nodes
corresponding to metabolic enzyme-encoding genes and
edges to connections established by the metabolic reac-
tions [20]. Two metabolic genes are connected if the
enzymes they encode share a metabolite among the set of
reactants or products of the reactions they catalyze. Meta-
bolic network distance between enzyme-encoding genes is
calculated as a shortest path in the graph. Distance of
directly connected genes is taken to be 1. A metabolic neigh-
borhood layer of a radius R around a metabolic enzyme X
is defined as a set of all enzyme-encoding genes that are at
the distance R from the enzyme X. A metabolic neighbor-
hood of radius R is a set of neighborhood layers of radii r
<R (Figure 1a).

Detailed metabolic models of E. coli [2] and S. cerevisiae
[21] were used to compile comprehensive connectivity
graphs for these organisms, excluding metabolic connec-
tions established by the following top 14 most common
metabolites: ATP, ADP, AMP, CO,, CoA, glutamate, H,
NAD, NADH, NADP, NADPH, NH;, orthophosphate and

http://www.biomedcentral.com/1471-2105/7/177

pyrophosphate (and corresponding mitochondrial and
external species). Common metabolites tend to connect
enzymes with weak functional associations [20], and their
exclusion generally improves enzyme-encoding gene pre-
dictions. The exclusion threshold was chosen to cover
majority of common co-factors. We note that overall per-
formance results are not sensitive to the exact set of
excluded metabolites (Additional file 13 compares self-
rank performance excluding top 7 and top 20 metabo-
lites). However, changes in the metabolite set can affect
prediction of individual enzymes, in particular those cat-
alyzing key reactions of the excluded metabolites.

Self-rank validation

To assess performance of our method we use self-rank
measure, which quantifies the ability to predict known
metabolic enzymes. A self-rank of a known enzyme-
encoding gene is defined as a rank of that gene among a
set of candidates in an ordering determined by our algo-
rithm (Figure 1b). A set of candidates consist of all genes
in the organism that do not already appear in the meta-
bolic graph (i.e. non-metabolic genes) and the known
enzyme-encoding gene that is being tested. Candidate set
for E. coli contained 3351 open reading frames (ORFs),
and for S. cerevisiae 5252 ORFs. A perfect prediction algo-
rithm would result in a self-rank of 1 (top candidate) for
every metabolic enzyme, and a completely non-informa-
tive method would result in a uniform distribution of
ranks (on the range from 1 to the size of the candidate
set).

The overall performance of the method was measured by
evaluating self-ranks of a set of known enzyme-encoding
genes. The test set includes all enzymes with non-empty
metabolic neighborhoods, with the following exceptions:
test set excludes enzymes from known multi-subunit
complexes, as strong functional association between
members of the same complex would lead to overestima-
tion of algorithm performance; test set also excludes
enzymes that have high sequence homology (BLASTp E
value below 10-19) to some other known metabolic
enzyme in that organism (paralogs). The exclusion of
such paralogous pairs aims to avoid bias stemming from
overlapping ortholog mappings. The resulting set con-
tained 351 enzymes from E. coli metabolism, and 240
from S. cerevisiae.

While paralog filtering allows to minimize bias from over-
lapping ortholog mappings, it also excludes a significant
fraction of known enzymes (50% for E. coli, 62% for S.
cerevisiae), which in itself can be a source of bias. To test
this we calculated algorithm performance omitting indi-
vidual associations between paralogous gene pairs, as an
alternative to removing all paralogs from the test set. We
find that algorithm performance with and without para-
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log filtering is comparable for both E. coli and S. cerevisiae
(see Additional file 15).

Orthology datasets

KEGG ortholog dataset was retrieved from SSDB database
(01/2005) [28]. All available closest homologs and best
bi-directional hits of E. coli and S. cerevisiae genes were
recorded. BLAST-based dataset was constructed using
BLASTp queries against NCBI NR protein dataset (03/
2005), using E-value cutoff of 10-3 and limiting the maxi-
mum number of homologs per query to 6000. To deter-
mine best bi-directional hits, reverse BLASTp queries were
run for every hit against target genome (E. coli or S. cerevi-
siae). NCBI taxonomy identifiers were used to group hits
belonging to the same organism. For E. coli only organ-
isms containing orthologs to more than 4% of genes were
considered (7% for S. cerevisiae). We found that perform-
ance of analogous datasets constructed using TBLASTN
queries was similar.

Phylogenetic profile co-occurrence

Given a set of genomes G = {G;.. Gy, }, a phylogenetic

profile of a gene was represented as a binary vector ¢ of
length N, such that ¢ = 1 if an orthologous gene is

present in genome G;, and & = 0 otherwise.

Assuming that orthologs are independently identically
distributed (IID) within each genome G;, the probability
of observing two profiles of a given similarity under the
null hypothesis is calculated using hypergeometric distri-
bution [25]:

P(k|n,m,N)= Equation 1

(v

where k is the number of ortholog co-occurrences, N is the
size of the genome set G, n and m correspond to the
number of orthologs in the two profiles being compared.
The probability of functional association is then given by
Pyssociation =1— Y, P(k|n,m,N), where K is the number
k>K

of actual ortholog co-occurrences observed between two
specific profiles [11].

If the assumption of identical ortholog distribution
within each genome is relaxed, probability P(k|n, m, N) is
distributed as a sum of independent, non-identical Ber-

noulli variables x;: k ~ z x; , with p(x;) correspond-

min(n,m)
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ing to the probability of observing a match in a given
genome i. This is a special case of the Extended Multivari-
able Hypergeometric distribution [26].

Given a gene x with ortholog occurrence profile &, the
probability of observing k ortholog co-occurrences
between gene x and some other gene y, P(k|n, m, N), is cal-
culated using the following recursive approach. Let
P,(k'|m') be a probability of observing a total of k'
ortholog co-occurrences between gene x and some other
gene y in the genomes G; such thatj <i (Gj;;), where m' is
the number of orthologs of gene y in the genomes G;
Then, by definition, P(k|n, m, N) = Py(k|m).

y<i

Let pfm, be a probability of one of the remaining m'
orthologs of gene y occurring in genome G;. Then P;(k'|m')
can be calculated recursively by considering separately the

cases when an ortholog of gene y does or does not occur
in the genome G;:

Pi(k'|m") = pﬁm, P;(k'|m', ortholog of y occurs in G;) + (1 -

p; v )Pi(k'|m’, ortholog of y does not occur in G;) ~ Equa-

tion 2

Overall recursive definition of P;(k'|m'), including base
cases is given by Equation 3 below:

e (k-1 m’—1)+(1—s;‘)n,, (k’\m’—1)]+(1—p‘“m,)1’H (¥ |m')

Equation 3

-
BN

k<0
k>m

o
o o

where €} is the value of the ortholog occurrence profile

(0 or 1) of gene x in genome G;.

Pi(k'|n', m') is computed using a dynamic programming
approach. The consideration of non-identical distribution
of ortholog frequency within each genome is then local-

ized to pl‘?m, , which in this case is distributed according to

the marginal Extended Hypergeometric distribution. The
marginal form of the distribution is more amenable to the
computational approximations than the regular form.

Since p:.’m, does not depend on the choice of genes x and

¥, we sample p;’m, computationally, taking into account

individual ortholog occurrence frequencies of each
genome. The probability of ortholog occurrence in a spe-

cific genome (pfm,) was sampled computationally by
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drawing from the set of organisms without replacement
with relative probabilities corresponding to the rate of
ortholog occurrences in each genome. In each iteration
draws were performed until all of the organisms were
drawn. A total of 10° such iterations were performed. The
sensitivity was assessed using E. coli phylogenetic profile
data (BLAST-based dataset). At 10¢ iterations, the mean

standard error of plf’m, is 3.0- 10 (estimated from 100

independent runs). The mean standard error of the result-
ing self-ranks of known enzyme-encoding genes is 0.70,
and standard errors for the fraction of known enzyme-
encoding genes predicted below self-rank thresholds of
10,20and 50is< 1019, 8.5- 10%and 1.4 - 10-3 respectively.

To correct for non-independent ortholog occurrence rates,
we first evaluate the distance between a pair of query
genomes X and Y as:

MI(X,Y)

d(X,Y)=—

min(H(X),H(Y))
where MI(X, Y) is mutual information between ortholog
occurrence vectors for genomes X and Y, and H() is Shan-
non entropy of each vector. The ortholog occurrence vec-
tor for a query genome X is a binary vector of length N,
(number of genes in a target organism, i.e. E. coli), such
that value of the ith element is 1 if ortholog of an ith gene
is found in X, and 0 otherwise. Clusters of closely related
organisms (d(X, Y) < 0.8, Equation 4) were determined by
neighbor-joining method [57]. Several ways of summariz-
ing the ortholog co-occurrence vector for a cluster of
closely related organisms were tested: selecting organism
with highest entropy, using AND/OR functions, and using
majority rule. We find that performance of AND function
is optimal for the threshold of d(X, Y) < 0.8, however for
higher thresholds selecting an organism with highest
entropy results in better performance.

Equation 4

In evaluating performance without adjacency-rank rescal-
ing (i.e. Figure 2), total phylogenetic profile association
score between a candidate gene x and a metabolic neigh-
borhood layer L was calculated as:

score (x) =Y, L

geLP(x’g)

where P(x, g) is the probability of observing a given
number of ortholog co-occurrences between genes x and
g, calculated using hypergeometric or extended hypergeo-
metric distribution. Functional form given in Equation 5
will assign high scores to candidates with strong func-
tional associations (i.e. very low values of P(x, g)) to the
genes in the metabolic network neighborhood layer L.

Equation 5

http://www.biomedcentral.com/1471-2105/7/177

Other functional forms, including those with optimized
parameters can be used ([19], Chen and Vitkup, submit-
ted).

To estimate self-rank performance of the COG dataset cor-
recting for the bias in orthology dataset coverage (Figure
2b), the fraction of true enzyme-encoding genes, f pre-
dicted within a particular self-rank threshold t was calcu-
lated as f(t) = o, f'(at), where ¢, is the fraction of test
metabolic enzyme-encoding genes covered by the COG
dataset, o is the fraction of candidate set genes (non-met-
abolic) covered by the dataset, and f' is the performance
on the set of metabolic and candidate genes covered by
the COG dataset.

Gene co-expression

Co-expression association value was calculated as Spear-
man rank correlation [58] between expression profiles. E.
coli co-expression was calculated based on the 180 condi-
tions from the Stanford Microarray Database (SMD data-
set) [59]. S. cerevisiae co-expression was measured based
on the mRNA expression profiles from Rosetta "compen-
dium" dataset [60]. Log10 intensity ratio data was used.
Co-expression of orthologous genes was determined
using KEGG ortholog dataset.

Clustering on the chromosome

The degree to which orthologs of two genes are clustered
on the chromosome was calculated based on the null
hypothesis that genes are randomly distributed across the
chromosomes. Instead of considering gene sizes and exact
nucleotide positions, we concentrated on gene order sta-
tistics.

Given a pair of genes x and y, we define P(d,(x, y)) as the
probability of observing gene order distance dj(x, y) or
smaller between orthologs of genes x and y in a genome g.
Under the null hypothesis, P(dg(x, y)) is calculated
directly, by counting the number of gene pairs in the
organism g that are separated by gene order distance d,(x,

y) or smaller (taking into account chromosome sizes in g).
Clustering of genes x and y in a set of query genomes G

was calculated as P (x,y) = H P( dg (xy )) . The associ-
geG

ation strength between of a candidate gene x for a meta-

bolic neighborhood layer N; was «calculated as
P(x|N;)= ] Pc(xy). The above formulation is
YeN;

based on two major assumptions: (1) gene order distances
to different genes of the neighborhood layer Nj are inde-
pendent, and (2) gene order distances between a specific
pair of genes are independent across different organisms.
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Given a large number of genomes, this evaluation meas-
ure will be biased by the variable divergence of different
organisms from each other. For example, a set of genes
whose orthologs appear only in several closely-related
organisms will appear to be more clustered than the set of
genes spanning more distant genomes. General probabil-
istic correction for the genome divergence depends on the
details of the rearrangement regime, and presents consid-
erable computational difficulties [38,61]. To minimize
the effect of variable genome divergence we have removed
from consideration genomes of closely related species. We
also note that the bias in the prediction performance is
likely to be minimal, as addition of 5 closely related spe-
cies did not affect the results (data not shown).

The results are based on a set of 105 bacterial and three
eukaryotic genomes (S. cerevisiae, S. pombe, C. elegans)
from Genbank. The set was screened to eliminate closely
related species using ortholog occurrence mutual infor-
mation threshold of 0.9. Orthology mapping was estab-
lished using KEGG-based dataset, with best bi-directional
hits.

We note that evaluation of chromosome clustering based
on the nucleotide positions (as opposed to gene order)
produces comparable results (see Additional file 14).

Protein interactions

Interaction likelihood ratios from the PIE dataset by
Jansen et al. [13] were used as pair-wise protein interac-
tion association values.

Protein fusions

Two proteins x and y of a target genome (S. cerevisiae and
E. coli) were taken to be associated through a protein
fusion event if both of the following conditions were met:

1.) x and y are homologous to the same protein z in one
of the query genomes with a BLASTp E value below a spec-
ified threshold (E, . q.04), and with at least 70% of their
sequences aligned to z.

2.) x and y align to different regions of z, or to regions
overlapped by no more than 10% of the shorter protein
among x and y. If x or y align to multiple regions of z, then
any two regions must not overlap.

A set of 70 query genomes, based on the study by Bowers
etal. [11], was downloaded from the Entrez Genome data-
base[62]. Several values of E,;,,,,,i; Were used in generating
enzyme-encoding gene predictions (Figures 3 and 4), with
Eipreshord = 102, 105 and 1010 for E. coli; E,ppn0 = 1073, 10-
5and 10-1%for S. cerevisiae.

http://www.biomedcentral.com/1471-2105/7/177

Adjacency-rank score rescaling, metabolite weighting and
calculation of layer association scores

To perform adjacency-rank score rescaling of raw pair-
wise association values, we calculate likelihood ratio of
metabolic adjacency (alr) for a pair of genes x and y:

N genes

alr(x,y) = Equation 6

x}Padj(rSmax{rZ,rf})

Y
max{rx,r),

where r)fc is a rank of gene y among a set of raw association

values between gene x and all other genes in the organism.
Lower ranks correspond to higher stringency of associa-
tion. N, is the number of genes in an organism. The

probability Py ( r< max{r,{,ryx

}) is calculated as a frac-

tion of metabolically adjacent (i.e. directly connected)

gene pairs with association rank below max max{ Y ,r; } :

i <R

(ab)A
Al

Py (r<R)= Equation 7

where A is a set of all gene pairs (a, b) such that a and b are
directly connected in the metabolic graph, excluding pairs
involving x or y.

Without metabolite weighting, the total association score
between a candidate gene x and a metabolic neighbor-

hood layer L is calculated as
score (x) =Y, exp[alr(x,g)] . Metabolite weighting is
geL

incorporated by calculating total association score as

scorep (x) =Y, w, exp[alr(x,g)],
geL

where

1 . . ..
We = H — o myis the ith metabolite in the shortest
m;eO N pulirs

path © connecting neighborhood gene g with the missing

enzyme. Pt is the total number of gene pairs connected

pairs
by a metabolite m;. If more than one metabolite connects

genes along the path ®, a metabolite with the smallest
N, irs 18 used.

pairs

Direct likelihood-ratio predictor method

The placement algorithm considers each candidate gene
by evaluating P(M|D), which is the conditional probabil-
ity that a given candidate encodes the desired enzyme
(model, M) given all available evidence (data, D - a set of
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Table I: Association scores used in self-rank tests on combined evidence

Evidence type\Organism E.coli

S.cerevisiae

Phylogenetic profile co-occurrence.

* BLAST-based dataset score
* KEGG-based dataset score

Pairwise associations were calculated using extended hypergeometric and folding corrections, on
orthologs established by best bi-directional homology relationship.

Clustering of genes on the chromosome
orthology dataset
Gene co-expression

Rosetta dataset.
Protein fusion
values of Ey einoidt
. 102
. 105
. 1010
Protein interactions

* E. coli SMD expression dataset score
* Expression of E. coli orthologs in S. cerevisiae

Separate scores were calculated for different

* Gene clustering scores. Pairwise associations were calculated on 108 genomes, with KEGG-based

« S. cerevisiae Rosetta expression dataset score
* Expression of S. cerevisiae orthologs in E. coli
SMD dataset.

Separate scores were calculated for different
values of Ey .ot

. 103

. 105

. 1010

* Interaction score based on PIE dataset

layer association scores based on different types of associ-
ation evidence). Following Bayes rule we can calculate
that probability (up to a constant) using

P(D| M) , "
P(M|D)o.—————=, where P(D|M) is the probability
P(D)
of observing existing associating evidence for a true
enzyme-encoding gene. Assuming that different types of
associative evidence scores are independent, we calculate

probabilities as P(D)=[]P. (D, ), where P,(D,) corre-
e

sponds to the posterior of evidence type e. The problem is
therefore transformed into estimating tails of association
score probability distributions over all genes, and
enzyme-encoding genes. For association scores derived
for different types of associating evidence and neighbor-
hood layers these probabilities were evaluated empirically
from the gene counts, assuming that the likelihood of
association increases monotonically with the absolute
value of the score.

The self-rank evaluations of known E. coli and S. cerevisiae
metabolic enzyme-encoding genes (see Self-rank valida-
tion section in Methods) were performed using leave-one-
out validation strategy. In other words, in each case, scores
of the candidate being evaluated are not included when
calculating P(M|D).

Alternating decision tree predictor

The mljava implementation of the AdaBoost algorithm
[51] was used to build ADT classifiers based on a set of
descriptors, corresponding to different association scores
with individual layers of the metabolic network neighbor-
hood. The results presented in Figures 3 and 4 are based
on 10-fold validation, 100 iterations of boosting. The
training sets included data on only 60% of the true nega-

tive (non-metabolic) genes in order to minimize compu-
tational time. The candidate genes were prioritized
according to the value of the classification margin.

Predictions with combined association evidence

The self-rank performance illustrated in Figures 3 and 4
was calculated based on candidate association with first
three layers of metabolic network neighborhood (neigh-
borhood radius = 3). Association with respect to each
layer was described by a separate association score. The
predictions were performed using association score ranks:
given a candidate gene x for a missing enzyme e, the value
of a descriptor was calculated as a rank of score; (x) in a set
of scores S = {score;(y)},.c, where C is a set of all candi-
dates for a missing enzyme e, with higher ranks corre-
sponding to stronger associations. A list of association
scores used in combined evidence prediction for E. coli
and S. cerevisiae metabolic models is given in Table 1.
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