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Abstract

The assay for transposase-accessible chromatin followed by sequencing (ATAC-seq) is an

inexpensive protocol for measuring open chromatin regions. ATAC-seq is also relatively

simple and requires fewer cells than many other high-throughput sequencing protocols.

Therefore, it is tractable in numerous settings where other high throughput assays are chal-

lenging to impossible. Hence it is important to understand the limits of what can be inferred

from ATAC-seq data. In this work, we leverage ATAC-seq to predict the presence of

nascent transcription. Nascent transcription assays are the current gold standard for identi-

fying regions of active transcription, including markers for functional transcription factor (TF)

binding. We combine mapped short reads from ATAC-seq with the underlying peak

sequence, to determine regions of active transcription genome-wide. We show that a hybrid

signal/sequence representation classified using recurrent neural networks (RNNs) can iden-

tify these regions across different cell types.

Introduction

Transcription is a critical first step in transmitting the information in the DNA into usable

material. Transcription occurs at specific times and locations controlling both cell type and

cellular response to almost all perturbations. A large fraction of the genome (50-70%) is tran-

scribed in a cell [1], but only a small fraction of this transcription can be readily detected by

steady state assays such as RNA-seq and microarrays. Transcribed units, regardless of they are

stable or not, offer critical information about cellular state [2, 3]. Nascent transcription assays

[4, 5], by virtue of directly measuring transcription, can detect immediate changes (times as

short as 10 minutes) in response to perturbations [6]. Consequently, nascent transcription is a

rich source of information on both regulation and cell state.

However, nascent transcription experiments such as global run-on sequencing (GRO-seq)

and precision run-on sequencing (PRO-seq) are quite laborious, expensive, and require a large

number of cells. In contrast, the assay for transposase-accessible chromatin, followed by high-

throughput sequencing (ATAC-seq) has rapidly gained popularity since its inception, due to

its ease of execution, small cell count requirements, and short time expenditure. Yet, ATAC-
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seq measures chromatin accessibility, not RNA polymerase activity. Most sites of RNA poly-

merase activity co-occur with open chromatin regions (OCRs) detectable by ATAC-seq [6–8].

Unfortunately, only a fraction of open chromatin regions harbor RNA polymerase activity [9].

Reasoning that the presence of RNA polymerase may itself alter chromatin state in some subtle

fashion, we wondered whether signal exists within ATAC-seq, which could be utilized to dis-

criminate peaks that overlap RNA polymerase activity from other open chromatin regions

unrelated to active transcription.

Machine learning is a natural tool to classify data derived from genomics assays, particularly

ATAC-seq. A wide range of machine learning applications for ATAC-seq datasets have been

developed, from classifying types of chronic lymphocytic leukemia cells [10], to TF motif dis-

covery [11], discriminating among brain cell types [12], and identifying gene enhancer regions

using ATAC-seq peaks [13]. Given regions of polymerase initiation are dense with transcrip-

tion factor binding motifs and have a characteristics sequence bias [6], we reasoned that any

predictor would benefit from leveraging sequence information. Likewise, RNA polymerase

may induce particular signatures within ATAC-seq peaks. Therefore, we approach the prob-

lem of classifying ATAC-seq peaks as a signal processing task, where we employ both sequence

and ATAC signal features in our data representation scheme. In this work, we utilize this

hybrid encoding to examine the ability of ATAC-seq data to identify sites of overlapping

nascent transcription.

Materials and methods

Datasets

We utilized a collection of quality-assessed samples, or short-read runs (SRRs) originating

from different human cell lines and labs. We obtained SRRs from lung adenocarcinoma

(A549), myeloid B-cells (GM12878), human embryonic stem cells (H1), colon carcinoma

(HCT116), leukemia lymphoblasts (K562), prostate carcinoma (LNCaP), invasive ductal carci-

noma (MCF7), and childhood acute monocytic leukemia cells derived from peripheral blood

(THP1). All SRRs were retrieved from the Gene Expression Omnibus (GEO [14]), and are

listed with accession and quality evaluation details on S1 Table. for ATAC-seq, and S2 Table.

for GRO-seq/PRO-seq. For each SRR evaluated, we used a minimum depth cutoff of 12 mil-

lion reads post-trimming and mapping, greater than 10% genomic base-pair coverage for

ATAC-seq samples, and a minimum of a predicted 5 million unique reads per 50 million

sequenced for nascent samples (determined using preseq [15]). Samples were further evaluated

using other metrics including read duplication, read distributions, and GC content using both

the RSeQC [16] and FastQC tools.

Data processing

Both ATAC-seq SRRs and nascent transcription (GRO/PRO-seq) SRRs were processed using

Nextflow-based [17] pipelines [18, 19]. A full pipeline report of the run, workflow diagram,

and quality control report generated by MultiQC (v. 1.7) [20], including trimming (BBDuk,

BBMap Suite), mapping (HISAT2), read distribution (RseQC), coverage (pileup, BBMap

Suite), G/C content (Picard Tools [21]), and complexity metrics (preseq), are included in the

S1 File. Additional QC metrics for ATAC-seq SRRs were assessed using ATACseqQC [22] and

its output is also included in S2 File. SRRs were de-duplicated using Picard Tools prior to peak

call-ing. Peak calls were generated using MACS2 narrowPeak using the q-value default

(< 0.05). Blacklisted regions (those having artificially high signal and read mapping, obtained

from http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/) were

removed using BEDTools intersect [23]. Training files (required for FStitch [7]) used in
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nascent data processing for each cell type and output from application of both FStitch and Tfit

[24] (using default pipeline settings), are included in the S3 File. Some SRRs were discarded

due to low complexity using the aforementioned criteria which strongly affects both FStitch

and Tfit in modeling regions of active transcription (see MultiQC reports in S1 File). Genome

browser track figures were generated using DeepTools [25] pyGenomeTracks.

All SRRs and sequences were analyzed with respect to the GRCh38 human reference

genome. The ATAC-seq peaks for all SRRs from the same cell type (generally replicates) were

combined into a single cell-type-specific data file, which was subsequently used for training

and testing. These peaks were combined by taking the union of all peak regions across SRRs

from the same cell type (directly overlapping in genomic coordinates), and averaging the num-

ber of mapped ATAC-seq reads (previously normalized by millions mapped) at each nucleo-

tide. Individual peaks within these files are referred to as OCRs.

Similarly, the coverage files from Nascent-Flow (in bedGraph format) were combined into

a single per-cell-type data file. We leveraged the combined output of two tools to detect

nascent transciption, FStitch [7] and Tfit [24]. FStitch identifies all transcribed regions within

a nascent transcription experiment, but cannot necessarily distinguish individual transcripts

in densely transcribed regions. Tfit identifies individual transcripts based on the expected

behavior of RNA polymerase II. If either of the tools detected a region of active transcription

(FStitch) or bidirectional transcription indicative of functional transcription factor binding

(Tfit) in a region that overlapped with an OCR, the OCR was labeled as “positive”. Otherwise

the OCR is labeled “negative”. This resulted in approximately 29% of all OCRs labeled as

positive. It’s worth pointing out that, while nascent transcription is commonly seen at tran-

scription start sites (TSSs) for active genes, most transcription (estimated at 72% [24]) actually

occurs at other loci throughout the genome, for example due to binding of regulatory proteins

(S1 Fig).

Data encoding

We developed a hybrid encoding of sequence and signal that summarizes each OCR into a

1kbp dense vector encoding (Fig 1a). The window size of 1kbp was chosen to account for most

OCR sizes, and include flanking regions in the analysis. Signal is captured at nucleotide resolu-

tion by the number of mapped ATAC-seq reads, normalized by millions mapped. Sequence-

derived features are encoded using the Hill et. al. approach, which maps an input sequence of

nucleotides to a sequence of vectors using an embedding layer [26]. This embedding layer con-

sists of a dense vector representation of each nucleotide, trained on the sequences correspond-

ing to every peak in an ATAC-seq SRR. The 2-dimensional input feature matrix is the result of

stacking the normalized number of mapped ATAC-seq reads (the OCR’s “signal”) with the

vector embedding of each nucleotide (Fig 1a), both in the same 1kbp peak evaluation window.

This hybrid encoding representation could alternatively be considered as a way to weight each

nucleotide by its level of accessibility.

The choice of a hybrid encoding scheme for each OCR fixed window resulted from a previ-

ous study [27], where we evaluated the performance of many different data encoding schemes

and machine learning classifiers. OCRs were evaluated using only the signal at each nucleotide,

only the underlying sequence, or a combination of both. The hybrid signal/sequence represen-

tation, in combination with a recurrent neural network model, yielded the best performance

in detecting both underlying RNA polymerase activity and histone marks associated with tran-

scriptional activity at each OCR tested. This manuscript focuses only on the underlying RNA

polymerase activity for each region of accessible chromatin.
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Classifiers

We developed a recurrent neural network (RNN) model to classify ATAC-seq peaks repre-

sented by our hybrid encoding, utilizing the Keras framework. Given the sequential nature of

our data, an RNN presented the most suitable choice. Since both the ATAC-seq signal or the

underlying nucleotide sequence may be read in either direction (sense or anti-sense), we

implemented this classifier with bidirectional gated recurrent units (GRUs). We combined our

sequence embedding and signal into a single vector representation (Fig 1a) that is utilized as

input to the GRUs (Fig 1b). A learning rate of 0.0001, a dropout date of 0.1, an embedding

layer size of 50 and a hidden layer size of 100 were selected after hyperparameter optimization,

from a grid of embedding dimensions [15, 50, 100], dropout rates [0.1, 0.2, 0.3], learning rates

[0.001, 0.0005, 0.0001] and hidden sizes [100, 200, 350, 500]. All instances of the RNN models

were executed with the aid of a GPU for increased computational performance. Specifically,

the Tesla K80 GPU on Elastic Cloud Computing from Amazon Web Services.

In a previous study [27] we evaluated a variety of classifiers and encodings for our RNN

and found that the RNN outperformed all other methods at predicting histone marks associ-

ated with OCRs that are related to active transcription. For completeness, we briefly summa-

rize the earlier study. We examined a variety of simpler machine learning classifiers such as

Fig 1. Hybrid encoding and RNN model architecture. (a) A vector embedding was trained for each nucleotide (top left, also including other base symbols

following the IUPAC convention). For our signal/sequence hybrid model, we generated a 50-dimension training vector for each peak by combining nucleotide

information (a vector embedding based on neighboring nucleotides) and the normalized number of ATAC-seq reads mapped for that nucleotide (by millions

mapped). In this example, we show how a small portion of an OCR detected with ATAC-seq (top right, green) with the sequence ACTTCCT would be represented

in two dimensions (bottom, one nucleotide per column), with the first row reflecting the normalized read coverage for each of those nucleotides and the rest of

each column consisting of the nucleotide’s dense vector representation. (b) Nucleotides in the 1kbp evaluation window are extracted from the reference genome

(bottom blue layer) were passed to an embedding layer (orange) to generate a dense vector representation from each. The peak signal level associated to each

nucleotide (middle blue layer; i.e., the number of mapped ATAC-seq reads normalized by millions mapped) is then combined with the nucleotide embedding

vector (purple layer, vector representation shown in panel a). Each vector is passed to a gated recurrent unit in each direction (green layer) to capture the long- and

short-term relations between nucleotides, and the outputs from the last forward and reverse gates are concatenated to be used or the final prediction.

https://doi.org/10.1371/journal.pone.0232332.g001
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random forests, support vector machines, and ADABoost, as well as traditional signal process-

ing approaches to detect signatures in ATAC-seq signal in each 1kbp evaluation window. In

addition we considered an RNN model with only signal-derived features, only sequence-

derived features, and a combination of both. Different encodings of both the signal (autoenco-

der, first-level wavelet decomposition) and sequence (wavelet decomposition of electron-ion

interaction potential) were considered. Overall, the hybrid encoding of both sequence and sig-

nal to the RNN model performed the best.

Model evaluation

We sought out a binary classification for every OCR in the test set, where a positive label

(value of 1) represented nascent transcription at said OCR, and a negative label (value of 0)

denoted no nascent transcription. We used the area under the curve (AUC) from receiver

operating characteristics (ROC) curves to compare the performance of this binary classifica-

tion task, as well as weighted F1-scores to evaluate the balance of predictive precision and

recall.

Each test was performed using a “leave-one-out” training (LOOT) strategy in a very conser-

vative performance evaluation fashion, in order to remove cell type-specific characteristics

from training, as well as ensuring that the genomic coordinates tested do not exist within the

training set. This is important because, for example, 3,833 OCRs are common (that is, they

overlap in coordinates) to all data sets. We used only OCRs from specific chromosomes during

training (chr1 thru chr11) and OCRs from the remaining chromosomes for the test set (chr12

through chr22, chrX and chrY), from each specific cell type (see S2 Fig for an example). Since

chromosomes are numbered from largest to smallest, this split provided a reasonable number

of training and test OCRs for each cell type-specific classification run.

We segregated a portion of our data for validation purposes only, to be used while training

the RNN. This consisted of all OCRs from the HCT116 datasets in chromosomes chr1 thru

chr11. These OCRs were therefore excluded from any training or test set, and prevented fur-

ther bias during the model training step. The remaining OCRs from HCT116 cells were

discarded.

We sought to determine if we could classify ATAC-seq peaks based on their co-occurrence

with transcription, as measured in cell type matched nascent transcription assays. To this end,

we identified high quality datasets within public repositories where both ATAC-seq and

nascent transcription data (either GRO-seq or PRO-seq) were available for the same cell type

and condition (in every case, these were labeled as “untreated” or “DMSO” in the SRR meta-

data). Under this criteria of matching assays and conditions, we obtained 9 sets (each a distinct

cell type) of matched data. The depth of the obtained datasets varied, between 11.1 and 192.9

million reads for ATAC-seq SRRs, and between 14.8 and 213.4 million for nascent transcrip-

tion SRRs. Across the 9 distinct cell types, nearly half a million open chromatin regions were

identified. All OCRs were labeled as transcribed (positive) or negative, based on the output

from the Tfit and FStitch tools on the same region (as described in data processing).

We first asked whether there was a relationship between accessibility, as measured in

ATAC-seq, and nascent transcription. While there is a very loose positive correlation (r2 =

0.084) between read coverage in both ATAC-seq (accessibility) and nascent transcription (Fig

2), but the correspondence was far from diagnostic. Therefore, we turned to machine learning

as a means of classifying open chromatin regions as to whether they harbor transcription.

We developed our RNN approach using a hybrid data representation that captures both

sequence and signal features within ATAC-seq data. We reasoned that sequence features are

likely to be critical to transcription initiation, as transcription factors recognize primary
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sequence and regulatory regions (enhancers and promoters) have a known positional sequence

bias [6]. However, ATAC-seq signal (read depth) is also informative as there is a weak correla-

tion between accessibility and transcription (Fig 2, S3 Fig for specific cell types) and the pres-

ence of RNA polymerase II may leave distinct signatures within the accessibility profiles.

We first sought to determine a baseline performance for this classification task. To this end,

we used a naive approach that looked at the distribution of mean ATAC-seq coverage per

OCRs labeled as “positive” (overlapping bidirectional nascent transcription) or “negative”. We

used a kernel density estimator with Gaussian kernels to define an empirical distribution of

mapped ATAC-seq reads for each case, and based on an odds ratio we predicted whether an

OCR overlapped transcription. This baseline classifier displayed a performance barely better

than random calls, with an F1-score of 0.550 and an ROC AUC of 0.554 (S4 Fig) using a ran-

dom 10% of all OCRs for testing.

Our RNN model using the hybrid signal/sequence encoding greatly surpassed the baseline

performance. The test OCRs from each cell type (chr12-chrY, as described earlier) were evalu-

ated separately. The results of this LOOT strategy are shown in Figs 3 and 4. K562 cells gener-

ally presented much lower performance, which could be related to the quality and complexity

of the dataset (see S1 File). The SRR quality was above our cutoffs, but still the lowest com-

pared to the other datasets. The number of OCRs that could be detected was also significantly

Fig 2. Accessibility vs. transcription. Each point in this scatter plot is an ATAC-seq peak, where we compare the mean number of mapped

ATAC-seq reads in its 1kbp evaluation window (y-axis) to the mean number of mapped nascent transcription reads on that same window

(x-axis). There is essentially no correlation (r2 = 0.084) between the two, making this average peak metric not sufficient to predict active

transcription.

https://doi.org/10.1371/journal.pone.0232332.g002
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lower than SRRs from other cell types. Overall, however, the performance of the classifier with

AUC values between 0.548 (K562, an outlier) and 0.847, and a median of 0.792, indicates that

the classifier is recognizing general features of transcribed OCRs rather than specific features

of the cell type/experiment or genomic region.

Fig 3. Classifier performance across cell types. (a) Receiver operating characteristic (ROC) area under the curve (AUC, light blue), (b) F1-score (tan), and (a) RNN

training time (green) for LOOT-based performance evaluation. OCRs from each cell type tested are displayed using the same marker (see key).

https://doi.org/10.1371/journal.pone.0232332.g003
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Next we sought to understand the error characteristics of the classifier. To this end, we

examined the ATAC-seq data profiles in the correctly classified and incorrectly classified

peaks. The distribution of the mean number of ATAC-seq reads for each OCR is similar for

true positives and negatives (Fig 5, top in green). Yet our classifier showed a tendency to mis-

classify higher read depths as positive, exemplified by the slight shift in the false positive curve

relative to the true positives. An examination of “meta-peak” signals (that is, the aggregated

signal of all peaks involved in that subset) in each error class shows that negative-labeled OCRs

have a generally narrower peak shape within the ATAC-seq data (Fig 6, green axis figures on

the top row) compared to positive-labeled OCRs. Overall, OCRs overlapping nascent tran-

scription appear to be significantly wider than those which don’t, which suggests a signature in

the peak’s shape that is indicative of active transcription. The classifier clearly struggles with

intermediate width cases, leading to errors (Fig 6, in blue). This would suggest that the local

context, beyond each nucleotide point-wise information, is informative and may explain why

the bidirectional GRU architecture was helpful to identify these regions.

Because the general signal of the ATAC classifications well mimicked the training input

(Fig 5), we next examined the distribution of mean nascent transcription across these same

regions (Figs 7 and 8). As expected, positive-labeled OCR regions have generally higher levels

of transcription than their negative-labeled counterparts (Fig 7, top in green). Importantly, not

all negative-labeled regions have zero read coverage, as some noise is inherent in any sequenc-

ing protocol. Likewise, some positive-labeled regions do have very low read coverage because

they may correspond to regulatory regions like enhancers, which typically are lowly

Fig 4. Cell type focused strategy results. ROC curves resulting from testing on the different OCRs corresponding to

each cell type, in a leave-one-out fashion.

https://doi.org/10.1371/journal.pone.0232332.g004
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Fig 5. Distribution of ATAC-seq reads for classification results. Distribution of mapped reads from ATAC-seq SRRs, for OCRs corresponding to the

training set (green histograms, top) and each classification metric (blue histograms, metric noted in upper right corner of each panel). Note the difference in y-

axis scales among plots, as the size of each set differs.

https://doi.org/10.1371/journal.pone.0232332.g005
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Fig 6. Meta-peaks from ATAC-seq signal at OCRs. Meta-peak plot generated by combining the ATAC-seq signal at each 1kbp evaluation window centered

at OCRs for the entire training set (top row, green axis) and each classification metric: true positives (mid left), true negatives (mid right), false positives

bottom left) and false negatives (bottom right). Note the difference in scales among plots, to emphasize the characteristic shape in each scenario.

https://doi.org/10.1371/journal.pone.0232332.g006
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Fig 7. Distribution of nascent transcription reads for classification results. Distribution of mapped reads from nascent transcription SRRs, for OCRs

corresponding to the training set (green histograms, top) and each classification metric (blue histograms, metric noted in upper right corner of each panel).

Note the difference in scales among plots, to better appreciate the distribution of coverage in each scenario. The leftmost bin in the “positive”, “TP”, and “NF”

panels correspond to very low levels of nascent transcription rather than no transcription, which are generally associated to regulatory regions.

https://doi.org/10.1371/journal.pone.0232332.g007
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Fig 8. Meta-peaks from nascent transcription signal at OCRs. Meta-peak plot generated by combining the nascent transcription signal at

each 1kbp evaluation window centered at OCRs for training data (top row, green axis) and each classification metric (middle and bottom).

Signal is color coded by strand (blue is positive strand; red negative strand). Notice the differences in scale among plots, with TPs and FNs

sharing the same scale, but distinct from TN and FP.

https://doi.org/10.1371/journal.pone.0232332.g008
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transcribed. The classifier’s errors appear to be regions with low levels of transcription. An

examination of the corresponding “meta-gene” signal for each category (Fig 8) further sup-

ports this conclusion. Intriguingly, the negative-labeled training data shows a slight, but

noticeable bidirectional signal similar to the positive-labeled truth dataset. Given our reliance

on two different nascent analysis tools (FStitch and Tfit), which each have their own bias and

accuracy at different regions of the genome, it is possible that some of the OCRs characterized

as false negatives may indeed be regions of active transcription. The meta-gene curve for false

negatives reinforces this hypothesis, as there is a considerable level of bidirectional transcrip-

tion at these regions. This suggests that the performance of our classifier is arguably a lower-

bound, which could be improved with the availability of a “gold standard” transcription

dataset.

We next wanted to determine which classes of OCRs were driving performance. First we

examined the common peaks (e.g. those present across all cell lines, at overlapping genomic

coordinates). While common peaks are a minority (8,424/471,799 overall, and 1,377/155,242

across all test sets), we observed that these peaks are correctly classified in general (Fig 9). S6,

S7 and S8 Figs provide classification statistics for OCRs unique to each cell type, shared among

only two cell types, and among only three cell types, respectively. Next we examined OCRs

based on their overlap with TSS (or ot). Intriguingly, we find that TSS are generally harder to

classify (Fig 10, S5 Fig). This is perhaps unsurprising since transcription start sites represent

only a small fraction of the overall transcribed regions [24]. Interestingly, only approximately

19% of the common OCRs overlap TSSs (Table 1). Given that common OCRs are generally

easier to predict, this may also contribute to the lower performance of TSSs. Finally, there

may be some previously undetected bias in our labeling tools that could impact the TSS

performance.

Discussion

The goal of our study was to detect whether specific ATAC-seq peaks denoting OCRs over-

lapped nascent transcription, using a machine learning model and a hybrid signal/sequence

representation of each OCR. Using matched ATAC-seq and nascent transcription data for the

same cell type and conditions, we ensured diversity of tissue types, experimental sources, and

data quality in general for our training, validation, and test sets. Overall, the performance of

Fig 9. Commonly observed OCRs dominate performance. Proportion of OCRs common to every cell type

(overlapping in genomic coordinates) categorized in the different performance metrics.

https://doi.org/10.1371/journal.pone.0232332.g009
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our hybrid RNN model is solid, with the classifier reaching a maximum AUC score of 0.847

and maximum F1-score of 0.792.

Generally, the quality of both data types (nascent and ATAC) likely influences the overall

performance of our classifier. While the datasets utilized here were selected, in part, based on

the fact that they pass certain quality standards, it is interesting to note that the lowest per-

forming cell line (K562) was arguably the poorest quality ATAC-seq dataset. This cell line had

the fewest detected OCRs, and appeared by visual inspection of lower complexity. While we

Fig 10. TSS regions are generally harder to classify than non-TSS ones (regulatory sites). ROC curves for OCRs overlapping TSSs (green) and non-TSS OCRs

(red), for each test set. The orange curves correspond to all OCRs for that test set.

https://doi.org/10.1371/journal.pone.0232332.g010
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discarded datasets based on an arbitrary depth cutoff of 10 million reads, issues of SRR com-

plexity are not well captured by simple depth cutoffs.

Our initial hypothesis was that the presence of RNA polymerase II may leave characteristic

signatures within ATAC-seq data. However, generally negatives were easier to classify than

positives, indicating regions without transcription may follow a more consistent pattern across

cell types. Likely several things contribute to the lower performance in positives. First, while

we leveraged state of the art nascent analysis tools for our labeling, our error analysis suggests

that, even in the high quality datasets utilized here, some lowly transcribed regions may have

been missed. Enhancer RNAs are generally lowly transcribed and therefore are inherently

challenging to detect even in the best of circumstances. Second, our classifier seeks to identify

a singular ATAC pattern for RNA polymerase II presence. Yet nascent transcription assays

survey all sites of transcription regardless of which polymerase is involved. Cells have three

major forms of RNA polymerase (I, II, and III) and RNA polymerase II is a large multi-protein

complex that exists in many forms, e.g. distinct component sets. If each RNA polymerase com-

plex leaves a distinct signature in ATAC, the result would be a mixture of signals and ulti-

mately a reduced performance of our model on the positives, as observed.

A number of extensions are possible that could improve the performance of the classifier.

First, we could account for differences between datasets in quality and/or depth by weighting

the training inputs based on confidence in the nascent transcription data. Second, we may be

able to improve performance by including more signal information into the classifier, as the

distinct shapes observed in the meta plots suggests more information on local shape could be

informative. Third, our classifier could be extended to utilize annotation or additional input

data in order to produce multi-labels (example: TSS versus non-TSS as well as transcribed or

not). Even without these extensions, the machine learning features from our hybrid represen-

tation of signal and sequence depicted in Fig 1a will likely be applicable to other experimental

assays and classification tasks, such as inferring underlying histone modifications. Here we

demonstrate that this RNN hybrid model classifier adequately predicts the presence of nascent

transcription signal.

Conclusion

Because of its relative simplicity and utility across a broad range of cell types and cell counts, it

is advantageous to maximize the information obtained from ATAC-seq. Here we demon-

strated that a recurrent neural network model using a combination of ATAC-seq signal and

underlying sequence can accurately classify open chromatin regions as transcribed or not.

Table 1. OCR-related statistics per cell type.

Cell Type Number of OCRs OCRs on transcription OCRs on TSSs

A549 53,131 11,906 12,809

GM12878 46,722 17,323 10,949

H1 69,101 37,467 14,609

HCT116 33,279 15,863 7,986

HeLa 46,815 10,141 11,172

K562 4,968 3,749 2,966

LNCaP 25,420 8,627 7,354

MCF7 138,717 18,350 13,860

THP1 58,614 11,463 10,522

https://doi.org/10.1371/journal.pone.0232332.t001
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Software availability

The code that implements this model is publicly available at https://github.com/Dowell-Lab/

OCR_transcription_detection.
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