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Abstract

Background: Several studies have investigated the effect of known adult body mass

index (BMI) associated single nucleotide polymorphisms (SNPs) on BMI in childhood.

There has been no genome-wide association study (GWAS) of BMI trajectories over

childhood.

Methods: We conducted a GWAS meta-analysis of BMI trajectories from 1 to 17 years of

age in 9377 children (77 967 measurements) from the Avon Longitudinal Study of

Parents and Children (ALSPAC) and the Western Australian Pregnancy Cohort (Raine)

Study. Genome-wide significant loci were examined in a further 3918 individuals (48 530

measurements) from Northern Finland. Linear mixed effects models with smoothing

splines were used in each cohort for longitudinal modelling of BMI.
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Results: A novel SNP, downstream from the FAM120AOS gene on chromosome 9, was

detected in the meta-analysis of ALSPAC and Raine. This association was driven by a dif-

ference in BMI at 8 years (T allele of rs944990 increased BMI; PSNP¼1.52�10�8), with a

modest association with change in BMI over time (PWald(Change)¼0.006). Three known

adult BMI-associated loci (FTO, MC4R and ADCY3) and one childhood obesity locus

(OLFM4) reached genome-wide significance (PWald<1.13� 10�8) with BMI at 8 years

and/or change over time.

Conclusions: This GWAS of BMI trajectories over childhood identified a novel locus that

warrants further investigation. We also observed genome-wide significance with previously

established obesity loci, making the novel observation that these loci affected both the level

and the rate of change in BMI. We have demonstrated that the use of repeated measures

data can increase power to allow detection of genetic loci with smaller sample sizes.
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Introduction

Obesity, defined by high body mass index (BMI), is a com-

plex condition associated with an increased risk of many

chronic diseases.1 Evidence suggests that the adverse health

consequences of obesity begin in early life.2–4 BMI in

adults primarily reflects weight independent of height;

however, changes in BMI throughout childhood are influ-

enced by changes in both height and weight.

Choh et al.5 estimated that the narrow-sense heritability of

BMI over infancy, childhood and adolescence ranges from

47% to 76%, with similar estimates reported in adults.6,7

Genome-wide association studies (GWAS) have identified

and replicated 34 adult BMI-associated loci (P-values

< 5� 10�8 from discovery and replication meta-analysis)8–10

that explain approximately 1.5% of the variance in adult

BMI. Several studies have investigated the association be-

tween these adult BMI SNPs and childhood BMI, including

BMI trajectories.11–15 These publications have shown that

SNPs associated with adult BMI are not associated with

birthweight or length, but have effects that begin from early

infancy and strengthen throughout childhood and adoles-

cence. The effects of some variants appear to change over

time, for example the A allele at the FTO rs9939609 SNP is

associated with a lower BMI in infancy but a higher BMI

from 5.5 years onwards.16 In contrast, the ADCY3

rs11676272 SNP has been shown to have consistent effects

across ages.17 A GWAS investigating childhood obesity (i.e.

BMI> 95th percentile) in populations of European descent18

identified two novel loci, one near the olfactomedin 4

(OLFM4) gene and the other in the homeobox B5 (HOXB5)

gene. The results of these studies suggest that the expression

of genetic variants may change across the life course.

In a recent review of obesity genetics, Day and Loos

highlight the importance of conducting GWAS in children

and adolescents to identify loci that may have effects early

in life rather than adulthood.19 Therefore, the aim of the

current study was to investigate the genetic basis of BMI

and BMI trajectories across childhood and adolescence.

Key Messages

• We performed a genome-wide association study of body mass index trajectories over childhood and adolescence

using repeated measures data from two large cohort studies.

• A novel association between body mass index at 8 years of age and single nucleotide polymorphisms near the

FAM120AOS gene on chromosome 9 was identified. The top SNP in this region begins to have an observable effect

on BMI around 2 years of age, and the effect appears to be driven by changes in weight rather than height. This asso-

ciation warrants further investigation.

• Novel associations between several known adult body mass index-associated loci and body mass index at 8 years of

age and/or change in body mass index over childhood were observed. In addition, a known childhood obesity-

associated locus was associated with body mass index at 8 years of age.

• Through the use of repeated measures data, genetic associations can be detected with smaller sample sizes.

• Our results highlight that the genetic determinants of susceptibility to obesity in adulthood begin acting in early life

and develop over the life course.
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Methods

Participants

ALSPAC. The Avon Longitudinal Study of Parents and

Children (ALSPAC) is a prospective cohort. Details on the

BMI measurements are provided in Supplementary material

(available as Supplementary data at IJE online) and the full

study methodology is published elsewhere20 [www.bristol.ac.

uk/alspac]. The study website contains details of all the data

that are available through a fully searchable data dictionary

[http://www.bris.ac.uk/alspac/researchers/data-access/data-dic

tionary]. A subset of 7916 individuals (69 297 observations)

were included in this study based on the following criteria:

�1 parent of European descent, live singleton birth, unrelated

to anyone in the sample, no major congenital anomalies, gen-

otype data, and �1 measure of BMI between ages 1 and 17

years. Ethical approval for the study was obtained from the

ALSPAC Law and Ethics Committee and the local research

ethics committees.

Raine. The Western Australian Pregnancy Cohort (Raine)

Study21–23 is a prospective pregnancy cohort [http://

www.rainestudy.org.au/] (specific methods in

Supplementary material, available as Supplementary

data at IJE online). A subset of 1461 individuals (8670

observations) was included in this study, using the same

criteria as in the ALSPAC cohort. The study was

conducted with institutional ethics approval from the

King Edward Memorial Hospital and Princess Margaret

Hospital for Children human research ethics committees.

Genotyping

Imputed genotypic data used in both cohorts has been

described previously.24,25 Briefly, genotype data in both

cohorts were cleaned using standard thresholds (HWE

P> 5.7� 10�7, call rate >95% and minor allele frequency

>1%). Imputation for chromosomes 1 to 22 was per-

formed with the MACH software26 using the CEU samples

from HapMap Phase 2 (Build 36, release 22) as a reference

panel.

Within-study GWAS analysis and quality control

BMI was skewed, so a natural log transformation was applied

before analysis. A semi-parametric linear mixed model was fit-

ted to the BMI measures with mean centred age (centred at

age 8); smoothing splines, with knot points at two, eight and

12 years and a cubic slope for each spline, were used to pro-

duce a smooth growth curve estimate.27 A continuous autore-

gressive of order 1 correlation structure was assumed. Full

details of the statistical methodology are in Supplementary

material, available as Supplementary data at IJE online.

The fixed effects in the ALSPAC model included a

binary indicator of measurement source (questionnaire vs

clinic or health visitor measurement) to allow for differen-

tial measurement error. The fixed effects in the Raine

model included the first five principal components for pop-

ulation stratification, calculated in EIGENSTRAT;28 no

adjustment for population stratification was made in

ALSPAC, as previous analyses have shown that there is no

obvious stratification.

A recent GWAS meta-analysis of adults from the

Genetic Investigation of ANthropometric Traits (GIANT)

consortium has shown that there were no genome-wide

significant gender difference in SNP-BMI associations.29

Therefore, the sexes were combined with the inclusion of a

main sex effect and an interaction between sex and the

spline function for age. This allowed the average BMI tra-

jectory to differ between males and females, but with

genetic effects assumed to be consistent across sexes.

The semi-parametric linear mixed model was fitted for

each individual SNP. Genetic differences in the trajectories

were estimated by including both a main effect for the

imputed dosage and an interaction between the spline

function for age and the imputed dosage for each genetic

variant (i.e. an additive genetic model). We have previously

shown that the type 1 error of the genetic effect over time

in linear mixed effects models may be inflated if the func-

tion involving age terms in the fixed and random effects

differs.30 Therefore, a robust standard error and a corre-

sponding P-value was calculated for each fixed effect

parameter (details in Supplementary material, available as

Supplementary data at IJE online).

To understand the relationship between each SNP and

BMI trajectory, three test statistics were calculated (details

in Supplementary material, available as Supplementary

data at IJE online).

i. Global test (Wald test): to test the association of SNPs

with BMI from 1–17 years of age (denoted as Wald).

This tests the association between an SNP and any

change in BMI.

ii. SNP by age interaction (Wald test): to test the associa-

tion of SNPs with change in BMI trajectory between

1–17 years of age [denoted as Wald(Change)]. This

tests the association between an SNP and any change

in the shape of the BMI curve.

iii. SNP effect at age 8: to test the association of SNPs

with childhood BMI at age 8 years (referred to as ‘BMI

intercept at 8 years’ and denoted as SNP). This repre-

sents the test for a shift up or down of the whole trajec-

tory due to a SNP. The effect is estimated at 8 years as
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the age data are mean centred before entering the

semi-parametric linear mixed model.

All analyses were conducted in R [version 3.0.2 (2013-

09-25)]31 using the nlme package. SNPs were excluded if

their MAF was <5% or imputation quality (R2 from

MACH) was <0.3.

Meta-analysis

The meta-analysis for the SNP effect at age 8 years was con-

ducted in Metal32 [http://www.sph.umich.edu/csg/abecasis/

metal/], using inverse variance weighting. The analysis in Metal

included an adjustment for genomic control in both cohorts,

and a test of heterogeneity of the effect sizes was carried out.

Stouffer’s method for combining P-values was used for

the global Wald test and the Wald test for the SNP by age

interaction.33 Genomic inflation k was estimated by divid-

ing the chi-square statistics, with 7 degrees of freedom for

the global Wald test and 6 degrees of freedom for the SNP

by age interaction Wald test, by the median of the central

v2
7 and v2

6 distributions, respectively.34 P-values from

ALSPAC and Raine were adjusted for the estimated k val-

ues and weighted by the square root of the respective sam-

ples sizes in the meta-analysis.

Follow-up

The Northern Finland Birth Cohort of 1966 (NFBC1966)

was used to replicate regions that reached genome-wide sig-

nificance (P< 5� 10�8) on any one of the three tests con-

ducted. We investigated the SNP with the lowest P-value in

each region and any potentially functional SNPs that were

in high linkage disequilibrium (LD) with that SNP; LD was

determined from SNAP35 [http://www.broadinstitute.org/

mpg/snap/ldsearchpw.php], and functionality from

snpinfo36 [http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.

htm]. NFBC1966 is a prospective birth cohort from the

region covering the Provinces of Lapland and Oulu,

Finland37 [http://kelo.oulu.fi/NFBC/] (specific methods in

Supplementary material, available as Supplementary data at

IJE online). A subset of 3918 individuals with growth data

(48 530 observations) was included in this study, using the

same criteria as in the discovery cohorts. The study was

approved by ethics committees in Oulu (Finland) and

Oxford (UK) universities in accordance with the

Declaration of Helsinki.

Characterization of significant loci

For loci reaching genome-wide significance, we plotted the

trajectory for each of the genotypes and estimated the ear-

liest age at which the effect of the SNP could be detected.

For novel SNPs, we also investigated their association with

height and weight trajectories using a spline model similar

to that used for BMI (see ref. 11 for description of methods

used). These additional analyses were conducted in the

ALSPAC study only, being the largest discovery cohort.

Results

Each cohort has a similar proportion of males and females;

NFBC1966 has a lower average weight, and consequently

BMI, than the two discovery cohorts from approximately

6 years of age, whereas their average height is similar

(Table 1, and Supplementary Figure 1 available as

Supplementary data at IJE online). The meta-analysis of

approximately 2.2 million SNPs indicated that the lowest

observed P-values for each of the three test statistics devi-

ated from the expected null distribution (Supplementary

Figure 2, available as Supplementary data at IJE online),

whereas any systematic inflation of the test statistics was

negligible (kSNP¼1.03, kWald¼ 1.00, kWald(Change)¼ 1.00).

There was little heterogeneity between the discovery

cohorts (Supplementary Figure 3, available as

Supplementary data at IJE online).

Five regions reached genome-wide significance at

5� 10�8 (Table 2, and Supplementary Table 1 available as

Supplementary data at IJE online); three of these loci have

previously been identified through GWAS of adult BMI

(FTO,38 MC4R39 and ADCY3 8) and one locus has previ-

ously been shown to be associated with paediatric obesity

(OLFM4.18). Manhattan plots for each of the three tests

are in Supplementary Figures 4–6, (available as

Supplementary data at IJE online).

A novel genome-wide significant locus was found

downstream from FAM120AOS, which has not previ-

ously been reported to be associated with any adiposity-

related traits. The most statistically significant SNP,

rs944990, was associated with BMI intercept at 8 years

(T allele: bSNP¼ 0.012, PSNP¼ 1.52� 10�8), and showed

modest evidence of association with change in BMI

(PWald(Change)¼ 0.006; Supplementary Figure 9, available

as Supplementary data at IJE online). A consistent direc-

tion of effect was seen in NFBC1966 for rs944990; how-

ever, P> 0.05 for all three tests (Table 2). Figure 1 shows

the BMI trajectories in the ALSPAC cohort from 1 to 17

years of age in males and females for individuals who

have zero, one or two BMI decreasing alleles (major

allele) at the rs944990 locus. A male homozygous for the

T allele would have an average BMI of 18.16 kg/m2 at 1

year of age, which would increase to an average of 21.88

kg/m2 by age 16. In contrast, a male homozygous for the

C allele would on average have a BMI of 18.12 kg/m2 at

1 year of age and by age 16 it would be 21.48 kg/m2.
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Table 1. Characteristics of individuals in the cohorts involved in the discovery meta-analysis and replication

Sex

(% male)

Age stratum Discovery cohorts Replication cohort

ALSPAC (N¼7,916; n¼69,297) Raine (N¼1,461; n¼8,670) NFBC1966 (N¼3,918; n¼48,530)

51.27 51.54 49.74

N Mean (SD) N Mean (SD) Na Mean (SD)

BMI (kg/m2) 1–1.49 2372 17.42 (1.51) 1326 17.11 (1.39) 3304 17.66 (1.57)

1.5–2.49 5490 16.82 (1.49) 389 16.00 (1.25) 2769 16.81 (1.43)

2.5–3.49 1679 16.48 (1.40) 957 16.14 (1.24) 2252 16.13 (1.29)

3.5–4.49 5949 16.25 (1.39) 20 15.92 (1.41) 2194 15.76 (1.32)

4.5–5.49 1602 16.02 (1.70) 3 15.94 (1.43) 1967 15.47 (1.31)

5.5–6.49 3322 15.71 (1.87) 1273 15.85 (1.70) 1870 15.44 (1.54)

6.5–7.49 2728 16.10 (1.98) 43 16.64 (2.85) 3040 15.56 (1.61)

7.5–8.49 3588 16.30 (2.01) 1045 16.89 (2.52) 2629 15.89 (1.76)

8.5–9.49 4376 17.15 (2.41) 205 16.95 (2.57) 1965 16.32 (2.00)

9.5–10.49 5516 17.67 (2.81) 304 18.95 (3.43) 2056 16.88 (2.24)

10.5–11.49 4710 18.25 (3.10) 933 18.66 (3.41) 2619 17.32 (2.42)

11.5–12.49 5116 19.04 (3.35) 4 16.78 (2.65) 2911 17.80 (2.53)

12.5–13.49 5268 19.64 (3.35) 9 21.11 (3.76) 2175 18.58 (2.67)

13.5–14.49 4603 20.30 (3.44) 1201 21.46 (4.17) 2383 19.25 (2.71)

14.5–15.49 2342 21.28 (3.48) 24 21.66 (4.23) 2387 19.77 (2.66)

15.5–16.49 1659 21.39 (3.51) 2 20.14 (3.26) 1191 20.47 (2.88)

16.5þ 91 22.46 (3.39) 931 23.02 (4.37) 970 20.83 (2.66)

Weight (kg) 1–1.49 2372 10.56 (1.31) 1326 10.33 (1.22) 3304 10.52 (1.25)

1.5–2.49 5490 12.01 (1.49) 389 12.98 (1.49) 2769 12.29 (1.46)

2.5–3.49 1679 14.72 (1.89) 957 15.03 (1.81) 2252 14.34 (1.69)

3.5–4.49 5949 16.51 (2.03) 20 15.34 (1.94) 2194 16.27 (2.01)

4.5–5.49 1602 19.42 (2.83) 3 21.97 (1.90) 1967 18.17 (2.34)

5.5–6.49 3322 21.32 (3.37) 1273 21.45 (3.27) 1870 20.39 (3.01)

6.5–7.49 2728 24.98 (4.29) 43 26.00 (5.89) 3040 22.62 (3.46)

7.5–8.49 3588 26.42 (4.68) 1045 28.26 (5.62) 2629 25.04 (4.10)

8.5–9.49 4376 30.33 (5.79) 205 29.75 (5.85) 1965 28.37 (4.88)

9.5–10.49 5516 34.71 (7.30) 304 39.24 (9.06) 2056 31.88 (5.90)

10.5–11.49 4710 38.26 (8.46) 933 39.07 (9.07) 2619 35.32 (6.77)

11.5–12.49 5116 43.60 (9.91) 4 35.85 (6.32) 2911 39.05 (7.78)

12.5–13.49 5268 49.41 (10.58) 9 55.34 (11.15) 2175 44.82 (8.88)

13.5–14.49 4603 54.43 (11.11) 1201 58.47 (13.17) 2383 49.77 (9.14)

14.5–15.49 2342 61.05 (11.85) 24 61.06 (12.74) 2387 53.71 (9.22)

15.5–16.49 1659 61.75 (11.64) 2 57.63 (13.40) 1191 58.02 (9.80)

16.5þ 91 64.64 (11.74) 931 68.79 (14.62) 970 59.94 (9.35)

Height (m) 1–1.49 2372 0.78 (0.04) 1326 0.78 (0.03) 3304 0.77 (0.03)

1.5–2.49 5490 0.84 (0.04) 389 0.90 (0.04) 2769 0.85 (0.04)

2.5–3.49 1679 0.94 (0.04) 957 0.96 (0.04) 2252 0.94 (0.04)

3.5–4.49 5949 1.01 (0.04) 20 0.98 (0.04) 2194 1.02 (0.04)

4.5–5.49 1602 1.10 (0.05) 3 1.18 (0.08) 1967 1.08 (0.05)

5.5–6.49 3322 1.16 (0.06) 1273 1.16 (0.05) 1870 1.15 (0.05)

6.5–7.49 2728 1.24 (0.06) 43 1.25 (0.06) 3040 1.20 (0.05)

7.5–8.49 3588 1.27 (0.06) 1045 1.29 (0.06) 2629 1.25 (0.06)

8.5–9.49 4376 1.33 (0.06) 205 1.32 (0.05) 1965 1.32 (0.06)

9.5–10.49 5516 1.40 (0.06) 304 1.43 (0.06) 2056 1.37 (0.06)

10.5–11.49 4710 1.44 (0.07) 933 1.44 (0.07) 2619 1.42 (0.07)

11.5–12.49 5116 1.51 (0.07) 4 1.46 (0.05) 2911 1.48 (0.07)

12.5–13.49 5268 1.58 (0.08) 9 1.62 (0.06) 2175 1.55 (0.08)

13.5–14.49 4603 1.63 (0.08) 1201 1.65 (0.08) 2383 1.60 (0.08)

14.5–15.49 2342 1.69 (0.08) 24 1.68 (0.06) 2387 1.65 (0.08)

15.5–16.49 1659 1.70 (0.08) 2 1.69 (0.06) 1191 1.68 (0.08)

16.5þ 91 1.69 (0.08) 931 1.73 (0.10) 970 1.70 (0.08)

aDue to the data structure in NFBC1966, some individuals had multiple measures within a 1-year period. This column is the number of unique individuals with

measures in the age bracket.
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In ALSPAC, the effect is detectable from 2 years of age

(Figure 2). Consistent results were observed after includ-

ing additional fixed effects in the model to account for

change in height (Supplementary Table 2, available as

Supplementary data at IJE online). rs944990 showed a

stronger association with weight than height

(Supplementary Table 2) and had the strongest influence

on both weight and height over the pre-pubertal years (7–

10 years; Figures 3 and 4). We investigated the associa-

tion between energy intake and rs944990 from 3 to 14

years of age in the ALSPAC cohort (Supplementary

Table 3, available as Supplementary data at IJE online).

Assuming an additive effect of the SNP, there was a mar-

ginal association at 39 months of age (b¼ 14.28 kCal per

T allele, P< 0.001) and only a slight increase in energy

intake was observed around the peak of the BMI associa-

tion (10 years of age; b¼ 12.80 kCal per T allele,

P¼ 0.03).

The most statistically significant SNP at this novel

FAM120AOS locus in our meta-analysis, rs944990, is in

LD (r2¼ 0.72, D’¼ 0.9635) with a non-synonymous var-

iant that may disrupt splicing activity36, rs10821128. In

the meta-analysis, the C allele of rs10821128 was associ-

ated with an increase in BMI intercept at age 8 years

(bSNP¼ 0.011, PSNP¼ 5.29� 10�8) and showed weak evi-

dence for an increased change in BMI

(PWald¼1.14� 10�4; PWald(Change)¼ 0.014). Given the

potential functionality of this SNP, we analysed

rs10821128 in the NFBC1966 cohort. Consistent with the

results from the meta-analysis, the C allele at rs10821128

was associated with BMI intercept at 8 years of age in

NFBC1966 (bSNP¼0.005, PSNP¼0.041) and the global

Wald test (PWald¼0.041), but not with change in BMI

(PWald(Change)¼ 0.139). Neither this SNP nor rs944990 was

associated with mean BMI (rs944990: P¼ 0.887;

rs10821128: P¼ 0.931) in the GIANT consortium meta-

analysis8 but showed weak evidence of association with

phenotypic variability of BMI40 (rs944990: P¼ 0.063;

rs10821128: P¼ 0.092). We used publicly available results

from GWAS in various consortia to investigate whether

rs944990 or rs10821128 was associated with any other

growth-related endpoint (including BMI, height, waist to

hip ratio, obesity, glucose, insulin, homeostatic model

assessment–insulin resistance (HOMA-IR) and type 2 dia-

betes in adults, age of menarche, pubertal growth and obe-

sity in children and birthweight, birth length and head

circumference at birth). Both rs944990 (P¼ 4.0� 10�4)

and rs10821128 (P¼5.9x10�4) were associated with age

of menarche, and rs10821128 was marginally associated

with total pubertal growth (P¼0.044), consistent with the

observation that rs944990 influences pre-pubertal weight

and height growth (Figures 3 and 4). Supplementary

Table 4 (available as Supplementary data at IJE online)

presents the association results for other endpoints.

SNPs in FTO (Supplementary Figures 12 and 13, avail-

able as Supplementary data at IJE online) and MC4R

(Supplementary Figures 14 and 15, available as

Supplementary data at IJE online) reached genome-wide sig-

nificance for all three tests, indicating that these loci influence

both BMI intercept at 8 years and change in BMI trajectory

Figure 1. Population average trajectories for females (A) and males (B) from the ALSPAC cohort with 0, 1 or 2 copies of the C allele at the

FAM120AOS, rs944990, locus.
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over childhood (FTO rs1558902: bSNP¼ 0.013, PSNP¼
1.54�10�10; PWald¼ 1.48� 10�21; PWald(Change)¼4.99�
10�22; MC4R rs571312: bSNP¼0.013, PSNP¼4.94� 10�8;

PWald¼ 1.27� 10�9; PWald(Change)¼2.81� 10�9). The A

allele at rs1558902 in FTO was associated with a decrease in

BMI until 2 years of age, but an increase in BMI from 6 years

of age (Figure 2 and Supplementary Figure 13).

The OLFM4 rs12429545 SNP reached genome-wide sig-

nificance for the SNP effect at age 8 (bSNP¼0.016, PSNP¼
1.90� 10�8) and global Wald tests (PWald¼ 1.13� 10�8)

and showed weak evidence for association with change in

BMI over time (Supplementary Figures 10 and 11, available

as Supplementary data at IJE online).

A missense variant located in ADCY3 reached

genome-wide significance for the SNP effect at age 8

(rs11676272: bSNP¼�0.011, PSNP¼ 8.94� 10�9) and

global Wald tests (PWald¼ 1.15�10�9) but not for

the SNP by age interaction terms (PWald(Change)¼ 0.199;

Table 2).

To investigate whether known adult BMI-associated

loci influenced BMI trajectory through childhood and

adolescence, we investigated the relationship between the

33 top adult BMI-associated SNPs and the SNP effect at

age 8 in our meta-analysis. One SNP from the adult BMI

GWAS, rs11847697, was not available in our study as it

had a minor allele frequency less than 5%. We observed

15 loci with directionally consistent associations at nomi-

nal significance (P< 0.05), 12 of which reached P< 0.01.

Figure 5 indicates that the majority of the loci show the

same direction of effect for both the SNP effect at age 8

and the adult BMI meta-analyses. Results from the meta-

analysis of the three tests for the 33 adult BMI-associated

SNPs are presented in Supplementary Figure 16 and

Supplementary Table 5 (available as Supplementary data

at IJE online). We also looked up the HOXB5 and

OLFM4 SNPs, previously associated with childhood

obesity.18 The obesity risk T allele at rs9299 in HOXB5

increased BMI intercept at 8 years (bSNP¼ 0.004,

Figure 2. Associations from the ALSPAC cohort between the genome-wide significant SNPs and BMI from age one to 16 years. Error bars represent

the regression coefficient of BMI on the natural log scale and 95% confidence intervals derived from the longitudinal additive genetic models. The

SNPs are aligned to the minor allele.
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PSNP¼ 0.068), but was not associated with change in BMI

over time (PWald¼ 0.591; PWald(Change)¼ 0.728). The obe-

sity risk A allele at rs9568856 near OLFM4 was associ-

ated with increased BMI intercept at 8 years

(bSNP¼ 0.014, PSNP¼ 1.68� 10�6) and increased change

in BMI (PWald¼ 3.24� 10�6; PWald(Change)¼0.002).

Discussion

Previous studies have shown that some genetic variants for

BMI have varying effects across the life course, suggesting

potential age-specific gene expression.14–17 We conducted

a genome-wide meta-analysis of BMI trajectories from 1 to

17 years of age and identified a novel association with

rs944990, downstream from FAM120AOS on chromo-

some 9. This SNP was associated with BMI intercept at 8

years, an effect that was independent of height. The effect

size for the T allele, 0.20 kg/m2 in ALSPAC, is comparable

to the effect sizes reported for adult BMI-associated SNPs.8

In addition, rs944990 showed a stronger association with

adiposity than skeletal growth and had the greatest influ-

ence on pre-pubertal growth. This association did not rep-

licate in the NFBC1966 cohort; however, a potentially

functional non-synonymous SNP in LD was associated

with BMI intercept in NFBC1966. The lack of convincing

evidence for association in NFBC1966 could be due to the

observed difference in BMI trajectories to the ALSPAC and

Raine cohorts (as seen in Supplementary Figure 1); with

fewer individuals in the right-hand tail of the BMI

distribution, it is more difficult to detect an association.

This difference in trajectories could be due to several

causes, including different genetic profiles or generational

effects.

Little is known about the function of FAM120AOS.

However, there are two genes in the region surrounding

FAM120AOS that have shown evidence to support a role

Figure 3. Associations from the ALSPAC cohort between the genome-wide significant SNPs and weight from age one to 16 years. Error bars repre-

sent the regression coefficient of weight on the natural log scale and 95% confidence intervals derived from the longitudinal additive genetic models.

The SNPs are aligned to the minor allele.
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for this region in growth. An SNP in the first of those

genes, NINJ1, has been shown to be associated with severe

obesity in children.41 The second gene, PHF2, has been

shown to influence bone development in newborn mice42

and adipocyte differentiation.43 In addition to these two

plausible candidate genes in the region surrounding

FAM120AOS, we identified that the T allele at rs944990

was associated with increased BMI, increased change in

BMI and earlier age of menarche. The direction of effect in

this study is consistent with the observed phenotypic

correlation,44,45 where girls who reach menarche earlier

tend to have a higher BMI in later life than girls who reach

menarche later. The effect seen by rs944990 is similar to

that reported for the LIN28B locus, whereby it influences

BMI and weight from adolescence to early/mid adulthood,

and is associated with age of menarche.46 Therefore, we

believe this region of chromosome 9 warrants further

investigation.

Four loci previously associated with either adult BMI

(FTO,38 MC4R39 and ADCY38) or childhood obesity

(OLFM418) reached genome-wide significance for BMI

level and/or slope. These loci were detected with a smaller

sample size than the original studies (>20 000 subjects in

ref. 18 and 249 796 subjects in ref. 8), consistent with the

increased statistical power gained through using repeated

measures.47 A small increase in BMI may not necessarily

lead to obesity; however, our results demonstrate for the

first time that the obesity risk allele of the OLFM4

rs9568856 SNP18 is associated with increased BMI at 8

years and increased change in BMI over childhood, rather

than having an effect on obesity only. This SNP, along

with the top SNPs from the FTO and MC4R loci, had an

effect at baseline as well as showing an increasing effect

over childhood. In contrast, the top SNP at ADCY3 was

associated with baseline and its effect over time was rela-

tively constant. These results are consistent with previous

Figure 4. Associations from the ALSPAC cohort between the genome-wide significant SNPs and height from age one to 16 years. Error bars represent

the regression coefficient of height and 95% confidence intervals derived from the longitudinal additive genetic models. The SNPs are aligned to the

minor allele.
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studies on adult BMI loci.16,17,39 Furthermore, we detected

a decrease in BMI in infancy for the FTO SNP, rs1558902,

followed by an increase from early childhood: a result

which is consistent with our previous work.16

Approximately half of the known adult BMI SNPs showed

nominal effects on BMI at age 8, suggesting that these

SNPs begin having an effect in childhood. The SNP effect

sizes on BMI at age 8 are larger than the effects on adult

BMI for some SNPs; for example, the RBJ/ADCY3 locus

had an effect size of 0.14 kg/m2 in adults8 and 0.18 kg/m2

at age 8. Those SNPs that did not have an effect on BMI in

childhood may indicate early-onset vs adult-onset SNPs or

may be due to lower power in our study.

There are several limitations to this study. These analy-

ses were much more computationally intensive than the

cross-sectional models commonly used in GWAS.27 For

example, both the ALSPAC and Raine GWAS took

approximately 2 months (approximately 1440 h) to ana-

lyse on high performance clusters, i.e. BlueCrystal Phase 2

cluster: [https://www.acrc.bris.ac.uk/acrc/phase2.htm] and

[http://www.ivec.org/], respectively. This computational

burden has limited the current analyses to genetic data on

the 22 autosomes using HapMap2 imputation, rather than

the more recent 1000 genomes, and to two cohorts with

this capacity. Replication is also challenging because of the

need for detailed repeated measures data from across child-

hood and adolescence. Furthermore, there has been some

criticism over recent years of the use of BMI as a measure

of adiposity throughout childhood because at some ages

BMI remains correlated with height and this correlation

changes with age.48 Stergiakouli et al.17 showed that a dif-

ferent power of height was required at different ages

throughout childhood, ranging from 1.5 at 12 months to

3.1 at 8–12 years. However, their results suggest that

genetic influences on weight/height are similar to those for

BMI adjusted for height. We therefore conducted a sensi-

tivity analysis of our novel SNP by including a fixed effect

for change in height and showed that the association

between rs944990 and BMI remained.

Identifying genetic variants that have age-specific effects

has the potential to shed light on the life-course aetiology

of health and disease as well as potentially providing clues

to gene function. Our results are consistent with the

hypothesis that the genetic determinants of adult suscepti-

bility to obesity act on both BMI intercept at 8 years and

trajectory from childhood, change with age and develop

over the life course. As with adult loci, the genetic variants

associated with BMI in children only explain a small pro-

portion of the estimated heritability of childhood BMI.

Hence, considerable opportunity exists for new insights

into the biology of childhood obesity.

Supplementary Data

Supplementary data are available at IJE online.
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