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Abstract

Nephronophthisis-related ciliopathies (NPHP-RC) are a group of disorders that present with

end-stage renal failure in childhood/adolescence, kidney cysts, retinal degeneration, and

cerebellar hypoplasia. One disorder that shares clinical features with NPHP-RC is Bardet-

Biedl Syndrome (BBS). Serologically defined colon cancer antigen 8 (SDCCAG8; also

known as NPHP10 and BBS16) is an NPHP gene that is also associated with BBS. To better

understand the patho-mechanisms of NPHP and BBS caused by loss of SDCCAG8 func-

tion, we characterized an SDCCAG8 mouse model (Sdccag8Tn(sb-Tyr)2161B.CA1C2Ove) gener-

ated by Sleeping Beauty Transposon (SBT)-mediated insertion mutagenesis. Consistent

with the previously reported, independent SDCCAG8 mouse models, our mutant mice dis-

play pre-axial polydactyly in their hind limbs. In addition, we report patterning defects in the

secondary palate, brain abnormalities, as well as neonatal lethality associated with develop-

mental defects in the lung in our mouse model. The neonatal lethality phenotype is genetic

background dependent and rescued by introducing 129S6/SvEvTac background. Genetic

modifier(s) responsible for this effect were mapped to a region between SNPs rs3714172

and rs3141832 on chromosome 11. While determining the precise genetic lesion in our

mouse model, we found that SBT insertion resulted in a deletion of multiple exons from both

Sdccag8 and its neighboring gene Akt3. We ascribe the patterning defects in the limb and

the secondary palate as well as lung abnormalities to loss of SDCCAG8, while the develop-

mental defects in the brain are likely due to the loss of AKT3. This mouse model may be use-

ful to study features not observed in other SDCCAG8 models but cautions are needed in

interpreting data.

Introduction

The primary cilium, in association with the centrosomes, acts as a sensory organelle in most

mammalian cells. Studies during the past two decades have uncovered that mutations disrupt-

ing ciliary and centrosomal proteins cause a set of human genetic diseases termed ciliopathies

[1, 2]. Nephronophthisis (NPHP) is a leading cause of end-stage renal failure in children and
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adolescents and most gene products linked to NPHP localize to primary cilia and/or centro-

somes, rendering NPHP a ciliopathy [3]. Consistent with the near ubiquitous existence of the

primary cilium in the human body, individuals with NPHP often exhibit additional, extra-

renal symptoms such as retinal degeneration, cerebellar hypoplasia, and liver fibrosis [4–12].

NPHP with extra-renal symptoms are classified as NPHP-related ciliopathies (NPHP-RC).

Serologically defined colon cancer antigen 8 (SDCCAG8) is an NPHP-RC gene (NPHP10),

with patients displaying retinal and renal abnormalities, obesity, learning disabilities, and

recurrent respiratory infections [4, 13, 14]. Aside from a lack of polydactyly, these patients

share many of the cardinal features of Bardet-Biedl Syndrome (BBS), a well studied, pleotropic,

model ciliopathy disorder. The identification of SDCCAG8mutations in several clinically diag-

nosed BBS patients resulted in SDCCAG8 being named the sixteenth BBS gene (BBS16) [4, 14].

Studies have determined that localization of SDCCAG8 is to the centrosomes and centriolar

satellites [4, 15]. In addition, two independent mouse models of SDCCAG8 have been

generated using two distinct gene-trap approaches: here we refer to the one generated by the

Hildebrandt lab as Sdccag8Gt(OST40418)Tigm [16, 17] and the one generated by the Shi lab as

Sdccag8tm1e(EUCOMM)Wtsi [18]. These animal models have been instrumental in dissecting the

roles of SDCCAG8 in vivo [16–18].

Interestingly, considerable variations have been observed within each mouse model as well

as between models with respect to the phenotypic expressivity [16–18]. For example, while

cleft palate was not observed in the Sdccag8Gt(OST40418)Tigm model, it was a highly penetrant

phenotype in mice homozygous for the Sdccag8tm1e(EUCOMM)Wtsi allele (94%; 17 out of 18

mutants). Polydactyly was also found as a major phenotypic component (94%; 17 of 18) in the

Sdccag8tm1e(EUCOMM)Wtsi model. However, it was relatively less penetrant (65%; 13 bilateral, 11

unilateral, of 37) in Sdccag8Gt(OST40418)Tigm mice. Finally, although the precise prevalence was

not reported, the vast majority of homozygotic Sdccag8tm1e(EUCOMM)Wtsi mutant mice died at

P0. In contrast, Sdccag8Gt(OST40418)Tigm mice were obtained at Mendelian ratios at weaning

ages. Of note, these two models were generated in two distinct genetic backgrounds:

Sdccag8Gt(OST40418)Tigm in a C57/129SvEv mixed background and Sdccag8tm1e(EUCOMM)Wtsi in

the C57BL/6 background. It is also notable that variable expressivity is a well-recognized char-

acteristic of ciliopathies and the presence of genetic modifiers that influence the expression of

disease phenotypes has been suggested [19–23].

Another mouse model of SDCCAG8 is available through the Jackson Laboratory (FVB/

N-Sdccag8Tn(sb-Tyr)2161B.CA1C2Ove/J; hereafter this allele is referred to as Sdccag8SBT). This

mouse model was generated by a Sleeping Beauty Transposon (SBT)-mediated insertion of a

gene-trap cassette between exons 12 and 13 of Sdccag8. Here, we report characterization of this

mouse model and compare phenotypes observed in our mouse model with those seen in other

models. We also mapped the genetic modifier(s) that influences neonatal lethality of Sdccag8
mutants. Finally, we determined the precise genetic lesion of the Sdccag8SBT allele, which has

been incorrectly annotated.

Materials and methods

Mouse

Sdccag8SBT (FVB/N-Sdccag8Tn(sb-Tyr)2161B.CA1C2Ove/J) mice were obtained from the Jackson

laboratory (stock number: 017598). Mice were housed on a standard 12-hour light/dark cycle

and received ad libitum access to food and water. This study was carried out in strict accor-

dance with the recommendations in the Guide for the Care and Use of Laboratory Animals of

the National Institutes of Health. The protocol was approved by the Animal Care and Use

Committee of the University of Iowa (Animal Protocol 5061426).
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PCR genotyping

Genotypes of mice were determined using primer sequences suggested by the Jackson Labora-

tory and purchased from Integrated DNA Technology (Coralville, IA) (S1 Table). Wild type

forward and reverse primers span the SBT insertion site in the intron region between exons 12

and 13 of Sdccag8. Mutant forward and reverse primers are specific to the 3’ region of the

gene-trap cassette. PCR amplification of Akt3 and Sdccag8 exons was performed using stan-

dard protocols with primer sequences listed in S2 Table.

Bone staining and histology

Post-natal day 0 (P0) mice were euthanized by decapitation with a surgical scissors per guide-

lines from the Office of Animal Care and Use (OACU) of the NIH. Mice were dissected to iso-

late the secondary palate and the fore and hind limbs. Skin and fat was manually removed

from the secondary palate. Limbs were submerged in 70˚C water for 30 seconds to facilitate

removal of the epidermal layer. Specimens were kept in all following solutions slowly rocking

at room temperature. Specimens were fixed in 95% ethanol for 12–48 hours. Ethanol was

replaced with Alcian blue staining solution (0.03% Alcian blue (g/ml), 80% ethanol, 20% acetic

acid) for 1–3 days. One to two days were long enough for limbs but the secondary palate usu-

ally required 3 days for sufficient Alcian blue staining to occur. Alcian blue staining solution

was then replaced with 95% ethanol for 6 hours. Ethanol solution was replaced with 2% KOH

solution for 12–24 hours. Specimens were then stained in Alizarin red solution (0.03% Alizarin

Red (g/ml), 1% KOH, water) for 12–24 hours. Skeletons were cleared in 1% KOH/20% glycerol

solution and imaged by Olympus Stereoscope SZX12.

Lung, brain, and kidney were collected and immersed in a solution of 4% paraformalde-

hyde in PBS. Tissues were fixed overnight at 4˚C then embedded in paraffin at the University

of Iowa Central Microscopy Research Facility following standard protocol for embryos. Micro-

tome sections were collected at a thickness of 5 μm. Paraffin was melted at 37˚C before sections

were stained following the standard hematoxylin and eosin (H&E) staining protocol.

Immunoblotting

Proteins were extracted from mouse tissues by homogenization in a lysis buffer (50 mM

HEPES, 150 mM KCl, 1% (vol/vol) Triton X-100, 2 mM MgCl2, 1X protease inhibitor (Roche),

0.5 mM DTT) with a Polytron homogenizer, and protein concentrations were measured using

a DC Protein Assay kit (Bio-Rad). Lysates were normalized to total protein quantity and

loaded onto a 4–12% NuPAGE gel (Invitrogen) for SDS-PAGE and Western blotting following

standard protocols. Rabbit polyclonal SDCCAG8 antibody raised against amino acids 119–138

was a gift from Dr. Friedhelm Hildebrandt (SDCCAG8-NR; [4]), and mouse monoclonal β-

actin antibody (clone: AC-15) was obtained from Sigma (#A1978).

Quantitative reverse transcription-PCR (RT-qPCR)

Total RNAs from the brain, kidney, and lung were extracted using TRIzol Reagent (Invitro-

gen) following manufacturer instructions. Quantitative PCR was performed as previously

described [24, 25]. Briefly, 1 μg of total RNA was used for cDNA synthesis using SuperScript

III reverse transcriptase (Invitrogen). Quantitative real-time PCR was performed with iQ

SYBR Green Supermix (Bio-Rad) and CFX96 Real-Time PCR Detection System (Bio-Rad).

Rpl19mRNA levels were used for normalization and the ΔΔCt method [26] was used to calcu-

late changes in gene expression. PCR products were confirmed by melt-curve analysis and

sequencing. PCR primer sequences are shown in S3 Table.
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Genetic modifier screen

Sdccag8+/SBT FVB/NJ were crossed to Sdccag8+/+ 129S6/SvEvTac to generate Sdccag8+/SBT

129S6/FVB F1 mice. These mixed background heterozygous mice were then intercrossed to

generate Sdccag8SBT/SBT 129S6/FVB F2 mice. Mice were classified as “fatalities” if they expired

on post-natal day 0 within 8 hours from the point at which they were first discovered. Breeding

pairs were checked every morning at 8 AM and again at 4 PM. Mice were classified as “survi-

vors” if they lived to post-natal day 21 or later. Homozygotic mutant mice that died at some

point in between P0 and P21 were excluded from this study. Genotypes of mice were deter-

mined as described above. The 129SvEv/Tac strain does not have publicly available SNP

sequences. Therefore, to identify SNPs around breakpoints, we used the SNP Query tool avail-

able from Jackson Lab and compared the known SNPs in FVB/NJ to two available 129 strains:

129S1/SvImJ and 129X1/SvJ. SNPs were preferentially selected when they showed a difference

in both 129 strains compared to FVB/NJ. Primers were selected to flank predicted SNPs for

PCR amplification (S4 Table). Primers were first tested on both parental strains to ensure via-

bility and SNP differences. Some primer sets allowed for direct Sanger sequencing submission

while others required agarose gel clean up followed by Sanger sequencing.

Results and discussion

SBT-mediated gene-trap cassette insertion resulted in a recombination

deletion of the tail end of Sdccag8 and neighboring gene Akt3
The Sdccag8SBT mutant mouse line was generated by SBT-mediated insertion of the

pT2-BART3 transposon transgene [27]. It was reported to the Jackson Laboratory that the

gene-trap transgene was inserted between exons 12 and 13 of Sdccag8 (Fig 1; top), generating a

truncated Sdccag8 mRNA (http://www.jax.org). PCR genotyping with primers spanning the

insertion site or primers specific to the transgene show the presence of a normal Sdccag8 allele

in wild-type (WT) and the insertion of the transgene in heterozygotes and homozygotic

mutants (Fig 2A; S1 Fig). To determine whether full-length mRNAs encoding SDCCAG8 are

produced in mutant mice, primers specific to the upstream (spanning the exon 10–11 bound-

ary) and downstream (spanning the exon 14–15 boundary) (S3 Table) regions of the insertion

site were designed, and cDNAs from the brain, kidney, and lung were analyzed by quantitative

PCR (qPCR). Our qPCR results indicate that Sdccag8 transcript levels containing the 5’ region

are normal but undetectable at the 3’ end (Fig 2B). The lack of full-length SDCCAG8 was also

confirmed by immunoblotting at the protein level (Fig 2C–2E; S2 Fig) and no truncated pro-

teins were detected (S2 Fig). These data indicate that Sdccag8 mRNAs transcribed from the

gene-trap allele do not undergo nonsense-mediated decay but no full-length protein is pro-

duced in mutant animals.

The complete absence of transcripts containing exons 14 and 15 is surprising given the lev-

els of transcripts containing exons 5’ of the SBT insertion in mutant animals. To determine

whether there were additional genetic lesions in these exons, we designed primers to amplify

and sequence exons 13–18 of Sdccag8 (S2 Table). However, while WT and heterozygous sam-

ples showed amplification of these 6 exons, the mutant sample showed no such amplification

(Fig 3, S3 Fig), suggesting that Sdccag8 exons 13–18 are in fact absent in Sdccag8SBT/SBT mice.

To map the boundaries of this genomic deletion, we looked farther downstream of the Sdccag8

locus. We began with amplification and sequencing of the exons of the downstream neighbor-

ing gene, Akt3. We found that exons 2–13 of Akt3 (which is tail-to-tail with Sdccag8) also failed

to amplify in the mutant samples, but showed amplification in WT and heterozygous samples.
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The lack of Akt3 transcripts in Sdccag8SBT/SBT mice was also confirmed by RT-qPCR assays tar-

geting the junction between exons 3–4 of Akt3 (Fig 3B).

These results indicate that, contrary to the original annotation, the transgene did not simply

insert into Sdccag8 but resulted in a deletion of the region between exon 12 of Sdccag8 and

exon 1 of Akt3 (Fig 1; bottom). The complete absence of Sdccag8 mRNAs containing the 3’

region (Fig 2B; exon 14–15), which is unusual for gene-trap alleles, is also consistent with the

deletion of those exons on the chromosome.

The most plausible explanation for this large deletion is that instead of a simple insertion

occurring, the gene-trap cassette likely inserted in two places, one between exons 12 and 13 of

Sdccag8 and the other between exons 1 and 2 of Akt3. Following this double insertion, a

recombination event occurred between these two sites that then resulted in a deletion of

~200–250 kb fragment.

Sdccag8 loss causes patterning defects in the hind limb and the secondary

palate

As mentioned in the Introduction, two independent mouse models of SDCCAG8 have been

described (Sdccag8Gt(OST40418)Tigm [16, 17] and Sdccag8tm1e(EUCOMM)Wtsi [18]) and considerable

variations were observed between these two models. We characterized our mouse model and

compared its phenotype with those previously reported, as well as the available Akt3-/- mouse

(Table 1).

As for the cleft palate, we were not able to find obvious external clefting in Sdccag8SBT/SBT

mice (n = 47). To investigate whether there are mild patterning defects that are not externally

visible, we performed Alcian blue and Alizarin red staining on the secondary palate of P0

Fig 1. Originally reported and newly determined structure of the Sdccag8SBT allele. Top) originally reported structure of the Sdccag8SBT allele; middle)
structure of the wild-type allele; bottom) the Sdccag8SBT allele structure determined in this study. The Sdccag8 locus is in pink and the Akt3 locus, in yellow.

Contrary to the originally reported structure of the Sdccag8SBT allele, a deletion that encompasses both Sdccag8 exons 13–18 and Akt3 exons 2–13 was

identified. IR/DR: Inverted repeat/direct repeat sequence, the SBT recognition site (280 bp); AD2 SA: Adenovirus 2 splice acceptor site; STOP: Stop signal; pA:

poly-A sequence; Tyr Prom: Tyrosinase upstream regulatory sequences (2.1 kb from the BALB/c tyrosinase promoter and the first 65 bp of exon 1); Tyr ORF:

C57BL/6-derived Tyrs-J cDNA sequence; loxP: Cre recombinase target site; Hox9c SA: Splice acceptor; Fw; WT forward primer site; Rw: WT reverse primer

site; Fm: mutant forward primer site; Rm: mutant reverse primer site. All numbers provide an exon number for the corresponding box below it.

https://doi.org/10.1371/journal.pone.0192755.g001
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mice. Isolation of the secondary palate allowed us to look at the bone and cartilage structure of

the premaxilla region, usually associated with visible clefting of the palate. Staining of the sec-

ondary palate showed abnormal patterning in mutant mice most noticeable in the basisphe-

noid, presphenoid, and the premaxilla (Fig 4A; n = 4). However, this abnormal patterning was

restricted to minor changes in the pattern of the two sides of the palate coming together. It did

not include a failure of the two sides to meeting, and thus did not result in a cleft.

Pre-axial polydactyly was reported in both Sdccag8Gt(OST40418)Tigm and Sdccag8tm1e(EUCOMM)Wtsi

models with variable penetrance [16–18]. Consistent with the prior studies, polydactyly was

observed only in the hind limbs but not in the forelimbs (Fig 4B and 4C). The penetrance of

pre-axial polydactyly in our mouse model was 100% (n = 47) and in all cases polydactyly was

bilateral. Therefore, our model was closer to the Sdccag8tm1e(EUCOMM)Wtsi mouse (94% display

polydactyly, limbs affected and laterality not reported) with respect to the penetrance [18].

The increased penetrance seen in Sdccag8SBT/SBT mice may be due to the additional Akt3
gene deletion. However, to our knowledge, Akt3 does not have a role in limb bud development

and Akt3 knockout mice do not exhibit polydactyly [28, 29]. In addition, the penetrance of

polydactyly in the Sdccag8tm1e(EUCOMM)Wtsi mouse model, in which the Akt3 locus is intact, is

nearly complete. This suggests that Akt3 is not likely a contributing factor to the increased pen-

etrance seen in Sdccag8SBT/SBT mice. A more plausible explanation is that the deletion of 6 cod-

ing exons in the Sdccag8SBT allele makes it a null allele, while Sdccag8tm1e(EUCOMM)Wtsi and

Fig 2. Lack of Sdccag8 expression in Sdccag8SBT gene-trap mice. A) Representative PCR genotyping results for

Sdccag8+/+, Sdccag8+/SBT, and Sdccag8SBT/SBT mice. Primer pairs Fw+Rw and Fm+Rm detect the presence of wild-type

(WT) and mutant (Mut; SBT) alleles, respectively. B) qPCR results show the presence of Sdccag8mRNAs 5’ of the

insertion site but their absence 3’ of the insertion. cDNAs from the brain, kidney, and lung were used for qPCR. Error

bars represent standard errors. C-E) Immunoblot for SDCCAG8 shows loss of SDCCAG8 in the brain (C), kidney (D),

and lung (E). Arrowheads indicate full length SDCCAG8.

https://doi.org/10.1371/journal.pone.0192755.g002
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Fig 3. Loss of Sdccag8 exons 13–18 and Akt3 exons 2–13 in the Sdccag8SBT allele. A) PCR primers were designed to

amplify each exon of Akt3 and exons 13–18 of Sdccag8 from mouse genomic DNA. PCR products from Sdccag8+/+,

Sdccag8+/SBT, and Sdccag8SBT/SBT mice were loaded onto an agarose gel. B) RT-qPCR with primers spanning exons 3–4 of

Akt3 shows absence of Akt3 transcripts in Sdccag8SBT/SBT animals.

https://doi.org/10.1371/journal.pone.0192755.g003

Table 1. Comparison of phenotypes seen in SDCCAG8 mouse models (Sdccag8Gt(OST40418)Tigm, Sdccag8tm1e(EUCOMM)Wtsi, and Sdccag8SBT) and the Akt3-/- mouse.

Sdccag8Gt(OST40418)Tigm Sdccag8tm1e(EUCOMM)Wtsi Akt3-/- Sdccag8 SBT/SBT

Brain Not reported 22% exhibit an enlarged

lateral ventricle. Abnormal

neuronal migration.

20–25% reduction in brain-to-body size.

Thinning of white matter fiber connections in

corpus callosum. Loss of distinction between

corpus callosum and surrounding grey

matter.

Thinning of white matter/corpus

callosum. Decreased anterior

commissure size.

Lung Expression noted in prospective

ciliated cells of the developing

bronchi and bronchioles. No

detrimental phenotype reported.

Not reported Akt3 expression noted, no phenotype

reported

Paucity of alveoli. Accumulation of

blood in the alveolar sacs. Cyanotic

appearance indicative of oxygen

deprivation.

Palate Not reported 94% have visible cleft

palate

Not reported No visible cleft. Secondary palate

abnormalities seen in the

basisphenoid, presphenoid, and the

premaxilla.

Polydactyly Hind limb, pre-axial (65% penetrant,

35% bilateral, 30% unilateral)

94% have pre-axial

polydactyly. (laterality not

specified, rear or fore not

specified)

Not reported Hind limb, pre-axial (100%

penetrant, 100% bilateral)

Background Mixed (129S6/SvEvBrd, C57BL/6J) C57BL/6N-A Mixed (~25% 129/Ola ES, 75% C57BL/6) FVB/N

https://doi.org/10.1371/journal.pone.0192755.t001
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Fig 4. Neonatal Sdccag8SBT/SBT mice have secondary palate anomalies, pre-axial polydactyly, and brain

abnormalities but not cystic kidney. A) Alcian blue and Alizarin red staining of the secondary palate. Arrowheads

show alterations to the basisphenoid (BS), presphenoid (PS), and premaxilla (PM) regions of the palate. B) Alcian blue

and Alizarin red staining of the forelimb. C) Alcian blue and Alizarin red staining of the hind limb. D) H&E staining

of kidney sections. Scale bar = 200 μm E) H&E-stained brain sections. Anterior commissures are circled and the

dashed line highlights the white matter and corpus callosum. Scale bar = 500 μm. In all panels, wild-type (at P0) is

shown on the left and Sdccag8SBT/SBT mutant littermates are on the right.

https://doi.org/10.1371/journal.pone.0192755.g004
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Sdccag8Gt(OST40418)Tigm are strong hypomorphic alleles that allow a low level expression of nor-

mal Sdccag8 gene.

Loss of Sdccag8 does not result in the early development of kidney cysts

It was reported to the Jackson Laboratory (http://www.jax.org) that Sdccag8SBT/SBT mice have

cystic kidneys at P0. While kidney phenotypes were not reported in the Sdccag8tm1e(EUCOMM)Wtsi

model, which also expires at P0, Airik et al. reported cyst development in the kidney, first

noticeable at P100, in Sdccag8Gt(OST40418)Tigm mice [16]. In our Sdccag8SBT colony, we were not

able to find cystic kidneys at P0 (Fig 4D). Mutant kidneys were comparable to their wild type

and heterozygous littermates. Due to the neonatal lethality, we were not able to examine kidney

abnormalities in older animals.

Sdccag8SBT/SBT mice display brain abnormalities consistent with Akt3 loss

Brain abnormalities were reported in both SDCCAG8 deficient (Sdccag8tm1e(EUCOMM)Wtsi) and

Akt3 knockout mice [18, 28, 29]. The Sdccag8tm1e(EUCOMM)Wtsi mouse demonstrates abnormal

neuronal migration in the developing cortex. However, no obvious microcephaly is seen in the

brains of mutant animals, suggesting that cortical neurogenesis is near normal in these animals

[18]. While little is known about the role of Akt3, it has been shown that Akt3 knockout mice

show a 20–25% reduction in the brain size in relation to whole body size due to a decrease in

cell size and number [28, 29]. They also show a thinning of the white matter fiber connections

in the corpus callosum, as well as a loss of distinction between the corpus callosum and the sur-

rounding grey matter [28].

We found that the corpus callosum and anterior commissures were thinner and there was a

deficiency of white matter in Sdccag8SBT/SBT mice (Fig 4E). These neurological phenotypes are

very similar to those seen in Akt3-/- mice. Therefore, we conclude that the brain abnormalities

observed in Sdccag8SBT/SBT mice are at least partly due to the loss of AKT3 function. The con-

tribution of SDCCAG8 loss to these phenotypes is currently unclear.

Loss of SDCCAG8 function results in neonatal death in the FVB

background, associated with abnormal lung development

One notable difference between the Sdccag8Gt(OST40418)Tigm and the Sdccag8tm1e(EUCOMM)Wtsi

model is the neonatal lethality phenotype of mutant pups. Sdccag8Gt(OST40418)Tigm mice are

born with a Mendelian ratio and survive to the weaning age [16]. In contrast, although the pre-

cise time of death was not reported, homozygous Sdccag8tm1e(EUCOMM)Wtsi mutant mice die

shortly after birth [18]. Sdccag8SBT/SBT mutant mice are also born at Mendelian ratios (~25%).

However, all of them (n> 47) die within 12 hours following birth, indicating that loss of

Sdccag8 is neonatal lethal in the Sdccag8SBT/SBT mouse model.

Most Sdccag8SBT/SBT pups die within 8 hours after birth and all within 12 hours. Failure of

suckling is often considered as a cause of neonatal lethality when cleft palate is present. How-

ever, despite the presence of some defects in the secondary palate, Sdccag8SBT/SBT mice do not

display obvious clefting externally. Instead, we found that Sdccag8SBT/SBT mice are cyanotic

and gasping, indicative of oxygen deprivation (Fig 5A). Airik et al. reported the expression of

Sdccag8 in the prospective ciliated cells of the developing bronchi and bronchioles [16].

Prompted by these findings, we examined the histology of the lung at P0. H&E staining of the

lung sections revealed that, compared to littermate controls, the interstitium of Sdccag8SBT

mutant lungs remain thick. Reduction of alveolar airspaces and accumulation of blood in the

alveolar sacs was also observed in Sdccag8SBT/SBT mice (Fig 5B). These findings suggest that the
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progression from the canalicular stage to the terminal saccular stage during lung development

[30] is halted in Sdccag8SBT/SBT mice. Therefore, although failure of suckling could contribute,

our data indicate that developmental defects in the lung and consequent failure of normal

gas exchange and oxygen deprivation are likely the main cause of neonatal lethality in

Sdccag8SBT/SBT mice.

Interestingly, human SDCCAG8 patients diagnosed with BBS have been reported to have

recurrent pulmonary infections and poor respiratory function [4, 13, 14]. Although Akt3 is

highly expressed in the lung, absence of Akt3 is not lethal and no lung phenotypes have been

observed in Akt3-/- animals [29]. This suggests that Akt3 does not have an essential role in

lung development. Based on the known expression pattern of Sdccag8 in the lung [16],

neonatal lethality observed in another SDCCAG8 mouse model (Sdccag8tm1e(EUCOMM)Wtsi)

[18], and the lack of a pulmonary phenotype in Akt3-/- mice [29], we conclude that

the developmental defects in the Sdccag8SBT/SBT mutant lung are due to a loss of Sdccag8.

Fig 5. Developmental defects in the Sdccag8SBT/SBT mutant lung. A) Sdccag8SBT/SBT mice (right) are cyanotic at P0

(before death). A wild-type (WT) littermate is shown on the left. B) H&E staining of lung sections from a WT (left)

and a mutant littermate (right). Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0192755.g005
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Genetic contribution from 129S6/SvEvTac provides a protective effect

against neonatal lethality

We have generated multiple BBS mouse models, including BBS1, BBS2, BBS4, and BBS6 [31–

34]. We have noticed genetic background-dependent neonatal lethality in all of these mouse

models; most BBS mutant mice in a 129 background survive normally to the weaning age and

beyond, but those that reach weaning age are extremely rare in FVB or C57 backgrounds [35].

The Sdccag8tm1e(EUCOMM)Wtsi model, which shows neonatal lethality, is on the C57 background

[18], and the Sdccag8Gt(OST40418)Tigm model, which does not show early lethality, is on a C57/

129 mixed background [16]. Our Sdccag8SBT mice are on the FVB background and show neo-

natal lethality. Based on the correlation between the genetic background and the early lethality

phenotype in these mouse models, we hypothesized that there is a genetic modifier(s) that

influences the survival of Sdccag8 mutant pups.

To test this hypothesis and map the modifier(s), we mated Sdccag8+/SBT FVB/NJ mice with

wild-type 129S6/SvEvTac mice and began an intercross of Sdccag8+/SBT animals (F1) in a FVB/

129S6 mixed background. The resulting F2 generation mice were used for phenotyping as well

as genetic modifier mapping. While polydactyly was retained in the F2 Sdccag8SBT/SBT mice at

100% penetrance, we found that adding the 129S6/SvEvTac background resulted in 78% (42 of

54) survival to P21 or later, with only 22% (12 of 54) of F2 pups expiring at P0 similar to their

pure strain FVB/NJ counterparts, suggesting the presence of a 129 allele that allows for

survival.

To map the modifier, DNA samples from a pilot set of F2 mice, 10 of which died at P0

(fatalities) and 10 of which survived to P21 or later (survivors), were sent to the Jackson lab

and genotyped on a custom 150 SNP panel specific to the FVB/NJ and 129S6/SvEvTac lines.

Using a Chi Square test of independence, we identified two adjacent SNPs on chromosome 11

which showed a significant genetic association (S5 Table). These SNPs were rs3023266

(p = 0.018) and rs3714172 (p = 0.03). Genotypes at these SNPs were confirmed using Sanger

sequencing.

Further analysis was performed on additional SNPs throughout the region surrounding

rs3023266 and rs3714172, using the original cohort and an additional 32 mice that survived.

Statistical analysis of these SNPs was performed using Chi Square analysis with expected ratios

of 1:2:1 FVB:Het:129 versus observed genotypes in the surviving mice. Since introduction of

the 129S6 allele promoted survival, we strove to identify an interval lacking FVB/NJ homozy-

gosity in mice that survived. This analysis identified a region of 8 Mb from rs3714172 to

rs3141832 that showed a significant genetic skew towards decreased FVB homozygosity

(Table 2). There are 162 genes in this 8 Mb region (S6 Table).

We defined our region based upon the hypothesis that 129 provides a protective effect

against expiration in survivors and thus we focus on minimizing the number of FVB homozy-

gotes while deviating from expected distribution, rather than simply deviating from expected

1:2:1 distribution. While the rs27100337 SNP has the lowest p-value in this interval, it also has

a greatly increased (33% increased from 6 to 8) number of FVB homozygotes.

This region contains an interesting locus, a missense mutation in Matrix Metalloproteinase-
28 (Mmp28) at rs6169904. The B6 reference strain and the FVB strain have a shared allele,

whereas the 129S6 allele has a p.V342A (NP_536701.1) variant. Although this variation may

not be a major change, it is within the 7th exon of Mmp28, which is subject to alternative splic-

ing. Furthermore, this variant falls within a haemopexin domain found in isoforms 1 and 3 but

not isoform 2 of Mmp28. The haemopexin domain can play a role in substrate recognition and

it is thought that the alternative splicing of Mmp28 in this region may alter substrate binding

capacity or preference [36]. However, the catalytic activity and substrate specificity of either
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alternative spice variant of Mmp28 towards a biologically relevant substrate has not been stud-

ied. Under normal conditions, Mmp28 is expressed at high levels in the lung and promotes epi-

thelial cell survival [37]. It also regulates macrophage polarization and limits macrophage

recruitment to tissues [38–40].

In addition to Mmp28, all 10 murine genes of the Schlafen family are found within the iden-

tified region of interest. One SNP studied, rs29432792, is found in the intronic region of Slfn5.

While little is known about the expression patterns and functions of the individual members,

the Schlafen (SLFN) family has been implicated in the control of cell proliferation, induction of

immune responses, and the regulation of viral replication [41], along with an implication in

DDK syndrome, a syndrome which causes implantation defects and early embroynic lethality

when females of the DDK inbred mouse strain are mated to many non-DDK strain males [42].

More recently, it has been shown that Schlafen (SLFN) proteins are regulated by interferons

and evidence suggests that SLFN proteins play an important role in the anti-neoplastic and

growth inhibitory effects of interferons. SLFN1 and SLFN2 have shown upregulation in cystic

fibrosis lungs [43] and SLFN5 has an anti-neoplastic effect in renal cell carcinoma [44]. While

large changes to any of these proteins is not expected, the genetics of the Schlafen family on the

FVB/NJ background may make them susceptible to a more extreme phenotype given the right

conditions. The loss of SDCCAG8 may affect this family’s ability to complete their normal

duties, resulting in death on the FVB/NJ strain, with this extreme phenotype mitigated by hav-

ing a 129S6/SvEvTac genome across this region.

While having a single copy of 129S6/SvEvTac in this interval greatly increased the odds of

survival in Sdccag8 mice, it should be noted that some mice homozygous for FVB/NJ in this

region did survive to P21 or later (Table 2). Therefore, although this region is associated with

survival in the presence of the 129S6/SvEvTac background, there may be additional regions

that also provide protection from early lethality.

Conclusions

We show that the Sdccag8Tn(sb-Tyr)2161B.CA1C2Ove mouse displays early neonatal lethality due to

abnormal lung development and patterning defects in the secondary palate and the hind limb.

We also determined the precise genetic lesion present in this mouse model. Contrary to the

original annotation that the pT2-BART3 gene-trap cassette is inserted between the exons 12

and 13 of Sdccag8, our study identified a large deletion that encompasses exons 13–18 of

Table 2. A region between rs3714172 and rs3141832 shows a significant association with survival. Comparison of allele distribution in mice that survive to P21 or

later, analyzed using a Chi Square test with expected distribution.

Survivors

SNP Genomic location FVB 129 Het p-value

rs26943877 11:56664722 11 11 20 0.954

rs3023266 11:61070650 10 13 19 0.667

rs26956597 11:64233582 9 13 20 0.651

rs26915029 11:72345502 5 11 26 0.129

rs3714172 11:75605462 5 17 20 0.031

rs28214055 11:79737141 5 17 20 0.031

rs29432702 11:82952213 6 17 19 0.046

rs6169904 11:83443872 6 17 19 0.046

rs3141832 11:83580858 6 17 19 0.046

rs27100337 11:89766718 8 18 16 0.028

rs13481176 11:97551944 8 15 19 0.257

https://doi.org/10.1371/journal.pone.0192755.t002
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Sdccag8 and exons 2–13 of Akt3. We conclude that developmental defects of the secondary

palate, hind limbs, and the lung are due to a loss of Sdccag8, whereas the brain phenotype is

likely due to loss of Akt3. We suggest this mouse model may be useful to study the roles of

SDCCAG8 in vivo but cautions are needed due to the confounding Akt3 deletion in this

model. Finally, we identified a region of interest on chromosome 11 that provides a protective

effect against neonatal lethality in Sdccag8SBT/SBT mice when genomic contribution from the

129S6/SvEvTac background is present.
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