
https://doi.org/10.1177/1759720X241288060 
https://doi.org/10.1177/1759720X241288060

Ther Adv Musculoskelet Dis

2024, Vol. 16: 1–20

DOI: 10.1177/ 
1759720X241288060

© The Author(s), 2024.  
Article reuse guidelines:  
sagepub.com/journals-
permissions

journals.sagepub.com/home/tab	 1

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the Sage and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Therapeutic Advances in 
Musculoskeletal Disease

Background
Psoriatic arthritis (PsA) is a chronic inflammatory 
joint disease with diverse clinical manifestations 
including skin and nail alteration, peripheral 
arthritis, axial disease, dactylitis, and enthesitis. 
Peripheral synovitis is the most common charac-
teristic of PsA ranging from mild joint inflamma-
tion to disabling peripheral arthritis. Preventing 
structural damage is one of the primary goals of 
treating PsA patients to optimize health-related 
quality of life. Different imaging modalities such 

as radiography, high-resolution peripheral quan-
titative computed tomography (HR-pQCT), 
magnetic resonance imaging (MRI), low-dose 
CT (ldCT), ultrasound (US), and positron emis-
sion tomography (PET)-CT (Table 1) can be 
used to identify and characterize suspected sub-
clinical, early, or established PsA cases, and can 
provide crucial information regarding treatment. 
These imaging techniques vary considerably in 
terms of technology, measurable parameters, spa-
tial resolution, radiation exposure, acquisition 
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time, region of interest, cost, and availability as 
well as accuracy in identifying disease, predicting 
clinical outcome, and monitoring treatment 
response. This review will address all these imag-
ing modalities in turn.

Radiography and HR-pQCT for peripheral 
joint structural and microstructural 
assessment
Radiography is the standard method for assess-
ment of joint disease in PsA since it is affordable, 
accessible, and safe.1,2 Radiography can help dif-
ferentiate PsA from other inflammatory arthritis 
and evaluate the effectiveness of conventional and 
biologic therapies for PsA. However, commonly 

used radiographic scoring systems do not include 
bony proliferation as a criterion.3–6 Radiography 
is also limited in being a two-dimensional projec-
tional technique rather than a three dimension.7 
HR-pQCT is a technique that enables bone 
microstructure analysis with high reproducibility 
in defining and quantifying structural bone 
changes in patients with inflammatory arthritis, 
such as bone erosion, new bone formation (enthe-
siophytes), and joint space width (JSW) (Figure 
1).8–10 With its high spatial resolution of 100 or 
142 μm,11 HR-pQCT has higher sensitivity for 
erosion detection compared to radiography and 
MRI (the minimal erosion dimensions identified 
by HR-pQCT, MRI, and radiography were 0.09, 
0.14, and 0.66 cm, respectively).12 It has been 

Table 1.  Comparison of different imaging modalities.

Radiography HR-pQCT MRI ldCT US PET-CT FOI MSOT

Peripheral

  Erosion + ++++ +++ ++ +++ ++  

  New bone formation + ++++ + ++  

  JSW + ++++ +  

  Synovitis +++ +++ +++ +++ ++

  Dactylitis + +++ ++  

  Enthesitis ++++ +++ +++ ++

Axial

  Sacroiliac joints

    Inflammation

      Capsulitis, enthesitis +++ +  

      BME +++ +  

    Structural damage

      Erosion + +++ +++ ++  

      Fatty infiltration +++  

      Ankylosis + + +++ ++  

  Spine

    Inflammation

      STI +++ +  

(Continued)
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used to determine structural and microstructural 
bone changes at the distal radius, metacar-
pophalangeal (MCPs) joints, proximal inter-
phalangeal (PIPs) joints, distal interphalangeal 
(DIPs) joints, and adjacent phalanges.13–17

Erosion progression as an indicator of 
therapeutic efficacy
The sensitivity of radiography for detecting ero-
sions is low.18 Using HR-pQCT, quantitative 
measurement of erosion volume can be achieved,9 
using an indirect method to assess volume based 
on measurements of the width and depth of the 
erosions.19 Bone deposition at the margin of ero-
sions (osteosclerosis) with a decrease in erosion 
depth or width is a feature of either erosion repair 
or consolidation after effective control of inflam-
mation.19,20 Tumor necrosis factor (TNF) inhibi-
tion has been shown, on HR-pQCT, to halt 
erosion progression after 1 year, but it does not 
prevent enthesiophyte formation in PsA patients.21 
Interleukin-17 (IL-17) inhibition (IL-17i) arrests 

the progression of bone erosion after 6 months.16 
Erosive damage typically results from synovitis 
and osteoclast formation within the synovial 
microenvironment, mediated by macrophage col-
ony-stimulating factor and RANKL. These fac-
tors, which are essential for the growth and 
differentiation of osteoclasts, are enhanced by 
pro-inflammatory cytokines such as TNF and 
IL-17, which further promote osteoclast forma-
tion while inhibiting bone formation. Therefore, 
it is not surprising that targeting cytokines such as 
IL-23, IL-17, and TNF can slow down erosion 
progression in PsA.22–24 Progression of erosions 
on HR-pQCT is significantly less in patients who 
achieved sustained low disease activity, as judged 
by disease activity in psoriatic arthritis (DAPSA), 
after 5 years.14

New bone formation
Much of the structural change seen in PsA seems 
to be driven by entheseal inflammation.25 Similar 
to erosions, the sensitivity of HR-pQCT for 

Radiography HR-pQCT MRI ldCT US PET-CT FOI MSOT

      BME +++ +  

    Structural damage

      Erosion + ++ +++ ++  

      Fatty infiltration +++  

      Ankylosis ++ + +++ ++  

   �   Disc degeneration/
herniation

+ +++  

Utility in early diagnosis of PsA, disease monitoring, and correlation with disease activity

  Predicting PsA + +++ + +++ +++  

  Early diagnosis + +++ +++ +++ +++ +++ ++

  Disease monitoring + +++ +++ + +++ +++ +++  

  DAPSA correlation + + + +++  

Availability **** ** ** ** *** ** ** **

Cost * ** *** ** ** **** *** ***

+, Relative effectiveness of modality. *, easy availability and low cost.
BME, bone marrow edema; DAPSA, disease activity in psoriatic arthritis; FOI, fluorescence-optical imaging; HR-pQCT, high-resolution peripheral 
quantitative computed tomography; JSW, joint space width; ldCT, low-dose computed tomography; MRI, magnetic resonance imaging; MSOT, 
multispectral optoacoustic tomography; PET, positron emission tomography; PsA, psoriatic arthritis; STI, soft tissue inflammation, such as at 
entheses; US, ultrasound.

Table 1.  (Continued)
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detecting enthesiophytes is much higher than 
MRI with almost 90% of PsA patients showing 
enthesiophytes on HR-pQCT compared to only 
30% on MRI.16 HR-qCT has also shown that 
PsA-related inflammation leads to bone damage 
(erosions and enthesiophytes) and trabecular 
bone loss of the second and third metacarpal head 
in PsA patients.15 The detection of entheseal new 
bone formation on HR-pQCT helps predict the 

development of PsA in psoriasis (PsO) 
patients.26–28 Utilizing an A1 integrated neural 
network based on joint shape (including erosions 
and bone spurs) can help differentiate between 
rheumatoid arthritis (RA), PsA, and healthy con-
trols (HC).29 Enthesiophytes are a dominant 
structural feature in established PsA, though 
largely absent in RA,25 and are associated with 
poorer physical function.28 Although IL-17i 

Figure 1.  2D and 3D of HR-pQCT images of (A–C) fourth MCP in PsA patient showing erosion progression 
and (D–F) second MCP showing enthesophyte progression after 1 year. Erosion progression (A–C), baseline 
axial view (A_a), axial view after 1 year (A_b), baseline coronal view (B_a), coronal view after 1 year (B_b); 
baseline 3D erosion (C_a), 3D erosion after 1 year (C_b). Enthesophyte progression (D–F), baseline axial view 
(D_a), axial view after 1 year (D_b), baseline coronal view (E_a), coronal view after 1 year (E_b), baseline 3D 
enthesophyte (F_a), 3D enthesophyte after 1 year (F_b).
Arrows indicate the presence of erosion in figures (A–C), and enthesiophyte in figures (D–F).
HR-pQCT, high-resolution peripheral quantitative computed tomography; MCP, metacarpophalangeal joint; PsA, psoriatic 
arthritis.
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arrests the progression of both bone erosion and 
enthesiophyte formation after 6 months,16 long-
term efficacy in preventing structural progression 
is uncertain. Inflammation occurring at entheseal 
sites triggers a cascade of events, stimulating mes-
enchymal cells to proliferate and differentiate into 
osteoblasts responsible for bone formation. This 
differentiation process from mesenchymal cells to 
osteoblasts is mediated by inflammatory media-
tors, among which Prostaglandin E2 (PGE2), 
IL-17A, and IL-22 have been demonstrated to 
enhance local bone formation as part of a repara-
tive response to damage.28,30,31 This response 
involves the expression of mediators such as Wnt 
proteins and bone morphogenetic proteins, which 
effectively induce osteoblast differentiation and 
new bone deposition.32 Therefore, blocking 
IL-17A may play a crucial role in preventing new 
bone formation in PsA.

Joint space width (JSW)
Joint space narrowing (JSN) is more strongly 
associated with physical disability than erosion 
severity in PsA patients.33 JSN, due to lysis of 
articular cartilage, negatively impacts functional 
status more than erosions, making it a valid tar-
get for treatment.33 Reproducible, high-through-
put, fully automated techniques for evaluating 
metacarpophalangeal joint (MCPJ) JSW using 
HR-pQCT have also been developed (Figure 
2).34 In vivo 3D quantification of joint space 
morphology may improve early detection of joint 
damage in rheumatological diseases.35 JSW 
measurement was associated with Sharp/van der 
Heijde score in the second and third MCP 
joints36 and was reliable in longitudinal studies.37 
HR-pQCT JSW parameters are more sensitive 
than radiographic JSW parameters for detecting 
joint damage in PsA patients.13 Deterioration in 
JSN is positively associated with the degree of 
inflammation, with patients who received bio-
logic disease-modifying antirheumatic drugs 
treatment exhibiting less pronounced JSN.13

Summary
HR-pQCT allows for the evaluation of bones at 
the microstructural level, enabling the quantifica-
tion of structural pathological features (such as 
erosion). HR-pQCT has been used to determine 
structural and microstructural bone changes 
involved in PsA. Low accessibility and a small 
field of view are the main limitations of HR-pQCT. 

Also, while quantification of erosion, enthesio-
phytes, and JSW holds promise as outcome meas-
urements, one current challenge is the 
heterogeneity of methods used to identify and 
quantify these parameters. Fortunately, auto-
matic erosion detection tools38 and an open-
source software tool are available for the 
identification and quantification of bone ero-
sions.39 A training tool has recently been made 
available to provide users with guidance on iden-
tifying pathological cortical breaks on HR-pQCT 
images for erosion analysis.40 Also, highly sensi-
tive acquisition process makes HR-pQCT prone 
to motion artifact, which may compromise accu-
racy.41 HR-pQCT also cannot evaluate synovitis 
or osteitis.

Magnetic resonance imaging
High-resolution MRI can detect and quantify 
inflammatory synovitis, tenosynovitis, and osteitis 
as well as enthesitis, bone erosions, bone prolif-
eration, and JSN.42 Dynamic contrast-enhanced 
MRI enables the perfusion of synovial prolifera-
tion to be accurately quantified as a measure of 
synovial activity.43

MRI-detected bone edema, erosion, and prolif-
eration are more severe in disabling arthritic PsA, 
indicating that bone edema (osteitis) is often a 
precursor to erosion in PsA.44 The combination 
of arthralgia and MRI-detected synovitis helps 
identify psoriatic patients at high risk of develop-
ing PsA.45 It is recommended that clinical trials 
incorporate MRI inflammation as an inclusion 
criterion, use MRI inflammation as a key end-
point, and adopt validated MRI outcomes.46

MRI and peripheral manifestations of PsA
The Outcome Measures in Rheumatology 
(OMERACT) Psoriatic Arthritis Magnetic 
Resonance has developed a scoring system, Psoriatic 
Arthritis Magnetic Resonance Imaging Score 
(PsAMRIS), which includes synovitis (score 0–3), 
flexor tenosynovitis (score 0–3), bone edema score 
(score 0–3), bone erosion (score 0–10), bone prolif-
eration (score 0 or 1), and periarticular inflamma-
tion (score 0 or 1), for assessing inflammatory and 
structural changes at the MCP, PIP, and DIP joints 
of PsA patients.47 This system is currently among 
the most effective tools for evaluating inflammatory 
and structural alterations in PsA patients PsA.48 
Patients with PsA receiving abatacept demonstrated 
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improvements in PsAMRIS synovitis and tenosyno-
vitis subscores.49 Early disease interception by 
IL-17i in PsA improves skin symptoms, pain, total 
PsAMRIS, and synovitis subscore.50 An MRI scor-
ing system for heel enthesitis in PsA patients, 
OMERACT MRI heel enthesitis scoring system 
(HEMRIS), has been established, which catego-
rizes enthesitis pathology on MRI into inflamma-
tory and structural changes.51

MRI and axial PsA
In total, 25%–70% of PsA patients present with 
axial disease, characterized by inflammation and 
post-inflammatory structural changes in the 

sacroiliac joints (SIJ) or the spine on imaging.52–54 
MRI is the most sensitive means of diagnosing 
axSpA, offering higher resolution and visualiza-
tion than radiography of active inflammation at 
the entheses, discovertebral, costovertebral, and 
facet joints as well as structural changes (erosions, 
fat metaplasia, syndesmophytes, and ankylosis). 
While MRI generally has lower resolution than 
CT and as a result slightly poorer sensitivity in 
identifying axial PsA (axPsA) structural lesions, it 
is the most sensitive technique in identifying the 
inflammatory component of sacroiliitis, spondyli-
tis, and enthesitis.46,55,56 MRI, as a result, is the 
most sensitive technique for detecting early  
disease57,58 (Figure 3).

Figure 2.  HR-pQCT images of (A) a normal joint and (B) a damaged joint with altered joint space indexes and 
angulation. (a) 3D views. (b–d) Cross-sectional views.
Representative tomographic 2D coronal images of the second MCP joint (middle), 3D surface reconstructions of the 
MCP with the local JSW mapped into the joint space in pseudo-color (top), and corresponding joint space morphometric 
values (bottom). Moderate joint subluxation correlates with increased maximal JSW (indicated in red), asymmetry, and 
heterogeneity values; while joint space volume and mean JSW remained relatively normal.
Asymm, joint asymmetry; HR-pQCT, high-resolution peripheral quantitative computed tomography; JS, joint space; JSW, 
joint space width; Max JSW, maximum joint space width; MCP, metacarpophalangeal; Min JSW, minimum joint space width; 
SD, standard deviation.
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There is no universally accepted consensus on the 
role of MRI in the diagnosis of axPsA. The most 
common clinical features at disease onset for PsA 
patients with the axial disease are as follows: oli-
goarthritis (30%), inflammatory back pain (IBP) 
(22%), enthesitis (18%), polyarthritis (16%), glu-
teal pain (8%), dactylitis (3%), and DIP symp-
toms (3%).59 As IBP is not a sensitive indicator of 
early sacroiliitis, the more judicious use of MRI is 
recommended.60 MRI-detected sacroiliitis in PsA 
patients is associated with restricted spinal move-
ment and longer disease duration.55 The first ran-
domized controlled trial in PsA patients with axial 
disease demonstrated significant improvement in 
both clinical outcomes as well as Berlin MRI 

spine and SIJ scores over 4 months in patients 
treated with secukinumab compared to placebo.61 
The presence of inflammatory changes in the pos-
terior elements of the spine and post-inflamma-
tory changes such as corner fat lesions changes 
tended to be associated with a better clinical out-
come in patients receiving secukinumab.62

Whole-body MRI
Whole-body MRI (WB-MRI) can evaluate the 
systemic extent and burden of rheumatic dis-
ease,63,64 especially in areas that are difficult to 
assess clinically65,66 (Figure 4). Recently, the 
OMERACT MRI in Arthritis Working Group 

Figure 3.  Spine MRI with sagittal Short Tau Inversion Recovery sequences T2-weighted fat-suppressed 
sagittal MR image showing active inflammation along the spine (a–c), erosive changes (d), and osteitis around 
the sacroiliac joint (e) in PsA patients.
T2W fat-suppressed sagittal MR images of the thoracic spine showing inflammation of (a) two costovertebral joints 
(arrowheads) and (b) one costotransverse joint (arrowhead); T2W fat-suppressed sagittal MR image of the lumbar spine 
showing inflammation with bone marrow edema at anterior aspects of L2, L3, and L4 vertebral bodies (arrowheads) (c); 
oblique coronal (d) T1 SE and (e) T2W fat-suppressed MR images of the sacroiliac joints showing ankylosis (arrow), articular 
erosion (arrowhead), and periarticular bone marrow edema (arrowhead) of sacroiliac joints indicative of active sacroiliitis.
MRI, magnetic resonance imaging; PsA, psoriatic arthritis.
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developed and validated a scoring system 
(OMERACT MRI Whole-Body Score for 
Inflammation in Peripheral Joints and Entheses) 
to gauge the systemic effect of SpA treatment.67,68 
Significant reduction in peripheral and axial 
inflammation was shown with adalimumab and 
golimumab treatment.69,70 WB-MRI can evaluate 
the distribution and changes over time of inflam-
mation in peripheral and axial sites and can dis-
tinguish between inflammatory pain arising from 
joints and entheses and non-inflammatory sources 
of pain.71 Although large field-of-view imaging for 
WB-MRI is advantageous in being able to present 
a whole-body perspective, there is an inevitable 
trade-off in resolution with resultant limitations 
in evaluating erosions, JSN, ankylosis, synovial 
volume, and synovial perfusion.

Summary
MRI has undoubtedly greatly improved the early 
detection of sacroiliitis and other manifestations 
of axPSA as well as enabling an accurate recogni-
tion and assessment of peripheral PsA. The main 

factors currently limiting the more widespread 
usage of MRI are cost and availability. That said, 
many of the numerous advantages provided by 
MRI in the assessment of PsA can potentially be 
provided by ldCT examination. Besides, bone 
marrow changes observed in MRI may lack speci-
ficity for axSpA and can complicate interpreta-
tion.72–74 CT can be a reasonably sensitive and 
highly specific alternative to MRI and can be a 
useful added investigation if MRI appearances 
are equivocal.56

Low-dose CT
The standard CT reconstruction mechanism has 
“back-filtered projection.” Recently, CT manu-
facturers have introduced “iterative reconstruc-
tion,” which includes artificial neural networks to 
reduce noise while maintaining spatial resolution. 
Low-dose CT techniques enable the acquisition 
of CT data at radiation doses comparable to radi-
ography. SIJ ldCT can be obtained with an effec-
tive radiation dose of 0.11 mSv, equivalent to that 
of a chest radiograph.56 Image quality is not as 

Figure 4.  WB-MRI series showing synovitis and enthesitis. (a) T1 SE and (b) T2W fat-suppressed MR from WB-MRI series showing 
synovitis of the left shoulder joint (arrowhead) with enthesitis of right greater trochanter (arrowhead); selected small cropped (c, d) 
T1W fat-suppressed post-contrast and (e, f) T2W fat-suppressed images from same whole-body MR examination as a previous image 
showing synovitis of the shoulder joint (arrowhead); enthesitis of lateral femoral condyle at lateral collateral ligament insertion 
(arrowhead); enthesitis of both greater trochanters (arrows); and enthesitis of anterolateral tibia at insertion of iliotibial band (long 
arrow).
WB-MRI, whole-body magnetic resonance imaging; T1 SE, T1 weighted spin-echo; T2W, T2 weighted.
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good as standard CT examination, being more 
susceptible to noise, though is still perfectly suf-
ficient for most diagnostic purposes.

ldCT enables high-resolution depiction of bone 
erosions, sclerosis, ankylosis, and joint space nar-
row and is considered the gold standard for 
assessing structural damage.75 Comparing radi-
ography, ldCT, and MRI for identifying sacroili-
itis in axSpA, ldCT had higher sensitivity than 
radiography but lower sensitivity than MRI 
though had higher specificity than both radiogra-
phy and MRI.70 There is a growing trend to 
replace radiography with ldCT or MRI for diag-
nosing sacroiliitis in axSpA.

Erosions and ankylosis are the most specific imag-
ing findings for the diagnosis of sacroiliitis (Figure 
5). However, erosions located in the peripheral 
aspects of the joint are less specific while sclerosis 
is a nonspecific finding.76 While MRI is the most 
sensitive imaging technique due to its ability to 
detect osteitis, it lacks specificity compared to 
ldCT as it cannot demonstrate small or medium-
sized erosions as well as ldCT.56 Advances in 
dual-energy CT may potentially overcome these 
limitations, with the potential to detect bone mar-
row edema, though dual-energy CT currently 
does not lend itself to ldCT imaging.

By reducing the radiation dose of CT imaging to 
4 mSv, which is an acceptable level tolerable for 
imaging of the whole spine, it becomes possible to 
study structural lesions throughout the spine. 
ldCT was recently used to study syndesmophyte 
progression in AS patients.77 In axSpA, the ldCT 
spine is more sensitive than radiography for 

detecting structural lesions and disease progres-
sion mainly because it can more clearly visualize 
the thoracic spine, which is obscured by rib super-
position on radiography, and it can more effec-
tively detect facet joint ankylosis and as well as 
costovertebral and costotransverse arthropathy.73 
Including assessment of facet joints is particularly 
important as ankylosis leads to functional impair-
ment.77,78 Facet joints in the upper thoracic region 
cannot, however, be evaluated fully on ldCT due 
to poor signal-to-noise issues and may appear 
spuriously ankylosed. To date, there have been 
no ldCT-based studies examining structural 
damage to the spine and SIJ in PsA.

Summary
ldCT demonstrates higher sensitivity and speci-
ficity compared to radiography and higher speci-
ficity compared to MRI. Further exploration is 
required to determine the usefulness of ldCT in 
PsA disease identification and progression.

Ultrasound
As a rapidly iterative imaging technique, US is 
particularly suitable for evaluating the skin and 
musculoskeletal areas in PsA with high resolu-
tion, such as joints, enthesis, tendons, skin, and 
nails.79,80 It is currently considered to be a con-
stituent component of the overall assessment of 
PsA patients, as it can identify pathological blood 
flow and localized active inflammation (Figure 
6). With higher sensitivity in detecting intra-artic-
ular and extra-articular inflammation and dam-
age than clinical examination, US does not 
require contrast agents and does not involve 

Figure 5.  Low-dose CT image showing structural erosive change unilaterally (a) and bilaterally (b) in PsA 
patients.
CT, computed tomography.
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ionizing radiation.81 US is a cost-effective and 
non-inferior method for identifying and charac-
terizing early PsA sacroiliitis and has good sensi-
tivity for the detection of inflammatory 
changes.82–85

Recently, rheumatologists have become increas-
ingly interested in using the US for objective 
assessment of PsA diagnosis and treatment.86 US 
can detect subclinical enthesopathy and nail dis-
ease in PsO patients with increased PsA risk or 
those without musculoskeletal disorders, and 
identify subclinical synovitis in early PsA.79,87,88 
US-detected synovio-enthesitis had a significant 
association with subclinical PsA, especially in the 

lower limbs and US screening may potentially 
improve the accuracy of PsA detection.89–91 For 
PsA management, research concerning the func-
tion of the US also prioritizes evaluating disease 
activity, which encompasses the creation of com-
bined activity indices.86

US is a sensitive method for detecting peripheral 
PsA inflammation and structural lesions.92 US 
studies have shown that dactylitis can involve var-
ious anatomical structures, including joint syno-
vitis, soft tissue edema, extensor peritendinitis, 
flexor tenosynovitis, and thickened and hypervas-
cular flexor pulleys.93–95 US is more effective in 
correctly identifying enthesitis than clinical 

Figure 6.  US shows severe synovial hypertrophy (a, b), acute tenosynovitis of the peroneal tendons (c, d), and 
active enthesitis with chronic structural bone damage (e, f). (a, b) US of the ring finger (longitudinal scan) 
shows (a) severe synovial hypertrophy (*) of the proximal interphalangeal joint, with (b) active hyperemia 
indicating active arthritis. There is a bone erosion (#) at the base of the middle phalanx. (c, d) US of the lateral 
side of the ankle (transverse scan) shows (a) a tendon sheath synovitis and fluid (*) with (b) increased power 
Doppler signal around the peroneal longus and peroneal brevis tendons. This indicates acute tenosynovitis of 
the peroneal tendons. (e, f) US of the Achilles entheseal insertion (longitudinal scan) shows (a) an increased 
thickness of the tendon insertion (*) and (b) increased power Doppler signal and bone erosion (#) of the 
calcaneal enthesis. These findings are compatible with active enthesitis superimposed on chronic structural 
bone damage.
US, ultrasound.
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examination and may have practical value in 
detecting enthesitis in patients with PsA and con-
comitant fibromyalgia.96–99 US is also employed 
as a criterion to assess the response to treatment. 
Secukinumab can rapidly reduce US-measured 
synovitis, suggesting that IL-17i has a direct effect 
on synovial tissue in patients with PsA.100 US 
inflammation score after apremilast and adali-
mumab therapy showed significant improvement 
in tenosynovitis and entheses inflammatory thick-
ness compared to methotrexate treatment.101–103

Summary
The US is a reliable and powerful tool that can 
assess joints, tendons, entheses, skin, and nails in 
PsA patients, reflecting morphological structural 
changes and inflammatory activity. However, US, 
due to the acoustic window, certain areas of a 
joint are difficult to visualize, such as the radial or 
ulnar quadrants of the third MCP. Besides, US 
detection of erosion has false positives and false 
negatives, as the limited US resolution is unable 
to detect cortical lesions with a width less than 
2 mm and one may falsely identify irregular sur-
face features as bone erosions. Due to its inability 
to penetrate bone, it has a lower sensitivity for 
detecting erosions compared to CT and MRI and 
cannot detect osteitis.104

Positron emission tomography-computed 
tomography
PET-CT is a promising alternative to WB-MRI 
for whole-body disease activity detection, as it 
provides a metabolic as well as an anatomic assess-
ment.105,106 Radioactive tracer accumulation ena-
bles metabolic activity to be quantified. One 
recent study showed that maximum standardized 
uptake value scores had a good correlation with 
inflammatory SpA-related sacroiliitis.107,108 The 
frequency of abnormal SIJ uptake on 18F-NaF 
PET was higher than that of inflammatory and 
structural sacroiliitis on MRI and CT.107,108

PET-CT imaging has the potential for compre-
hending the source of pain in inflammatory arthri-
tis as well as providing a minimally invasive and 
objective means of assessing severity and response 
to treatment in RA and PsA. For example, in a 
PsA patient, a good correlation was found 
between sites of arthritic pain and regions of 
increased fluorodeoxyglucose (FDG) uptake.109 
Increased [18F]fluoride uptake, which is a marker 
of bone deposition, was observed in the entire 

distal phalanx including the periosteum and 
entheses, supporting the concept of an integrated 
nail and joint apparatus leading to a wide area of 
abnormal bone metabolism in PsA patients.110 
Another 18F-NaF PET-CT study showed new 
bone formation can be observed at peripheral 
joints and entheses and in the axial skeleton in 
PsA patients, most of whom did not exhibit clini-
cal symptoms, as a marker of PsA disease 
activity.111

18F-FDG uptake, which is a measure of glucose 
metabolism and hence inflammation, in inflamed 
joints was significantly increased compared to 
non-inflamed joints in PsA patients.112 18F-FDG 
uptake patterns corresponded to areas of synovi-
tis, tenosynovitis, enthesitis, and nail dystrophy.112 
PET-CT examinations are nearly always whole-
body examinations. 18F-FDG PET can show a 
moderate correlation with DAPSA assessment.113

PET-CT imaging has the potential to deploy dif-
ferent radioisotopes as markers of different dis-
ease processes, particularly if there is quick access 
to a nearby cyclotron as the half-life of many radi-
oisotopes is short. Fibroblast activation protein 
(FAP) PET-CT imaging may improve risk assess-
ment for joint damage in PsA patients and pro-
vide new options for treat-to-target strategies.114 
Similarly, 68Ga-FAPI-04 PET-CT-detected 
fibroblast activity may be a potential biomarker 
for identifying high-risk patients transitioning to 
PsA.115

Summary
PET/CT imaging has a wide potential, particu-
larly with the use of biomarkers to recognize dif-
ferent types of metabolic activity. It is currently 
limited by relatively low spatial resolution as well 
as low signal issues, limited availability, and high 
cost. The radiation dose for PET/CT examina-
tion is not low, limiting its more widespread 
usage, particularly in younger patients and those 
in whom repeated examination is considered 
necessary.

Other novel imaging modalities for  
PsA: Fluorescence-optical imaging
Fluorescence-optical imaging has recently been 
introduced as an additional imaging technique for 
diagnosing systemic inflammatory joint diseases, 
revealing microcirculatory disorders in the hands. 
Inflammation leads to vasodilation, increased 
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blood flow, increased capillary permeability, and 
interstitial diffusion at affected sites with the 
injected fluorescent dye accumulating in areas of 
inflammation, leading to signal enhancement.116 
Previous studies have shown the suitability of 
FOI for monitoring treatment in early inflamma-
tory arthritis, and it is also applicable for detect-
ing hand inflammatory skin changes in PsA.116–118 
FOI is a rapid, reliable technique that is compara-
ble to 1.5 T MRI and US for detecting synovitis 
and tenosynovitis.119 FOI could potentially be a 
useful tool for identifying patients with mild hand 
and wrist synovial inflammation, which could be 
applied in clinical practice to detect early synovi-
tis with greater confidence.120 FOI may also help 
in identifying nail involvement and DIP joint 
arthritis in patients with PsO and/or PsA.119 Nail 
region fluorescence has high specificity for PsA, 
which might be very helpful in distinguishing 
seronegative arthritis.118 FOI is useful for detect-
ing early hand inflammation in suspected PsA 
patients, and combining clinical manifestations 
with US ± FOI results might increase accuracy in 
confirming a diagnosis of PsA.121 Using FOI, 
most psoriatic patients with or without PsA could 
be correctly classified based on the physician’s 
diagnosis with the additional benefit of being able 
to detect dermal and subcutaneous skin inflam-
mation.116 FOI can also identify early PsA and 
distinguish between acute and chronic disease, 
potentially acting as a triage to select psoriatic 
patients who might benefit from additional treat-
ment,122 as well as being a good early imaging 
biomarker to identify transition of psoriatic 
patients to PsA.123 However, the assessment of 
FOI was limited to the hands, which is a limita-
tion of it.123

Multispectral optoacoustic tomography
Multispectral optoacoustic tomography (MSOT) 
combines the high contrast of optical imaging and 
low cost, versatility, and high spatial resolution of 
US imaging, achieving high sensitivity and high-
resolution imaging of biological tissues.124 MSOT 
is capable of performing molecular and functional 
imaging of joints while collecting anatomical 
data.125 Unlike the US, MSOT does not rely on 
velocity and direction to detect blood flow, but 
measures oxygenated or de-oxygenated hemo-
globin directly and improves accuracy by detect-
ing changes in these constituents at a tissue 
level.126–129 One recent research reported the 
application of MSOT in the diagnosis of PsA.130 
With MSOT, it was possible to visualize increased 

vascularity around finger joints without the use of 
contrast agents. The degree of oxygen saturation 
in synovial structures was directly proportional to 
the degree of inflammation.130 Besides, in patients 
without radiographic signs of PsA, an increase in 
optoacoustic signal intensity could also be 
detected, indicating increased blood flow and 
showing how MSOT may be helpful in the early 
diagnosis of PsA.130 Another study used MSOT 
to help distinguish joints with and without inflam-
mation as an adjunct to clinical and US 
assessment.131

MSOT could be highly effective in identifying the 
earliest changes associated with enthesitis.132 
However, further studies are required on PsA 
patients across different stages of disease activity.

Discussion
Imaging is fundamental for the direct observation 
of axial manifestations, making it a valuable and 
promising assessment tool, as recognized by 
GRAPPA members.133 While conventional radi-
ography and CT are useful for detecting struc-
tural changes, they fall short in assessing active 
inflammation. MRI stands out as a superior 
modality, capable of providing detailed visualiza-
tion of inflammation in both the SIJs and the 
spine in patients with PsA.134 This makes MRI 
particularly advantageous for diagnosing and 
monitoring the disease, offering insights that are 
critical for effective patient management. Indeed, 
MRI has been used as an outcome measure in the 
MAXIMISE (Managing AXIal Manifestations in 
psorIatic arthritis with SEcukinumab) trial. PsA 
patients who received secukinumab achieved sub-
stantial improvements in clinical and Berlin MRI 
scores at the spine and SIJ by week 12, and these 
gains were maintained up to week 52.135 Another 
analysis of the MAXIMISE trial identified addi-
tional inflammatory and post-inflammatory 
changes indicative of axPsA and showed a trend 
toward improved clinical outcomes for patients 
treated with secukinumab through spinal MRI.136 
Furthermore, the STAR study will prospectively 
assess efficacy outcomes in PsA patients with 
MRI-confirmed axial inflammation, aiming at 
evaluating the ability of guselkumab to reduce 
both axial symptoms and inflammation in patients 
with active PsA, including axial inflammation, as 
confirmed by MRI.137 US exhibits high sensitivity 
in detecting, characterizing, and monitoring 
pathologies related to PsA, including synovitis, 
enthesitis, tenosynovitis, and dactylitis.138 A 
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consensus-based US scoring system for dactylitis 
has been developed, showing acceptable interob-
server reliability and excellent intraobserver reli-
ability.139 In addition, small entheses in the fingers 
were identified and histologically validated.139 
Doppler flow US, when combined with CT 
images, can also effectively visualize abnormal 
blood flow in the SIJs and other joints affected by 
inflammatory arthritis.140 A study showed that 
patients with PsA treated with secukinumab, 
including those who switched from placebo, had 
consistent improvements in both clinically and 
US-assessed enthesitis and synovitis, with sus-
tained clinical benefits through week 52.141

Conclusion
Imaging plays a crucial role in the diagnosis of 
peripheral and axial lesions in PsA. Early and 
accurate identification of peripheral arthritis, sac-
roiliitis, enthesitis, synovitis, and tenosynovitis 
impact diagnosis and treatment. Significant pro-
gress has been made in improving the reliability 
and accuracy of disease detection through differ-
ent imaging modalities. Radiography is the stand-
ard method for structural assessment of joint 
disease in PsA though is limited in being a two-
dimensional projection technique with only mod-
est sensitivity and responsiveness. Technological 
advancements in high-resolution imaging fields 
(including HR-pQCT, MRI, US, and ldCT), as 
well as functional and molecular-based imaging 
techniques (such as PET-CT, FOI, and MSOT), 
have the potential to explore in much greater 
depth the pathophysiologic processes accompa-
nying PsA which, in turn, will lead to earlier, 
more specific diagnoses, as well as better predic-
tion and monitoring of treatment response. 
However, it is important to acknowledge the 
practical applications and current limitations of 
these new technologies. While they hold promise 
for advancing PsA management, challenges such 
as high costs, limited availability, and the need for 
specialized expertise must be addressed to fully 
integrate these methods into clinical practice.
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