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New insights into modeling exposure 
measurements below the limit of detection
Ana Maria Ortega-Villaa, Danping Liub, Mary H. Wardc, Paul S. Albertb*  

Introduction
In epidemiology studies, environmental measurements often 
have nondetected values below the laboratory limit of detection 
(LOD), which is the analyte’s lowest detectable value that can be 
differentiated from a blank value (absence of substance).1

There have been many methods proposed for incorporating 
biomarkers subject to lower detection limits as measures of 
exposure in risk modeling using logistic regression. These include 
substitution methods that impute a fixed value (LOD, LOD/2, 
LOD / 2, E[X|X ≤ LOD], or sample E[X|X > LOD]) for mea-
surements below the LOD,2–4 multiple imputation,5 making dis-
tributional assumptions on the exposure value, and treating the 
lower limit of detection (LOD) as being left censored.6 Recently, 
a method involving Cox regression and a role reversal between 
the exposure and the outcome was developed to handle measures 

subject to LOD.7 However, for this method, the interpretation of 
the estimated coefficient is not always comparable to that of a 
logistic regression but is the log odds ratio of the outcome com-
paring a subject with X x=  versus all subjects with X x> .

This article provides a fresh look at these approaches, partic-
ularly with respect to assumptions that are inherently nonveri-
fiable (assuming we do not see measurements below the LOD). 
Specifically, we examine the robustness of odds ratio estimation 
in the context of risk using a logistic regression model to the 
distribution of the exposure and to the assumption that the 
relationship between exposure and risk is the same above and 
below the LOD. We perform comparisons through an extensive 
simulation study and in cancer epidemiology. Finally, we pro-
vide recommendations regarding the practical choice of differ-
ent methods to handle LOD issues.

Methods

Study population

Our study population comes from a population-based case-control 
study of non-Hodgkin lymphoma (NHL) in four National Cancer 
Institute-Surveillance Epidemiology and End Results Program (NCI-
SEER) study sites.8 Eligible cases were subjects diagnosed with a first 
primary NHL between July 1998 and June 2000 who were 20–74 
years old and free of HIV. Dust was collected at homes at the time of 
the interview (between February 1999 and May 2001) from vacuum 
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cleaners of participants who gave permission, had used their vacuum 
cleaner within the past year, and had owned at least half their carpets 
or rugs for at least 5 years. Dust samples from 682 cases and 513 
controls were analyzed between September 1999 and September 
2001. The aim of the study was to examine exposure and NHL 
risk due to a mixture of 27 chemicals in house dust, of which we 
are focused on the polychlorinated biphenyl (PCB) congener 180. 
The laboratory measurements were subject to missing data, primar-
ily due to concentrations being below the minimum detection level 
(20.8 ng/g for PCB 180, 75% under LOD). Further details of the 
study design can be found in NCI-SEER study sites.8 In this article, 
we considered a total of 1,180 subjects, 676 (57%) cases and 511 
(43%) controls, where the interest is to estimate the association of 
NHL incidence with the exposure of PCB 180 in dust.

Statistical methods

We review each of the analytic approaches in the context of 
risk using a logistic regression model, discussing important 
assumptions, advantages, limitations, and relationships between 
the different methods. Note that these analytes typically follow 
a log-normal distribution.9–11 The methods considered include: 
utilizing the complete analyte data (i.e., including those values 
considered to be under the LOD which are known for all sim-
ulated datasets), complete case analysis in which one includes 
only measurements above the LOD,5 filling the missing values 
with LOD / 2, and the following four approaches:

Maximum-likelihood approach

This method explicitly accounts for the detection limit by 
assuming that a transformed exposure variable, ti, follows a 
normal distribution left censored at the lower detection limit. 
Consider the following logistic regression model

logit ( =1)= 0 iP y ti
Tβ β α+ +1 zi  (1)

where ti is the log-transformed concentration of the variable 
subject to LOD, zi is a vector containing covariates, and yi rep-
resents the health measure. Model parameters are obtained by 
maximizing the likelihood
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The likelihood maximization can be done by using optimi-
zation functions in standard software, such as optim in R. 
However, estimation using this method is computationally 
intensive due to the required numerical integration in the 
likelihood. We performed this integration using the trapezoi-
dal rule.

Note that if the model is correct, this method is fully efficient. 
However, since we do not observe actual exposure measure-
ments that are below the LOD, both the distribution of ti and 
the linear association between yi and ti below the LOD are non-
verifiable assumptions. Treating values below the LOD as cen-
sored observations has been referred to as Tobit regression12,13 in 
the economics literature.

Multiple imputation

Rather than accounting for the detection limit by integrat-
ing over the unobserved range of the exposure as in the maxi-
mum-likelihood method, in this methodology, the analyte values 
under the LOD are imputed based on estimating the analyte 
value distribution using only values above the LOD. Values 
below the LOD are then imputed based on the estimated ana-
lyte distribution. Lubin et al9 proposed the following six-step 
algorithm for estimation:

Step 1: Let N be the number of subjects in the study. Create 
a bootstrap sample by sampling subjects with replacement from 
the original dataset until a bootstrap dataset of size N is obtained.

Step 2: Estimate parameters of the assumed distribution for 
the analyte. In this case, we considered a log-normal distribution 
with mean μ and variance σ2, labeled �µ  and �σ 2. These parame-
ters can be estimated by maximizing the likelihood:
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where φ  represents the standard normal probability density 
function and Φ  represents the standard normal cumulative den-
sity function.

Step 3: Compute F LOD; ,� �µ σ 2( )  where F( )•  represents the 
cumulative log-normal distribution. Generate P from a Uniform 
[0 2, ; ,F LOD � �µ σ( )]. Impute the required observations from 
F P− ( )1 2; � �µ,σ .

Step 4: Fit the logistic regression model using the bootstrap 
sampled dataset

logitP y t i Ni i
T=( ) = + + =1 10 1β β α zi , ,...,

where ti represents the concentration of the analyte in the boot-
strap dataset.

Step 5: Repeat Steps 1–4M times; we repeated the process 100 
times. It has been stipulated that 3 to 10 times should be enough.9

Step 6: Combine the estimates of the M datasets. The sample 
mean of the bootstrap datasets will be the β coefficient, and the 
sample standard deviation will be the standard error.5

We consider the multiple imputation procedure for cases 
and controls together,9 implicitly assuming that β1=0. Thus, we 
would expect some attenuation in the estimation of β1 in this 
case. This could alternatively be done by doing multiple impu-
tation separately for cases and controls. However, when the 
study is large and multiple outcomes are present, stratifying the 
imputation by each outcome may be unfeasible given that the 
imputation would need to be done for each outcome. Lubin et 
al9 allow the imputation to incorporate individual covariates, so 
the imputation model in step 3 can be a linear regression model. 
We would expect multiple imputation to be less efficient than 
the maximum-likelihood approach.

Cox regression approach

In this methodology, the LOD exposure variable is treated 
as a censored outcome and Cox regression is used to analyze 
the data.7 This approach is particularly attractive since it does 
not explicitly require making any assumptions about the distri-
bution of the analyte under the LOD or about the relationship 
between exposure and outcome under the LOD. This methodol-
ogy can be applied as follows:

Step 1: Reverse the scale to change the censoring direction 
and obtain right-censored data. This can be done by selecting M 
a constant greater than or equal to the maximum of the measure 
subject to LOD.
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Step 2: Use Cox regression to analyze the right-censored data. 
Let i N= 1,...,  represent the subject, ti be the concentration of 
the variable subject to the LOD, ci represent a concentration 
variable where c t LODi i= ( )max , , δi  be a censoring indicator 
which equals one when t LODi >  and zero otherwise, yi repre-
sent the health measure, x M ci i= − , and zi represent covariates. 
Use standard software to fit the Cox regression model; in our 
case, this was the R function coxph from the survival package,14 
using xi as the right-censored outcome, δi as the censoring indi-
cator, and yi and zi as covariates for i N= 1, ..., .

Dinse et al7 interpret the Cox regression coefficient corre-
sponding to yi, defined as γ1, as the log odds ratio relating ti to 
the binary variable yi. Note that the odds ratio estimated in this 
approach cannot be interpreted in the same way as the odds 
ratios from all the other approaches. In this case, the interpreta-
tion of γ1 is a log odds ratio of the outcome comparing a subject 
with T t=  versus all subjects with T t> , i.e.,

exp
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Section A.1 of the Appendix shows the special cases when γ1 
and β1 have the same interpretation. Although it appears that 
Cox regression makes few assumptions on the distribution of 
the exposure, the proportional hazards assumption is indeed 
very strong and constrains the shape of the dose-response rela-
tionship. With simulation studies, we found that when Equation 
1 is the correct model, the proportional hazards assumption will 
be severely violated for most parameter values (data not shown).

Missing indicator method

This method uses only data that can be observed.15 Let ti rep-
resent a log-transformed concentration of the variable subject 
to LOD, δi be a missing indicator which is equal to one when 
ti>LOD and zero otherwise, zi be a vector containing covariates, 
and yi represent the dichotomous disease outcome. The following 
logistic regression model can be fit using any standard software.

logit P y t LODi i i
T=( ) = + −( ) + +1 0 1 2β β β δ α zi  (3)

In this model β2 represents the log odds of disease when at 
the LOD versus below the detection limit, and β1 is the effect of 
a unit change in the analyte above the detection limit. The main 
advantage of this approach is that no distributional assump-
tions are made about information we do not observe, given that 
we do not model the tail of the exposure distribution.

Simulation study

We conducted a thorough simulation study to examine the per-
formance of the methodologies described above. We considered 
the cases where (1) the assumed Gaussian distribution for the 
log-transformed analyte is correct and the linear effect on the log-
odds is true across the whole range of ti (above and below LOD), 
(2) the effect of the analyte is different below the LOD than above 
this value, and (3) the tail distribution below the LOD is non-nor-
mal and therefore misspecified. In all cases, log-transformed analyte 
values ti were generated from a normal distribution with a mean 
μ = 0 and variance σ2 = 2.45 or 1. For simplicity, no covariates 
were considered in the simulation study. For all scenarios, we set 
the sample size N = 2000 and repeated the simulations 1,000 times.

Case 1: Normal distribution of ti

In this scenario, the log-transformed analyte values follow 
a Gaussian distribution, and the distribution of ti below the 
LOD is correctly specified. Further, we correctly model the dose 

response as linear on the log odds ratio both above and below 
the LOD. The disease outcome was generated from a binomial 
distribution with corresponding logistic regression model

logitP Y ti i=( ) = − +1 0 81 0 95. . .
 (4)

We investigated the performance of the methodologies at four 
different LOD cutoff points and two values of σ. For σ2 = 2.45, 
we evaluated cutoffs with 16%, 20%, 30%, and 50% values 
below the LOD. For σ2 = 1, we considered scenarios with 6%, 
8%, 20%, and 47% values below the LOD. In this case, the sim-
ulated odds ratio of going from the first quantile of the analyte 
to the third is 8.06.

Table  1 presents the coefficient estimates, standard errors, 
and Monte Carlo standard errors for each of the methods for 
a true value of β1 = 0.95. We found that with LOD = 0.2 and 
LOD = 0.25 (i.e., 16% and 20% below the LOD for σ2 = 2.45 
and 6% and 8% for σ2 = 1), almost all methods (with the excep-
tion of Cox regression and fill-in LOD / 2 ) provided nearly 
unbiased results. When the proportion of values below the LOD 
increases, the multiple imputation shows increasing attenuation 
results due to combining cases and controls for imputation. In 
addition, estimates from Cox regression and fill-in LOD / 2  
provide increased bias with an increasing proportion of mea-
surements below the LOD. For all approaches, the variance esti-
mation was unbiased since the mean estimated standard errors 
were close to the Monte Carlo standard error.

Further, for this particular case with σ2 = 2.45 and 30% val-
ues under the LOD, we calculated the empirical type 1 error rate 
(simulating β1 = 0) and power for three different values of β1 
(0.2, 0.15, and 0.1). Table 3 presents the results of these simula-
tions. Note that all the methods have acceptable empirical type 
1 error rates. In addition, when the model is correctly specified 
all methods have high power to detect all three values of β1.

Case 2: Normal distribution of .. and no effect for values 
under LOD

In this scenario, the analyte is normally distributed as in case 1, 
but there is no effect of the biomarker on outcome below the 
LOD. For most environmental biomarkers subject to a LOD, it 
is difficult to verify an assumed relationship between the bio-
marker and disease outcome for values below the LOD. In some 
cases, we can use external information such as a more sensi-
tive assay on a smaller number of study participants to assess 
this relationship, but depending on the study and exposure, this 
may not be possible. The assumption that this relationship is 
the same for values below and above the LOD is a very strong 
assumption. We examine each of the approaches assuming that 
the relationship has a no-dose response below the LOD. In this 
case, the disease outcome was generated from a binomial dis-
tribution with corresponding logistic regression model given by 
Equation 5, where I t LODi >( )  is an indicator function with value 
of one if t LODi >  and zero otherwise.

logitP Y t Ii i t LODi
=( ) = − + × >( )1 0 81 0 95. . .

 (5)

In this case, the outcome is affected by the exposure only 
when the exposure is above the LOD. We considered the same 
LOD cutoff points as in case 1, for both σ2 = 2.45 and σ2 = 1. For 
this simulation, the odds ratio of going from the first quantile of 
the analyte to the third is 7.49.

Table 2 presents the results of this simulation. Given that the 
relationship between the analyte and disease outcome is different 
for values of ti above and below the LOD, we find that most meth-
ods provide severely biased estimates of β1 even in cases where 
the number of values below the LOD is small (i.e., 16% for σ2 = 
2.45 and 6% for σ2 = 1). However, the two methods that focus on 
observable information, where we either ignore the values below 
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the LOD (complete case analysis) or account for this missingness 
by using a missing indicator as in Equation 3, provide nearly unbi-
ased estimates for all considered missingness evaluations. When 
there are no additional covariates, these two methods will give 
identical slope estimates. The difference between the two is that 
the model (3) provides the estimate β2, which can be used to assess 
whether there is an effect for values of the analyte below the LOD.

In addition, we considered σ2 = 2.45 and 30% values under 
the LOD to evaluate the empirical power and type 1 error rates 
for β1 = 0 (type 1 error rate) and β1 = 0.2, 0.15, 0.1 (power). We 
chose the β1 to be low given we had 100% power for β1 = 0.95  
and 0.45. Table 3 presents the results of these simulations. We 

found that all the methods have empirical type 1 error rates 
close to the nominal 0.05 rate. In terms of power, we found that 
all methods had empirical power above 90% to detect β1 = 0.2,  
except the Cox regression approach (75.6%). For the case of β1 
= 0.15, the only methods that had power close to 80% were the 
maximum-likelihood approach (0.807), the complete case anal-
ysis (79.8%), missing indicator method (78.1%), and the fill-in 
method (84.4%). In this case, the Cox regression case had power 
less than 60%. For β1 = 0.1, no methods had power above 50%.

Unlike all the other methods, the missing indicator approach 
requires a two degree of freedom test, for testing the relationship 
between the analyte subject to LOD and the outcome. For this 

Table 1.

Simulation results for case 1: Correct model specification

Variance = 2.45

LOD = 0.2 (16% under) LOD = 0.25 (20% under) LOD = 0.45 (30% under)
LOD = 0.95 (50% 

under)

β1 SE MC SE β1 SE MC SE β1 SE MC SE β1 SE
MC 
SE

True exposure 0.95 0.06 0.06 0.95 0.06 0.06 0.95 0.06 0.06 0.95 0.06 0.06
Maximum likelihood 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.06 0.06
Multiple imputation 0.95 0.06 0.06 0.95 0.06 0.06 0.93 0.06 0.06 0.82 0.07 0.06
Cox regression 0.84 0.05 0.05 0.85 0.05 0.05 0.89 0.05 0.06 1.02 0.06 0.07
Complete case analysis 0.95 0.06 0.06 0.95 0.07 0.07 0.95 0.08 0.08 0.96 0.11 0.11
Fill-in LOD/√2 0.99 0.06 0.06 1.01 0.06 0.06 1.106 0.07 0.07 1.33 0.09 0.09
Missing indicator 0.95 0.06 0.06 0.95 0.07 0.07 0.95 0.08 0.08 0.96 0.11 0.11

Variance = 1

LOD = 0.2 (6% under) LOD = 0.25 (8% under) LOD = 0.45 (20% under) LOD = 0.95 (47% 
under)

β1
SE MC SE β1

SE MC SE β1
SE MC SE β1

SE MC 
SE

True exposure 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.05 0.05
Maximum likelihood 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.05 0.05
Multiple imputation 0.95 0.05 0.05 0.94 0.05 0.05 0.91 0.05 0.05 0.81 0.06 0.05
Cox regression 1.25 0.05 0.06 1.26 0.05 0.06 1.31 0.05 0.06 1.45 0.06 0.06
Complete case analysis 0.95 0.05 0.05 0.95 0.06 0.06 0.96 0.07 0.06 0.96 0.09 0.09
Fill-in LOD/√2 1.05 0.05 0.05 1.07 0.05 0.05 1.17 0.06 0.06 1.36 0.07 0.08
Missing indicator 0.95 0.05 0.05 0.95 0.06 0.06 0.96 0.07 0.06 0.96 0.09 0.09

Coefficients represent the average β
1
 over the 1,000 datasets, the SE corresponds to the average SE over the 1,000 datasets, and MC SE corresponds to the standard deviation of β

1
 over the 1,000 datasets.

MC SE indicates Monte Carlo standard error; SE, standard error.

Table 2.

Simulation results for case 2: Correct model specification when β1 ≥ LOD and no effect when β1 < LOD

Variance = 2.45

LOD = 0.2 (16% under) LOD = 0.25 (20% under) LOD = 0.45 (30% under) LOD = 0.95 (50% under)

β1 SE MC SE β1 SE MC SE β1 SE MC SE β1 SE
MC 
SE

True exposure 0.56 0.04 0.04 0.54 0.04 0.04 0.48 0.03 0.04 0.46 0.03 0.04
Maximum likelihood 0.62 0.04 0.05 0.59 0.04 0.05 0.53 0.04 0.04 0.56 0.04 0.05
Multiple imputation 0.58 0.04 0.04 0.54 0.04 0.04 0.48 0.04 0.03 0.46 0.04 0.03
Cox regression 0.67 0.05 0.06 0.65 0.05 0.06 0.67 0.05 0.06 0.88 0.06 0.06
Complete case analysis 0.95 0.05 0.05 0.95 0.05 0.06 0.96 0.07 0.06 0.96 0.09 0.09
Fill-in LOD/√2 0.79 0.04 0.04 0.78 0.05 0.04 0.80 0.05 0.05 0.94 0.06 0.06
Missing indicator 0.95 0.05 0.05 0.95 0.06 0.06 0.96 0.07 0.06 0.96 0.09 0.09

Variance = 1

LOD = 0.2 (6% under) LOD = 0.25 (8% under) LOD = 0.45 (20% under) LOD = 0.95 (47% under)

β1
SE MC SE β1

SE MC SE β1
SE MC SE β1

SE MC 
SE

True exposure 0.76 0.05 0.06 0.70 0.05 0.06 0.55 0.05 0.05 0.486 0.05 0.05
Maximum likelihood 0.85 0.06 0.06 0.74 0.06 0.07 0.60 0.06 0.06 0.63 0.06 0.07
Multiple imputation 0.76 0.06 0.06 0.70 0.06 0.06 0.55 0.05 0.05 0.488 0.06 0.0495
Cox regression 0.57 0.05 0.06 0.52 0.05 0.06 0.44 0.05 0.05 0.593 0.06 0.06
Complete case analysis 0.95 0.06 0.06 0.95 0.07 0.07 0.95 0.08 0.08 0.949 0.11 0.11
Fill-in LOD/√2 0.86 0.06 0.06 0.84 0.06 0.06 0.80 0.06 0.06 0.93 0.08 0.08
Missing indicator 0.95 0.06 0.06 0.95 0.07 0.07 0.95 0.08 0.08 0.95 0.11 0.11

Coefficients represent the average β
1
 over the 1,000 datasets, the SE corresponds to the average SE over the 1,000 datasets, and MC SE corresponds to the standard deviation of β

1
 over the 1,000 datasets.

MC SE indicates Monte Carlo standard error; SE, standard error.
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reason, it could suffer from loss of power. Table 3 demonstrates 
that this possible loss of power is minimal, and in most cases, it 
results in power comparable to the methods with highest power.

Case 3: Normal distribution of ti above LOD and uniform 
distribution below LOD

In this scenario, the effect of the analyte on the outcome remains 
the same above and below the LOD as in Equation 4, but the 
distribution of log-transformed analyte values is Uniform l u,[ ]  
below the LOD and a truncated normal(0,σ2) above the LOD, 
where the resulting distribution is not discontinuous, as can be 
seen in Figure 1. Details of the parameters l and u can be found 
in the Appendix.

Figure 1 presents a visual representation of the distribution 
from which analyte values ti were generated for each LOD value. 
In Figure 1, the solid line represents the normal distribution, the 
dashed line represents the uniform distribution, and the shaded 
area corresponds to the distribution from which the analyte val-
ues were generated. Panel (A) corresponds to simulations where 
σ2 = 2.45 and panel (B) to those where σ2 = 1

Table 4 contains the results of this simulation. In this situation, 
none of the studied methods provide unbiased estimates of β1. 
However, for σ2 = 2.45, in the case of 16% and 20% under LOD, 
the multiple imputation approach provides minimum bias. In 
addition, for 20% under LOD, the maximum-likelihood approach 
ties the multiple imputation for minimum bias, and for larger per-
centages of missing values, the analytic method provides minimum 
bias. In the case of σ2 = 1, a similar pattern emerges where the mul-
tiple imputation and maximum-likelihood methods provide the 
minimum bias, but in addition, the observable-only methods (i.e., 
complete case analysis and the missing indicator method) match 
these bias results for 16% and 20% under LOD. For the case of 
LOD = 0.95, the bias in the observable-only methods is due to 
small sample size bias. For this simulation, the odds ratio of going 
from the first quantile of the analyte to the third is 7.49.

A separate simulation with a large sample (n = 20,000) was 
conducted to examine this bias, and we found that for a large 
sample with 50% values under LOD, the estimates are 0.97, 0.93, 
1.11, 0.95, 1.41, and 0.95 for the maximum-likelihood, multiple 
imputation, Cox regression, complete case analysis, fill-in, and 
missing indicator approaches, respectively. These results highlight 
the advantages of approaches that use only the observed data 
(complete case analysis or the missing indicator approach).

Case 4: Mixture distribution of the analyte

In this scenario, the log-transformed analyte values follow the 
mixture distribution

f t ti i( ) = × + −( ) ( )θ θ φ0 1

where φ ti( )  is a normal distribution with mean 0 and variance 
σ2 = 2.45. We set the LOD to be 0 and considered two values of θ 
= 0.25 and 0.5. This corresponds to the situation where LOD val-
ues are either censored values of an exposure distribution or true 
zeros, a situation that occurs quite commonly in environmental 
epidemiology.16 We correctly modeled the dose response as linear 
on the log odds ratio both above and below the LOD and gener-
ated the disease outcome from a binomial distribution as in (4).

Table 5 presents the coefficient estimates, standard errors, and 
Monte Carlo standard errors for each of the methods for a true 
value of β1 = 0.95. We found that the Cox regression method 
is highly biased, and the maximum-likelihood approach has a 
small amount of bias in this situation. In addition, we found that 
for both values of θ, the remaining methods are nearly unbiased.

Data example: NCI-SEER NHL study

In this section, we present an illustration of the evaluated meth-
ods using one analyte from the NCI-SEER NHL study, PCB 180. 
Further, we present parameter estimates and likelihood ratio test 
results for PCB 180 and γ–Chlordane to illustrate expanding 
the missing indicator approach. The chemical measurements 
were obtained from carpet dust samples where the quantity of 
collected material was limited. Given this limited quantity, using 
a more sensitive assay to characterize the distribution below the 
LOD was not possible.

The NCI-SEER NHL study8 is a population-based case-con-
trol study of non-Hodgkin lymphoma (NHL) to determine asso-
ciations between pesticides found in used vacuum cleaner bags 
and NHL. Carpet dust samples were collected and analyzed for 
30 pesticides in the homes of subjects in across the United States 
(Detroit, Iowa, Los Angeles, and Seattle).

The laboratory measurements were subject to missing data, 
primarily due to concentrations being below the minimum 
detection level (20.8 ng/g for both PCB 180 and γ–Chlordane). 
In this article, we considered a total of 1,180 subjects, 676 
(57%) cases and 511 (43%) controls; the analytes were chosen 
due to the number of observations below the LOD, with PCB 
180 having 75% values subject to the LOD, and γ–Chlordane 
38% values below the LOD. Further details of the study design 
can be found in Colt et al.10

Table 6 presents estimates of β1 for PCB 180 obtained through 
the evaluated methodologies, adjusting for site, sex, educa-
tion, and age, as in Colt et al.10 We find that the complete case 
analysis method and the missing indicator method (β2 = 0.51,  
nonsignificant) provide very similar results, whereas the substitution 
method, the Cox regression, the maximum-likelihood, and the mul-
tiple imputation approach provide estimates that are different both 
in magnitude and in sign (complete case and missing indicator pres-
ent negative estimates, and the other methods positive estimates). 
Interestingly, we find that the Cox regression is the only method 
that provides a significant result. However, we have concerns about 

Table 3.

Empirical type 1 error rates and power for the case where we have 30% values under LOD, under a correctly specified model (case 1), 
and a model in which we have a correct model specification when ti ≥ LOD and no effect when ti < LOD (case 2) for several values of β1

Method

Case 1: Correctly specified model Case 2: No effect under LOD

Type 1 rate  
β1 = 0

Power  
β1 = 0.2

Power  
β1 = 0.15

Power  
β1 = 0.1

Type 1 rate  
β1 = 0

Power  
β1 = 0.2

Power  
β1 = 0.15

Power  
β1 = 0.10

True exposure 0.052 1.00 0.996 0.875 0.052 0.925 0.724 0.409
Maximum likelihood 0.046 1.00 0.993 0.879 0.055 0.949 0.807 0.474
Multiple imputation 0.043 1.00 0.993 0.840 0.043 0.931 0.711 0.372
Cox regression 0.057 1.00 0.991 0.8223 0.057 0.757 0.529 0.264
Complete case analysis 0.046 0.967 0.978 0.982 0.046 0.967 0.798 0.482
Fill-in LOD/√2 0.050 1.00 0.991 0.815 0.05 0.982 0.844 0.517
Missing indicator 0.047 1.00 0.988 0.788 0.047 0.965 0.781 0.439

Note the test for the missing indicator approach is a two degree of freedom test ( : ).Ho β β1 2 0= =
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interpreting this finding due to empirical evidence that the propor-
tional hazard assumption is not met. Figure A.1 in the Appendix 
presents the Kaplan–Meier curve for this scenario.

In addition, we used the missing indicator approach to fit a 
model with both chemicals (PCB 180 and γ–Chlordane). We 
used a likelihood ratio test to simultaneously test the coefficients 
β1 and β2 associated with the observed values of the analytes and 
the missing indicator. We found that PCB 180 was not statisti-
cally significant (β1 = –0.062, β2 0 532 0 116= =. , .P ), and nei-
ther was γ − Chlordane (β1 = 0.124, β2 0 554 0 229= − =. , .P ).

Discussion
In this article, we have compared numerous ways in which expo-
sure data with detection limits have been analyzed in the epide-
miology literature. Typically, maximum-likelihood or multiple 
imputation approaches have been used, which make very strong 
assumptions about the distribution of the exposure variable and 
the relationship between this variable and the outcome below the 
LOD. We note that there is extensive literature on additional meth-
ods to model exposure measurements below the limit of detection 

(examples include Helsel17 and Gillespie et al,18 among others). 
In this article, we show that the regression coefficient β1 can be 
severely biased when assumptions about behavior below the detec-
tion limit are not met, even with a relatively small proportion of 
measurements below the LOD. Unfortunately, unless we actually 
measure values below the LOD, it is not possible to verify the dis-
tribution or the relationship with the outcome below the LOD.19 
The multiple imputation method suffers from even more bias than 
the maximum-likelihood estimator, resulting in a biased estimator 
even under the correctly specified parametric modeling assump-
tions. This happens because the imputation method proposed by 
Lubin et al9 does not impute separately by disease status. For many 
applications, developing an imputation method that includes dis-
ease outcome is difficult since the imputation procedure has to be 
redone whenever the disease outcome is changed, which can be 
computationally expensive in large epidemiology studies.

Dinse et al7 proposed an interesting approach for analyzing 
data with a LOD that does not make explicit modeling assump-
tions about the exposure distribution below the detection limit. 
Their approach reverses the outcome and covariate by treating 
the analyte subject to a LOD as a left-censored variable and 

Figure 1. Simulation Case 3: Uniform distribution under LOD. The solid line represents the normal distribution, the dashed line represents the uniform distribution, and 
the shaded area corresponds to the distribution from which the analyte was generated. A and B, Correspond to simulations where σ2 = 2.45 and σ2 = 1, respectively.
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disease outcome as a covariate. The interpretation of their pro-
posed odds ratio is the odds of disease when the analyte is at a 
value of t divided by the odds when the analyte is less than t, 
which is not the standard odds ratio used for the other meth-
ods. Further, Dinse et al7 assumed that the proportional hazards 
assumption is correct. When we generated data from a logistic 
regression with left-censored analyte values, the resulting haz-
ards for cases and controls were not proportional. For hypothesis 
testing under the scenarios we considered, the type 1 error rate 
was inflated relative to the nominal level of 0.05, and the power 
was reduced as compared with many of the other approaches 
considered.

Other, more flexible approaches that nonparametrically 
model the analyte above the detection limit have been pro-
posed.20 However, even this methodology makes strong unver-
ifiable modeling assumptions for the distribution and effects 
below the LOD. This approach uses information about the 
correlation between other covariates and the analyte to flexibly 
model the analyte below the LOD. In this case, there is very 
little information of this type when these other covariates have 
little correlation with the analyte. Further, the assumption that 
the correlation structure between covariates and the analyte of 

interest is the same when the analyte is below the LOD as when 
it is above is itself a strong assumption.

The missing indicator method,15 where the relationship between 
the analyte and disease risk is modeled only above the detection 
limit, does not make any assumptions about what happens below 
the LOD. Although less efficient than the maximum-likelihood 
approach under a correctly specified model, it is highly robust to 
unverifiable modeling assumptions. For this method, an intercept 
term at the LOD and a slope parameter are both needed to assess 
the relationship between the analyte and disease risk. Thus, a test 
of association between these two variables would require a joint 
test of two parameters that are equal to zero.

In most practical situations, our results suggest that the 
missing indicator method may be the best choice for analyzing 
analytes with detection limits. These results provide further evi-
dence to the findings of Chiou et al,15 who recommend the miss-
ing indicator method for practical use. This missing indicator 
method can be adapted for settings where multiple laboratories 
with different LOD values are used. In this case, a separate miss-
ing indicator term could be added to account for the laborato-
ry-specific LOD. Alternatively, one could fit the model for each 
laboratory and take a weighted average of the laboratory-spe-
cific slope estimates (weighted by the inverse variance of each 
laboratory-specific slope estimate).

For simplicity, our simulations focused on the simple 
case where, no confounders were included as covariates, no 

Table 4.

Simulation results for case 3: Uniform distribution under LOD

Variance = 2.45

LOD = 0.2 (16% under) LOD = 0.25 (20% under) LOD = 0.45 (30% under) LOD = 0.95 (50% under)

β1 SE MC SE β1 SE MC SE β1 SE MC SE β1 SE
MC 
SE

True exposure 0.94 0.06 0.06 0.94 0.06 0.06 0.93 0.06 0.05 0.92 0.06 0.05
Maximum likelihood 0.93 0.05 0.04 0.91 0.05 0.05 0.92 0.05 0.05 0.91 0.05 0.06
Multiple imputation 0.94 0.06 0.06 0.94 0.06 0.06 0.94 0.06 0.06 0.86 0.07 0.06
Cox regression 0.84 0.05 0.05 0.83 0.05 0.05 0.91 0.05 0.05 1.07 0.06 0.06
Complete case analysis 0.94 0.06 0.06 0.94 0.06 0.06 0.92 0.08 0.07 0.89 0.11 0.10
Fill-in LOD/√2 0.98 0.06 0.06 0.98 0.06 0.06 1.10 0.07 0.06 1.34 0.09 0.08
Missing indicator 0.94 0.06 0.06 0.94 0.06 0.06 0.92 0.08 0.07 0.89 0.11 0.20

Variance = 1

LOD = 0.2 (6% under) LOD = 0.25 (8% under) LOD = 0.45 (20% under) LOD = 0.95 (47% under)

β1
SE MC SE β1

SE MC SE β1
SE MC SE β1

SE MC 
SE

True exposure 0.94 0.06 0.06 0.94 0.06 0.06 0.93 0.06 0.06 0.91 0.06 0.05
Maximum likelihood 0.99 0.06 0.06 0.98 0.06 0.06 0.93 0.06 0.07 0.94 0.07 0.07
Multiple imputation 0.93 0.06 0.06 0.92 0.06 0.06 0.87 0.06 0.06 0.72 0.07 0.05
Cox regression 0.82 0.05 0.05 0.82 0.05 0.05 0.83 0.05 0.05 0.91 0.06 0.06
Complete case analysis 0.94 0.06 0.06 0.93 0.07 0.06 0.92 0.08 0.07 0.89 0.11 0.10
Fill-in LOD/√2 0.97 0.06 0.06 0.99 0.06 0.06 1.05 0.07 0.06 1.20 0.09 0.08
Missing indicator 0.94 0.06 0.06 0.93 0.07 0.06 0.92 0.08 0.07 0.89 0.11 0.10

Correct model specification. Coefficients represent the average β
1
 over the 1,000 datasets, the SE corresponds to the average SE over the 1,000 datasets, and MC SE corresponds to the standard deviation 

of β
1
 over the 1,000 datasets.

MC SE indicates Monte Carlo standard error; SE, standard error.

Table 5.

Simulation results for case 4: Mixture distribution of the analyte

Method
θ = 0.25 θ = 0.5

β1 SE
MC 
SE β1 SE

MC 
SE

True exposure 0.954 0.055 0.055 0.952 0.068 0.069
Maximum likelihood 0.975 0.057 0.069 0.972 0.070 0.085
Multiple imputation 0.958 0.056 0.056 0.956 0.068 0.070
Cox regression 1.825 0.060 0.059 2.442 0.075 0.073
Complete case analysis 0.954 0.055 0.055 0.952 0.068 0.069
Fill-in LOD/2 0.954 0.055 0.055 0.952 0.068 0.069
Missing indicator 0.954 0.055 0.055 0.952 0.068 0.069

Coefficients represent the average β
1
 over the 1,000 datasets, the SE corresponds to the average SE over 

the 1,000 datasets, and the MC SE corresponds to the standard deviation of β
1
 over the 1,000 datasets.

MC SE indicates Monte Carlo standard error; SE, standard error.

Table 6.

NCI-SEER NHL study data estimates

Method
PCB 180

β1 SE

Maximum likelihood 0.005 0.039
Multiple imputation 0.036 0.029
Cox regression 0.277 0.120
Complete case analysis –0.050 0.140
Fill-in LOD/√2 0.112 0.068
Missing indicator –0.053 0.140
Missing indicator β

2
0.511 0.576

PCB indicates polychlorinated biphenyl; SE, standard error.
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interactions of covariates with the biomarker subject to an LOD, 
and only a single biomarker is subject to a LOD. We expect 
similar results for more complex models that may be used in 
environmental epidemiology. Namely, the missing indicator 
model will be more robust to unverifiable modeling assump-
tions than the competing approaches. Further, for the case of 
multiple biomarkers subject to LODs, the maximum-likelihood 
and Cox modeling approaches are very difficult to implement. 
In contrast, the missing indicator model naturally extends to 
even high-dimensional biomarkers all subject to LOD.

All methods can be extended to multivariate analyte mea-
surements. The missing indicator method is appealing since it 
is very easy to extend to this case since it naturally extends to 
even high-dimensional biomarkers all subject to LOD. All that 
is required is adding two independent variables corresponding 
to an intercept and slope effect for each biomarker. The max-
imum-likelihood approach is computationally challenging to 
adapt to this case since it requires multivariate integration to 
evaluate the likelihood. The reversed method described by Dinse 
et al7 requires multivariate survival analysis techniques to imple-
ment in this situation, and this is stated as an area of future 
research by the authors.
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A. Appendix

A.1. Details on the Cox regression approach

Logistic regression assumes

logitP Y X=( ) = +1 0 1β β ,

which is equivalent to the density ratio model:
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 On the other hand, a Cox regres-

sion model for X assumes that
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As pointed out by Dinse et al,7 the interpretation of γ1 is a log 
odds ratio of the outcome comparing a subject with X = x ver-
sus all subjects with X x> , i.e.,
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In order for the Cox regression and the logistic regression to be 
compatible with each other and that β1 1= −γ , we need

S X Y S X Y X| | exp ( )*=( ) = =( ) + +1 0 0 1 1β β β

for all values of X. Taking the derivative of X on both sides of 
the equation yields
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A.2. Simulation details and results: Case 3

In this scenario, the effect of the analyte on the outcome remains 
the same above and below the LOD, but the distribution of ana-
lyte values is Uniform [ l u, ] below the LOD and normal( 0 2,σ )  
above the LOD. The uniform parameters were selected so that 
the area under the distribution curve is equal to one. Table 
A presents the uniform distribution parameters used in the 
simulation.

Table A. 

Uniform distribution parameters for simulation case 3

 LOD
σ2 = 2.45 σ2 = 1

l u l  

0.2 –2.62 4.03 –2.10 7.05
0.25 –2.48 3.68 –1.93 4.62
0.45 –2.16 2.31 –1.53 1.92
0.95 –1.96 1.96 –1.26 1.25

Figure A. 1. Kaplan-Meier plot of Cases and Controls for the NCI-SEER NHL 
study.


