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Intermittent theta burst stimulation (iTBS), a patterned repetitive transcranial magnetic

stimulation, was applied over the posterior superior temporal sulcus (pSTS) or

dorsolateral prefrontal cortex (DLPFC) to explore its impact in adults with autism

spectrum disorder (ASD). Among 25 adults with ASD, 19 (mean age: 20.8 years)

completed the randomized, sham-controlled, crossover trial. Every participant received

iTBS over the bilateral DLPFC, bilateral pSTS and inion (as a sham control stimulation)

in a randomized order with a 1-week interval. Neuropsychological functions were

assessed using the Conners’ Continuous Performance Test (CCPT) and the Wisconsin

Card Sorting Test (WCST). Behavioral outcomes were measured using the Yale-Brown

Obsessive Compulsive Scale (Y-BOCS) and the Social Responsiveness Scale (SRS). In

comparison to that in the sham stimulation, the reaction time in the CCPT significantly

decreased following single DLPFC session (p= 0.04, effect size= 0.71) while there were

no significant differences in the CCPT andWCST following single pSTS session. Besides,

the results in behavioral outcomes were inconsistent and had discrepancy between

reports of parents and patients. In conclusion, a single session of iTBS over the bilateral

DLPFC may alter the neuropsychological function in adults with ASD. The impacts of

multiple-sessions iTBS over the DLPFC or pSTS deserve further investigations.

Keywords: repetitive transcranial magnetic stimulation, theta burst stimulation, dorsolateral prefrontal cortex,

posterior superior temporal sulcus, autism spectrum disorder
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INTRODUCTION

Autism spectrum disorder (ASD) is characterized by an early
onset of difficulties with social-communication, and repetitive,
restricted, stereotyped behaviors, and interests (Lai et al.,
2014). Although the precise etiology of ASD is not conclusive,
abnormalities in regional brain volumes (Nickl-Jockschat et al.,
2012), patterns of brain perfusion (Ohnishi et al., 2000), neural
biochemical characteristics of ASD (Baruth et al., 2013), and
excitatory/inhibitory neurotransmission (LeBlanc and Fagiolini,
2011) have been reported. Unfortunately, there are limited
biological interventions available to treat ASD.

Repetitive transcranial magnetic stimulation (rTMS), a non-
invasive technique of repetitive stimulation of the neural
circuits, is capable of producing long-lasting changes in cortical
excitability beyond the period of stimulation (Fang et al., 2010;
Pell et al., 2011). Although the precise mechanism of action of
rTMS is still unclear, recent studies found that rTMS can induce
changes similar to long-term potentiation (LTP) or long-term
depression (LTD) via modulation of synaptic plasticity (Huang
et al., 2007; Pell et al., 2011). Recently, rTMS has shown some
potential clinical benefits in several psychiatric disorders such as
major depressive disorder (Gaynes et al., 2014), schizophrenia
(Rajji et al., 2013), post-traumatic stress disorder (Cohen et al.,
2004; Watts et al., 2012), and ASD (Enticott et al., 2012, 2014).

The application of rTMS in ASD has been studied recently.
Several neurobiological targets, including the dorsolateral
prefrontal cortex (DLPFC), medial prefrontal cortex, dorso-
medial prefrontal cortex and Broca’s area, have been studied
(Sokhadze et al., 2009, 2010, 2012; Baruth et al., 2010; Enticott
et al., 2011, 2012, 2014; Fecteau et al., 2011). Among these, rTMS
over the DLPFC has been investigated the most. Studies have
investigated the therapeutic effect of rTMS over the DLPFC using
several different designs, such as changes in the stimulation site
(left, right, or bilateral), stimulation frequency (from once per
week to twice per week), total number of stimulation sessions (1–
18) and protocol frequency (0.5–5 Hz) (Oberman et al., 2016).
These studies demonstrated that low-frequency rTMS over the
DLPFC might restore the excitatory/inhibitory imbalance and
improve the repetitive behaviors observed in ASD. However, the
social impairments observed in ASD did not change with these
interventions (Baruth et al., 2010; Sokhadze et al., 2010, 2014;
Casanova et al., 2014).

Another potential target of rTMS for ASD is the posterior
superior temporal sulcus (pSTS). The pSTS was first found to be
involved in the process of biological motion (Puce and Perrett,
2003) and a further important role for it has been demonstrated
in social perception (Zilbovicius et al., 2006; Redcay, 2008).
Atypical activation patterns of the pSTS in ASD have been
reported in several social experiments (Mason et al., 2008; Redcay
et al., 2013). Moreover, studies on cerebral blood flow revealed
hypoperfusion of the bilateral STS in sedated children with ASD
(Ohnishi et al., 2000; Zilbovicius et al., 2000) and the level of
hypoperfusion in the left STS was associated with the clinical
severity of autism (Gendry Meresse et al., 2005).

The impact of rTMS over the pSTS has been tested in
healthy adults. Grossman first found that low-frequency rTMS

over the right pSTS temporarily impaired the perception of
biological motion in healthy adults (Grossman et al., 2005). In
addition, van Kemenade demonstrated that the sensitivity to
detect biological motion marginally declined after continuous
theta burst TMS over the left pSTS (van Kemenade et al., 2012).
One recent fMRI study demonstrated that low-frequency rTMS
over the bilateral pSTS produced remote hemodynamic effects in
a network of specific brain areas, including the lateral occipital-
temporal cortex, intraparietal sulcus, and ventral premotor cortex
(Arfeller et al., 2013). Since these studies demonstrated that
low-frequency rTMS (inhibitory protocol) over the pSTS might
impair the perception of biological motion in healthy adults, it
might be possible to apply an excitatory protocol over the pSTS to
enhance the perception of biological motion. Therefore, it might
be feasible to enhance the function of the pSTS to improve social
cognition in patients with ASD (Saitovitch et al., 2016). However,
to the best of our knowledge, there has so far been no study
investigating the impact of rTMS over the pSTS in patients with
ASD.

Theta burst stimulation (TBS), a modified protocol of rTMS,
can very quickly produce an LTP- or LTD-like effect by using
bursts at the same frequency (three pulses at 50 Hz, repeated five
times per second) and intensity (Huang et al., 2005, 2007, 2011).
For TBS, the direction of the after-effects depends on whether
the bursts are delivered continuously (cTBS, producing LTD-
like effects, inhibitory) or intermittently (iTBS, producing LTP-
like effects, excitatory). In comparison to traditional rTMS, the
stimulus duration is shorter in TBS (TBS: 20–240 s; rTMS: 5–30
min) (Pell et al., 2011). The shorter stimulus duration makes TBS
more appropriate for ASD in clinical practice.

In this pilot study, we aimed to explore the impacts of single
session TBS over the DLPFC and the pSTS in ASD. Based
on the review mentioned above, the excitatory protocol (iTBS)
was chosen for use in our study. In addition, bilateral cerebral
hemispheres were stimulated to maximize the intervention
effect. Using a randomized, crossover, and sham-controlled study
design, we investigated the impact of iTBS over the bilateral
DLPFC and bilateral pSTS compared to the sham-control
condition. Neuropsychological function was measured using
the Conner’s Continuous Performance Test (CCPT) and the
Wisconsin Card Sorting Test (WCST). In addition, the behavioral
outcomes were measured using the Yale-Brown Obsessive
Compulsive Scale (Y-BOCS) and the social responsiveness scale
(SRS) in both the participants and their parents.

MATERIALS AND METHODS

Subjects
We recruited participants, who were older than 18 years of
age through advertisement at the outpatient clinic of the
Department of Psychiatry, Chang Gung Memorial Hospital,
Taiwan. People interested in our study were first interviewed
by a board-certified child psychiatrist (First author). Once
they and their parents agreed to join the study, several
assessments were arranged. First, the diagnosis of ASD was
evaluated according to the DSM-IV and ICD-10 criteria by
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the first author and this were further confirmed using the
Chinese version of the Autism Diagnostic Interview-Revised
(ADI-R) and Autism Diagnostic Observation Schedule (ADOS)
by another senior board-certified child psychiatrist (Dr. Wu).
Patients with a diagnosis of autistic disorder, Asperger syndrome,
or pervasive developmental disorder, were included in our
study. Patients with any history of systemic medical illness,
seizures, severe head injury, suicide attempts, schizophrenia,
bipolar affective disorder, substance abuse, pregnancy, or the
presence of an implanted medical device such as a cardiac
pacemaker, were excluded from the study. A total of 25
participants with ASD were enrolled in the current study. Six
participants completed the baseline assessments but refused
the iTBS interventions for personal reasons. The other 19
participants, aged 18–29 years old, completed the entire study.
The demographic data are shown in Table 1. The participants
were maintained on the same medication during the whole
study period. Three of the participants (16%) took psychotropic
medications (methylphenidate = 1, fluoxetine = 1, and
sertraline= 1).

Study Design
This was a randomized, sham-controlled, crossover trial to
investigate the impact of iTBS in ASD. The participants received
iTBS over the bilateral DLPFC, bilateral pSTS and inion (as
a sham control stimulation) in a randomized order, with a 1-
week interval between each session. The order of randomization

TABLE 1 | Demographic data of participants.

ASD (n = 19)

Age, mean (SD) 20.8 (1.4)

Sex, male (%) 14 (73.7)

Education level (n)

Senior high school or lower 7

College 10

Graduate school or higher 2

Full-scale IQ, Mean (SD) 100.5 (14.0)

Verbal IQ, mean (SD) 96.9 (16.5)

Performance IQ, mean (SD) 103.8 (13.4)

ADOS

Language and communication, mean (SD) 4.0 (1.3)

Reciprocal social interaction, mean (SD) 6.7 (1.9)

Imagination, mean (SD) 1.1 (0.5)

Stereotyped behaviors and restricted interests, mean (SD) 1.4 (0.7)

ADI-R

Social, mean (SD) 19.3 (5.4)

Communication, mean (SD) 21.6 (7.1)

Repetitive and stereotyped behavior, mean (SD) 6.5 (2.3)

Psychotropic Medications (n)

Sertraline (20 mg/day) 1

Fluoxetine (40 mg/day) 1

Methylphenidate (20 mg/day) 1

ASD, autism spectrum disorder; ADOS, Autism Diagnostic Observation Schedule; ADI-R,

Autism Diagnostic Interview-Revised.

of the DLPFC, pSTS, and inion followed the rules of William
design with an order of 3 (6 sequences). The social and repetitive
behaviors were assessed immediately before, 8 h and 2 days after
the interventions. Neuropsychological functions were assessed
before and after (within 1 h) the intervention.

The Research Ethics Committee at the Chang GungMemorial
Hospital approved this study before its implementation. The
procedures and purpose of our study were explained face-to-face
to the participants and their parents, who then provided written
informed consent.

Target Identification
The scans were collected on a 3T magnetic resonance imaging
(MRI) scanner (Trio, Siemens Medical Solutions, Erlangen,
Germany), using a 12-channel head coil. A high resolution 3D-
MPRAGE sequence for anatomic localization was acquired using
the following parameters: TR= 2,250 ms, TE= 2.6 ms, TI= 900
ms, FOV= 240 mm, Flip Angle= 9◦, matrix= 240× 256, voxel
size= 1.0× 1.0× 1.0 mm. To minimize movement artifacts, the
head of every subject was firmly fixed with pads. All images were
examined to ensure that they were free of motion and artifacts at
the time of image acquisition.

We derived the iTBS sites for each of our individual
participants using the same normalized coordinates. The sites of
the left and right pSTS were based on the study by Van Overwalle
and Baetens (2009), who analyzed 200 functional MRI (fMRI)
studies and reported the averaged pSTS coordinates on the
Talairach atlas (±50, −55, 10). The final Montreal Neurological
Institute (MNI) coordinates of the pSTS were ±50.5, −57.1,
7.9 (for conversion from the coordinates on the Talairach atlas
to those on the MNI template, refer to http://imaging.mrc-
cbu.cam.ac.uk/imaging/MniTalairach). The sites of the left and
right DLPFC (MNI coordinates: −41.9, 35.1, 33.7; 39.9, 36.8,
33.9, respectively) were adapted from Mylius et al. (2013),
where researchers first anatomically defined the DLPFC at the
separating line between the anterior and middle thirds of the
middle frontal gyrus, and then derived the MNI coordinates
through structural normalization using 50 normal volunteers (24
men).We specifically used a subset of data frommale participants
here since our present experiment happened to recruit mainly
male participants.

To target the normalized coordinates precisely, the T1-
weighted structural image of each participant was first spatially
normalized with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8) to find the transformation matrix. We then
applied an inverse transformation matrix, which accepts the
normalized coordinates as the input and gives the corresponding
coordinates in the participant’s native structural image as
the output (Figure 1 shows the four stimulation sites of a
representative participant and the coordinates rendered on a
normalized skull-stripped brain). These output coordinates were
marked on the native structural image in the Navigated Brain
Stimulation (NBS) system (Nexstim R©, Helsinki, Finland), which,
with the aid of an infrared tracking device, can visualize the
position of the TMS coil relative to the structure of the head and
brain of each individual.
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FIGURE 1 | The targeted location over the (A) left DLPFC (B) right DLPFC (C) Left pSTS (D) right pSTS of one of our participants, as derived from transforming

the same normalized MNI coordinates to the structural image of the participant (See Methods, Target identification).

Transcranial Magnetic Stimulation
Electromyography was recorded with surface electrodes from
the right first dorsal interosseous muscle (FDI) using a belly-
tendon montage. TMS was performed using a 70 mm figure-
of-eight coil connected to a Magstim Super Rapid2 system
(Magstim Company, Oxford, UK). The coil was placed over
the contralateral motor cortex tangentially to the scalp with the

handle pointing backward. The motor hot-spot was determined
as the location on the scalp where TMS produced the largest
MEP from the FDI at rest. The active motor threshold (AMT)
was defined as the minimum stimulation intensity over the
motor hot-spot that could elicit an MEP of no less than 200
mV in 5 out of 10 trials during voluntary contraction of
the FDI.
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Theta Burst Stimulation
The iTBS paradigm, which has been shown to produce long-
lasting excitation of the cortex, was applied in the current study
(Huang et al., 2005). Each TBS train comprised of a burst of 3
pulses at 50 Hz given 10 times every 200 ms. The TBS train was
given 20 times every 10 s so that there were 600 pulses in total. In
the study, two courses of iTBS separated by a 5-min break were
given to the target in the left hemisphere first. Then, two other
courses of iTBS were applied to the target in the right hemisphere.
With regard to the inion, two courses of iTBS were given with a
break of 5 min.

The stimulus intensity for the DLPFC and pSTS was set at
80% AMT of the right FDI. As for the stimulus intensity for the
sham control stimulation over the inion, 60% of the AMT was
applied with an 180-degree reversal of the coil (Huang et al., 2012;
Chuang et al., 2014).

Neuropsychological Function Outcome
Measures
The CCPT and WCST, which were used to evaluate the impact
of iTBS on neuropsychological function, were completed before
and within 1 h after the stimulation.

The CCPT is a non-X type CPT test, which is a Go/No-
Go task lasting for 14 min (Conners et al., 2003). For the test,
360 trials, which took approximately 250 ms each, appeared
on the computer screen. The participant was requested to
respond by pressing the spacebar on the keyboard when a letter
other than the target letter “X” appeared. The reaction times,
omission errors, and commission errors were calculated to assess
neuropsychological function before and after TBS.

The computerized version of the WCST: Computer Version
4 research edition (WCST: CV4) (Heaton, 2003) was used in
our study. The participants were asked to choose the correct
card from four categories of cards, in which the stimuli are
multidimensional according to color, shape, and number and
each dimension is defined by a sorting rule. By trial and error,
the participant had to find the sorting rule given from the
feedback (“Right” or “Wrong”) on the screen following each sort.
The classification principle changed without warning following
sequences of 10 consecutive correct matches. Testing continued
until all 128 cards were sorted and irrespective of whether the
participant completed all of the rule shifts. Wemeasured the total
errors, perseverative response (the number of incorrect responses
that had been correct for the preceding category), perseveration
errors (the number of errors where the participant used the same
rule for their choice as the previous choice), conceptual level
responses (the number of correct responses that occurred in
runs of three or more divided by the number of trials and then
multiplied by 100), and the number of categories completed (the
number of runs of ten corrected responses).

Clinical Symptoms Outcome Measures
The Y-BOCS and SRS were used to evaluate the impact of iTBS
on behavioral outcomes. The Y-BOCS and SRS were completed
by participants and their parents three times, i.e., before, 8 h and
2 days after the iTBS conditioning, for every stimulation session.

The SRS is a self-report instrument that quantifies the severity
of social communication deficits in ASD (Constantino, 2005).
The SRS contains 65 items and can be completed by the
participants or their parents in approximately 15 min. Items were
rated on a 4-point Likert scale from “1” (not sure) to “4” (almost
always true) and can be rated in five subscales: social awareness,
social cognition, social communication, social motivation, and
autistic mannerisms. Previous studies have demonstrated the
good psychometric properties of the SRS in children, adolescents,
and adults (Constantino, 2005; Constantino and Todd, 2005;
Bolte, 2012). In addition, the psychometric properties of the
Chinese version of the SRS were also investigated and they
demonstrated good test–retest reliability (intra-class correlations:
0.751–0.852), internal consistency (Cronbach’s alpha: 0.944–
0.947), and convergent validity with the Chinese SCQ (Pearson
correlations: 0.609–0.865) (Gau et al., 2013).

The Y-BOCS is a gold-standard measurement tool for
symptoms severity in obsessive-compulsive disorder (Goodman
et al., 1989a,b), and can be used to assess the repetitive behaviors
observed in ASD (Hollander et al., 2000, 2006). The Y-BOCS can
be assessed by clinicians or by self-report (Baer, 1991). The Y-
BOCS consists of a comprehensive symptom checklist and a 10-
item severity scale. The severity scale evaluates the recent degree
of impairments in five clinical domains: time taken, functional
impairment, psychological distress, efforts to resist, and perceived
sense of control. Items are rated on a 5-point Likert scale (range:
0–4) and are used to generate a total Y-BOCS score and subscale
scores for obsessions and compulsions. Previous studies have
demonstrated the good psychometric properties of the Y-BOCS
(Frost et al., 1995; Woody et al., 1995).

Statistical Analysis
The means (±standard deviation, SD) of the behavioral and
neuropsychological outcomes were calculated for each iTBS
intervention. The changes of outcomes were compared using
a linear mixed model for repeated measures to analyze the
group difference (DLPFC vs. sham, pSTS vs. sham) within one
model. In the linear mixed model, we used the study periods
and intervention group as fixed effects and the participants as
a random effect. The t-type confidence limits were constructed
for each of the fixed-effects parameter estimates. P-values were
adjusted using Dunnett’s test for the comparison of intervention
groups and sham control. In addition, Cohen’s d was used to
compute the effect size on the changes from baseline for the
comparison of intervention groups and sham control. A p < 0.05
was considered significant. SAS 9.3 software was used for our
analysis.

RESULTS

Neuropsychological Functions
The raw data of the neuropsychological outcomes before and
after iTBS are presented in Table 2. In summary, omission errors
and reaction time decreased after iTBS over the DLPFC, while
commission errors increased after iTBS over the pSTS in the
CCPT. As for the WCST, total errors, perseveration responses
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and errors decreased after the sham stimulation, but there was
no obvious difference in the DLPFC and pSTS interventions.

When comparing the pSTS and DLPFC iTBS treatments
to sham treatments (Table 3), the reaction time in the CCPT
significantly decreased after iTBS over the DLPFC (p = 0.04,
effect size = 0.71), while commission errors in the CCPT, and
total errors in the WCST non-significantly increased after iTBS
over the pSTS (p= 0.07, effect size= 0.79; p= 0.06, effect size=
0.65, respectively).

Clinical Symptoms
The raw data of clinical outcomes including baseline, 8 h
post-iTBS (post 8 h) and 2 days post-iTBS (post 2 days) are
presented in Table 4. The outcome differences (before and
after interventions) in the DLPFC and pSTS in comparison to
the sham treatment are presented in Table 5 (post 8 h) and
Table 6 (post 2 days). The differences were presented in Figure 2

(participants) and Figure 3 (parents).
For the repetitive behaviors measured by the Y-BOCS, scores

of compulsive behaviors significantly decreased at 8 h (estimate
= −2.26, p = 0.008, effect size = 0.89) and 2 days (estimate =
−2.71, p = 0.009, effect size = 0.85) after the pSTS stimulation
in comparison to the sham stimulation using the data from the
reports of the parents. However, the results were not significant
when the data from the reports of the participants were used.
As for the comparison between the DLPFC and sham stimuli,
there was no significant difference in either the self-reported or
parent-reported Y-BOCS.

For the social outcomes measured by the SRS, self-reported
scores of social communication significantly decreased at 8 h
(estimate = −2.73, p = 0.02, effect size = 0.76), but not 2 days,
after the iTBS over the DLPFC when compared to the sham
treatment. However, no significant change was found when the
data from the reports of parents were used. In addition, there was
no significant improvement in both self-reported and parents’
reported scores after iTBS over the pSTS when compared to the
sham treatment.

Adverse Effects
Three participants felt transient discomfort during iTBS over
the DLPFC because of muscle twitches around the eyes. No
other adverse effect, such as a headache or seizure, was reported.
Moreover, there was no obvious change in anxiety or mood
symptoms observed using clinical assessment after iTBS.

DISCUSSION

Using a randomized, sham-controlled and crossover design, our
pilot study investigated the impacts of iTBS on the DLPFC
and pSTS in adults with ASD. We found that one session of
iTBS over the bilateral DLPFC may alter the neuropsychological
function in adults with ASD. The hit reaction time in the CCPT
significantly decreased following the DLPFC session. Although
we found commission errors in the CCPT and total errors in the
WCST increased following the pSTS session, the results were not
statistically significant.
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rTMS over the pSTS
The STS is important for social perception and social cognition
(Zilbovicius et al., 2006). The anterior part of the STS is involved
in voice processing (Kriegstein and Giraud, 2004), while the
posterior part of the STS is important for analyzing biological
motion (Pelphrey et al., 2003) and predicting the intention of
others (Wyk et al., 2009). Previous studies have demonstrated
the abnormal presentations of the pSTS in ASD (Boddaert et al.,
2004; Redcay, 2008; Alaerts et al., 2014) and it has been proposed
that the pSTSmay be a therapeutic target in ASD (Saitovitch et al.,
2016). However, the effect rTMS over pSTS on ASD has never
been studied.

In the pilot study, we found a trend that iTBS over the pSTS
may alter some neuropsychological functions in ASD, such as
increasing commission errors in the CCPT and the total errors
in the WCST. However, these findings were not statistically
significant. Commission errors in the CCPT are known to relate
to impulsivity, and the total errors in the WCST are related to
cognitive flexibility. The findings may imply that, aside from
the possible benefits on social behaviors, iTBS over the pSTS
could impair some neuropsychological functions by increasing
impulsivity and decreasing cognitive flexibility in ASD.

The results in behavioral outcomes were ambiguous. Although
the parents reported significantly decreased compulsive
behaviors in patients after iTBS (an excitatory protocol) over the
pSTS, the patients did not report similar improvement. Besides,
although the social communication and awareness improved
after iTBS over the pSTS, the results were not statistically
significant. Hence, the impacts of iTBS over the pSTS on
behavior outcomes should be interpreted with caution, and
a further study with a multi-sessional design may help for
clarifying this point.

rTMS over the DLPFC
Previous studies have demonstrated the possible therapeutic
effects of rTMS over the DLPFC in ASD, including alterations
in the event-related potential component in several brain areas
(Sokhadze et al., 2009; Baruth et al., 2010), decreases in the
omission errors in a modified three category oddball task
(Sokhadze et al., 2012) and decreases in repetitive behaviors
(Baruth et al., 2010; Sokhadze et al., 2010; Casanova et al.,
2014). However, the social impairments observed in ASD did not
improve (Baruth et al., 2010; Sokhadze et al., 2010).

Previous studies have found that rTMS over the DLPFC
may alter several neuropsychological functions in healthy adults.
Wagner found that one session rTMS over the left DLPFC
(20 Hz) could significantly alter the visual divided attention
while the results in Stroop test and WCST were unaffected in
healthy adults (Wagner et al., 2006). In addition, Vanderhasselt
demonstrated that one session high-frequency (10 Hz) rTMS
over the DLPFC could decrease the reaction time in the Stroop
test and set-switching test in healthy female adults (Vanderhasselt
et al., 2006a,b). Moreover, the following studies demonstrated
that rTMS over the DLPFC could alter the neuropsychological
functions including the performance in digit span test (Aleman
and van’t Wout, 2008), the Tower of London task (van den
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FIGURE 2 | Changes of behavioral symptoms before and after iTBS using participants’ reports. *p < 0.05.

FIGURE 3 | Changes of behavioral symptoms before and after iTBS using parents’ reports. *p < 0.05.

Heuvel et al., 2013), and set-shift trials (Gerrits et al., 2015) in
healthy adults.

In addition to healthy adults, rTMS over the DLPFC can also
alter the neuropsychological functions in ASD. Sokhadze found
that low-frequency rTMS over the DLPFC could significantly
decrease the omission errors, commission errors and increase the
reaction time in the Kanizsa illusory figure visual oddball task
in ASD (Sokhadze et al., 2012, 2014). In contrast to previous
studies in ASD, we found that single session iTBS over the DLPFC
significantly reduced the reaction time in the CCPT but had no
effect on omission and commission errors in the CCPT or any
subscales in the WCST. The opposing results for reaction time
might be explained by the stimulation protocol: the effect of low-
frequency rTMS is inhibitory, while the iTBS used in our study is
excitatory. In consistent with previous studies in healthy adults
(Vanderhasselt et al., 2006a,b), we found that excitatory rTMS
over the DLPFC could significantly decrease the reaction time of
the neuropsychological tests in ASD.

Mechanism of Action of rTMS in ASD
Most studies have demonstrated that low-frequency rTMS
improves some deficits in ASD. Low-frequency rTMS is thought

to induce long-term depression (Hoffman and Cavus, 2002).
Event-related potential studies have indeed confirmed that the
benefit of low-frequency rTMS over the DLPFC comes from
increasing the activation of inhibitory circuits in ASD (Sokhadze
et al., 2009, 2010; Baruth et al., 2010; Casanova et al., 2012).

Interestingly, we found that excitatory TBS over the DLPFC
also altered the neuropsychological function in ASD. Previous
studies have shown that the balance of cortical excitation and
inhibition is abnormal in ASD (Casanova et al., 2002; Yizhar
et al., 2011). This imbalance contributes to abnormalities in
the cortical minicolumns, especially within the prefrontal cortex
(Casanova, 2006). iTBS is known to enhance both the excitatory
and inhibitory circuits beneath the coil (Huang et al., 2005,
2011). Therefore, we propose that iTBS enhances some inhibitory
circuits that are required to improve social function in ASD.
Moreover, the study of descending volleys of rTMS showed
that iTBS enhanced mainly the later I waves, while 1 Hz rTMS
suppressed mainly the I1 wave, indicating that iTBS and low-
frequency rTMS may activate different circuits (Di Lazzaro
et al., 2010). This may explain why the effect of iTBS is
not simply opposite to the effect of low-frequency rTMS over
the DLPFC.
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This pilot study has several limitations. First, the sample
size is relatively small, although it is comparable to that used
in previous studies. Thus, the effect of iTBS over the pSTS or
DLPFCmay not be obvious. However, even with the small subject
numbers, we still found the significant effect of iTBS over the
pSTS or DLPFC on behavioral and neuropsychological outcomes
compared to the sham treatment. The second limitation is the
measurement of neuropsychological function. In the pilot study,
we used only the CCPT andWCST, which are not directly related
to the function of pSTS, to evaluate executive abilities because
limited tools were available when the study was initiated. Other
fields of neuropsychological function such as social cognition or
biological motion detection should be considered as measures
for the effect of pSTS stimulation in future studies. The third
limitation is themeasurement tool used to evaluate the behavioral
symptoms. Consistent with previous studies, we used the SRS to
measure the impact of rTMS (Sokhadze et al., 2009, 2010; Baruth
et al., 2010; Casanova et al., 2012). However, the SRSwas designed
to evaluate the social ability of participants in the past 6 months,
and may not be sensitive enough to capture changes over very
short time periods. The development of better measurements
to assess the impact of rTMS in ASD is important and will
be necessary for the future (Oberman et al., 2016). The fourth
limitation is the timewindow to evaluate the changes in behaviors
and social symptoms in ASD. One early study demonstrated
that the aftereffect of rTMS on compulsive behaviors could be
found 8 h afterward (Greenberg et al., 1997). Following studies
demonstrated that the effect of one session rTMS does not last
for 1 week, and a week interval has been commonly applied to
control the residual effect in a within-subject design (Simis et al.,
2013; Kim and Shin, 2014; Tard et al., 2016). Based on these
findings, we decided to evaluate the changes in behaviors and
social symptoms in ASD 8 h and 2 days afterward. However,
it is indeed arguable that the effect on behaviors and social
symptoms may last longer than the period that we followed up.
Longer time window to evaluate the changes in behavior and
social symptoms should be considered in the future studies. To
minimize the possible residual effect that may affect the effect
of the subsequent stimulation, the order of the interventions
was controlled and counterbalanced, and a mixed model analysis
was used. The final limitation is the possibility of observational
bias and placebo effects. Several steps were adopted to decrease
these risks: the performance of iTBS and the data analysis were
completed by different people; parents were not present during
iTBS so that they would not know the stimulation location during
each session; a crossover design and sham control treatment was
applied to reduce the possibility of placebo effects.

This pilot study has several strengths. First, by adopting a
crossover design, we were able to clearly compare the effect of
iTBS over the DLPFC, the pSTS and the sham control in the same
individuals. Second, the behavioral outcomes were measured
using different resources, including both the participants
themselves and their parents. Third, the localization of the
DLPFC and pSTS via the process of coordinate transformation
and the TMS-dedicated navigation system used is more precise
than those in previous studies where no navigator was used.

In conclusion, this study revealed that the neuropsychological
function in ASD was modified by the iTBS intervention.
However, the effect of iTBS over either the DLPFC or the pSTS on
behaviors in adults with ASD remains inconclusive and deserves
further evaluation. To our knowledge, this is the first study
to demonstrate the impacts of a facilitatory intervention over
the pSTS in adults with ASD. Our findings indicate that the
pSTS could be a new intervention target for ASD; thus, further
long-term investigations should be performed in the future.
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