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Abstract: Bone mineral density, a bone matrix parameter frequently used to predict fracture risk,
is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM)
composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a
noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises
inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient
apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous
proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation
of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone
matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural
role have other crucial biological functions, thanks to their ability to bind multiple interacting partners
like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins
provide a complex network of biochemical and physiological signals. Herein, we summarize different
ECM factors that are essential to bone strength besides, discussing how these parameters are altered
in pathological conditions related with bone fragility.
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1. Introduction

The bone mineralized extracellular matrix (ECM) is predominantly responsible for bone’s resistance
to fracture, defined as bone strength. Bone formation or internal reconstruction will determine not only
the spatial structure of the tissue but its mechanical properties. Bone mass has been used as a predictor
of bone fragility; however, it is only a partial correspondent. Indeed, the skeleton derives its resistance
to fracture from multiple components regulated across several levels of hierarchical organization.
That way, the relative composition, organization, and maturity of the mineral and organic matrix have
a paramount relevance on how bones respond to mechanical demand.

1.1. Bone Extracellular Matrix Composition

Bones involve living cells embedded in a mineralized matrix, consisting of organic and inorganic
phase [1]. While the inorganic matrix is responsible for the ability to resist deformation (bone strength
and stiffness), organic matrix allows energy absorption (toughness) [2]. The cellular component of
bone is in constant interaction with the surrounding ECM, which affects cellular function by regulating
different signaling pathways. All in all, different cells and molecules that compose bone matrix are
involved in bone strength and, therefore, alterations in either fraction may affect bone composition and
mechanical properties, determining fracture risk [3].
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1.1.1. Inorganic Matrix

The inorganic (or mineral) fraction of bone tissue, composed of a combination of calcium and
phosphorus salts, (predominantly in the form of hydroxyapatite (Ca10(PO4)6(OH)2)), is of ultimate
importance to bone strength and stiffness. Crystals of calcium phosphate, produced by osteoblasts,
are laid down in precise amounts within the fibrous matrix, leading to bone mineralization (also known
as calcification). Mineral is initially deposited between the ends of collagen fibrils of the matrix,
whilst during bone maturation hydroxyapatite crystals grow and aggregate [4].

When the maturation process occurs, expressed proteins regulate ordered deposition of mineral
by regulating the amount and size of hydroxyapatite crystals formed. Two proteins appear essential in
bone mineralization: type I collagen, which constitutes the scaffold upon which mineral is deposited,
and alkaline phosphatase, that hydrolizes pyrophosphate (a strong inhibitor of mineralization)
plus modifies the phosphorylation status of osteopontin (OPN), a factor implicated in bone
remodeling [5]. Other bone matrix proteins are also known to regulate the mineralization process
such as proteoglycans [6], matrix Gla-protein [7] and various phosphate-regulating proteins. Bone
mineralization is also controlled by systemic hormones such as parathyroid hormone (PTH) and
vitamin D [8]. PTH, the principal regulator of calcium homeostasis, enhances the release of calcium
from the large reservoir contained in the bones [9] whilst, vitamin D stimulates the intestinal absorption
of calcium and phosphorus to achieve enough calcium concentration [10]. Even more, the later also
promotes differentiation of osteoblasts, stimulating the expression of bone crucial players; such as
bone-specific alkaline phosphatase, osteocalcin (OC) and osteonectin (ON), among others.

Finally, the degree of mineralization, closely linked with bone strength [11], is mostly determined
by the rate of bone turnover [12]. High bone turnover decreases the overall bone mineralization leading
to lower bone stiffness. On the contrary, a reduced bone turnover leads to the accumulation of older
and more extensively mineralized bone [12], with the consequent biomechanical drawbacks: it makes
bone more brittle [13] and leads to the accumulation of damaged (aged) bone with reduced elastic
properties, facilitating microcrack and fracture occurrence. Therefore, adequate balance between bone
formation and resorption is crucial for bone quality [14].

1.1.2. Organic Matrix

Proteins that compose bone ECM can be divided into collagen and, to a minor extent,
other noncollagenous proteins (NCPs). Bone-forming cells (osteoblasts) secrete the main compound
of the organic matrix: type I collagen, which constitutes about 85–90% of the total bone protein
content. Type I collagen, encoded by COL1A1 and COL1A2 genes, not only plays a major structural
role in bone but also contributes to tissue organization and therefore to its mechanical properties [15].
Type I collagen is first synthesized as the precursor procollagen, being subsequently stabilized by
post-translational modifications and disulfide bonds. Then, it is secreted into the ECM, cleaved of the
N- and C-terminals, and processed until native triple helix collagen is obtained.

NCPs, such as proteoglycans, SIBLING proteins (small integrin-binding ligand, N-linked glycoproteins),
glycosylated proteins, γ-carboxylated proteins, and other serum-derived proteins, are present in the
bone matrix taking part in collagen assembly and crosslink formation [16] affecting the mechanical
properties of collagen. This way, abnormalities in collagen crosslinks have been associated with
increased fracture risk [17,18].

All in all, the correct synthesis and fiber orientation of collagen are mandatory to obtain a healthy
bone matrix able to withstand bone tensile strength. As such, it is not surprising that defects in type I
collagen have dramatic effects on the skeleton.

1.1.3. Cellular Components

Bone is additionally composed of four different cell types that are in constant interaction with
the surrounding ECM [19]. First, osteoprogenitor cells have the capacity to divide and differentiate
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into different bone cells. These cells, also known as mesenchymal stem cells (MSCs), differentiate to
osteoblasts under osteogenic conditions. Osteoblasts are bone forming cells that synthesize and secrete
the collagen matrix plus accomplish the mineralization of bone matrix. Then, when the secreted matrix
surrounding the osteoblast calcifies, the osteoblast becomes trapped within it. As a result, it changes in
morphology, becoming an osteocyte, the primary cell of mature bone that maintains the bone tissue.
Finally, osteoclasts, multinucleated cells derived from hematopoietic progenitors, are the responsible
for bone tissue degradation. Since bone is a dynamic tissue, bone remodeling is tightly regulated by
both osteoblasts and osteoclasts: while osteoblasts form new bone, osteoclasts resorb it.

1.2. Bone Structure: Microarchitecture

Overall, the human skeleton is composed of bones grouped in four categories: long bones
(femur, tibia, clavicles), short bones (for instance carpal and tarsal bones), flat bones (such as the
ribs, mandible and skull) and irregular bones (such as vertebrae). All of them are composed of two
types of bone tissue which can be distinguished macroscopically, differing in their architecture but
similar in molecular composition: cortical (or compact) bone and trabecular (or cancellous) bone
(80% and 20% of human skeleton, respectively) [20]. Although composed by the same components,
mainly hydroxyapatite, collagen and water, trabecular bone is less mineralized (it has lower calcium
content and higher water content), presenting lower tissue density and mineral content compared to
cortical bone [21]. Consequently, cortical bone is densely packed, providing the strength and rigidity
to bones. On the contrary, trabecular bone, responsible for the most bone turnover [22], is a porous
material composed of a network of trabeculae organized to optimize load transfer, dispersing the
energy of loading [23]. The cortical to trabecular ratio in each bone varies depending on the bone
type and the specific skeletal site of that bone. Thus, cortical bone is mainly present in shafts of long
bones and outer surfaces of flat bones, whereas trabecular bone is found at the end of long bones,
vertebral bodies and the inner part of flat bones.

Alterations in bone ECM components can disrupt ECM-bone cell signaling leading to deterioration
of bone mineral density (BMD) (the content of calcium in a certain volume of bone) and/or bone
microarchitecture, (the organization of bone components in space), the two main parameters
determining bone strength. In vivo quantification of cortical and trabecular BMD, geometry and
microarchitecture can be analyzed at the same time by quantitative computed tomography methods,
rendering the amount of cortical and trabecular bone tissue and features of trabecular (trabecular
number, trabecular thickness, trabecular separation) and cortical (cortical thickness and porosity)
bone microarchitecture.

1.3. Biophysical Properties of Bone Extracellular Matrix

A growing body of evidence in ECM biology points at biophysical properties of the bone ECM
(mineral crystal size, their crystallinity (the degree of structural order) and the degree and type of
collagen crosslinking,) as important determinants of cell behavior. Indeed, every cell in its anatomical
localization has to balance the external forces dictated by the mechanical properties of its environment,
which results from the compression exerted by neighboring cells as well as the stiffness of the
surrounding ECM.

Regarding the biophysical properties of the mineralized matrix that surrounds bone cells, not only
does the degree of mineralization matter so does the individual characteristics of the hydroxyapatite
crystals (their size and shape) and crystallinity. Indeed, excessive crystal growth damages collagen
fibers, affecting the tissue mechanical properties. Moreover, bone strength seems to be favored by
greater mineral crystal size heterogeneity [24].

The biophysical properties of collagen type I fibers affect cellular behaviors [25], since cells respond
differently to denatured collagen than to mature, crosslinked collagen fibrils [26]. Collagen crosslinking
is a major post-translational modification which determines biophysical properties such as tensile
strength and viscoelasticity [17]. Crosslinks can be divided into enzymatic and nonenzymatic.
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Enzymatic crosslinking is a process in which the ends of the collagen molecules are linked (so their
number is greatly limited), acquiring a more stable, trivalent, nonreducible conformation [27].
When mature crosslinks accumulate, collagen fibril remodeling is inhibited and stiffness of the
fibril increased, providing strength to the tissue [28]. That way, enzymatic crosslinking bears beneficial
effect on the mechanical properties of collagen [17]. Conversely, nonenzymatic crosslinking does not
involve any enzymes, and are found at any position along the collagen molecule to connect either
collagen molecules or fibrils. Nonenzymatic glycation results in the formation of intermediate products
(advanced glycation end-products (AGEs)) that undergo additional reactions to create crosslinks that
form within and across collagen fibers. Thus, nonenzymatic crosslinking results in a brittle collagen
network that, when accumulated or when its spatial distribution is altered leads to deteriorated bone
mechanical properties [29,30]. In summary, while enzymatic crosslinking of collagen is generally
considered to have a positive effect on bone´s mechanical properties, nonenzymatic crosslinking can
lead to deteriorated bone mechanical properties.

1.4. Bone Extracellular Matrix Signaling

As previously mentioned, the majority of bone ECM is composed by collagen type I, reaching up
to 90% of the protein content. However, proteomic analysis of decalcified bone has identified the
minority presence of more than 100 ECM proteins in bone, different from collagen, reflecting the
complexity of bone ECM [31,32].

In addition to structural role and thanks to their ability to bind multiple interacting partners
like other ECM proteins, growth factors, signal receptors and adhesion molecules [33], the diverse
set of ECM proteins also reveal other crucial biological functions. ECM components thus, provide a
complex network of biochemical and physiological signals that contribute to bone metabolism,
affecting fundamental cellular processes (such as proliferation, differentiation, migration and survival)
via the integration of a number of signals that constitute the matrix-to-cell signaling [33]. This way,
ECM regulates both, the osteoblast-lineage (for instance progenitors, mature osteoblasts, and osteocytes)
and osteoclast-lineage (including precursors and mature osteoclasts), including also the crosstalk
between them [34]. Besides, external influences can exert changes in these complex signaling systems
as for instance vitamins [35] hormones [36,37] and/or minerals [38] intake.

In this section, we will highlight the main pathways that are involved in bone ECM signaling to
offer a better understanding of how cell-matrix signaling occurs and the relevance of thereof in pivotal
biological processes.

1.4.1. Integrin-Dependent Cell Adhesion Structures in Cell-ECM Signaling

Cell migration, essential for embryonic development, tissue renewal and immune response among
other key processes, becomes crucial for correct bone remodeling. The formation of new bone needs the
migration and differentiation of MSCs, an event tightly controlled by sequential activation of diverse
transcription factors which regulates the expression of specific genes responsible for this transition [39].
The activation of these signaling cascades, and thus cell fate, is governed by the integration of all the
signals that the cell receives from its environment through the ECM and intercellular adhesions.

Integrin-dependent cell adhesion structures allow cells to be attached to the ECM, binding intracellular
actin fibers to extracellular proteins like fibronectin. This connection also transmits the mechanical force
and regulatory signals between the ECM and the cytoskeleton of the cells.

Integrins are heterodimeric transmembrane receptors formed by one α and one β subunit.
There are several subunit isoforms (eighteen α and eight β) that can be noncovalently assembled
into 24 combinations [33] and the exact subunit combination dictates their binding specificity to
different ECM components. Within the cell, the intracellular domain do not bind directly to the
cytoskeleton, they do so via adapter proteins such as talin, α-actinin, filamin, vinculin and tensin [40,41],
which transmit the applied forces on ECM to the actin cytoskeleton. Conversely, forces applied to actin,
the so-called ‘traction forces’, are also transmitted to the ECM through the same mechanism [42].



Cells 2020, 9, 2630 5 of 28

As mentioned, integrins can be assembled into several combinations that are different in their
mechanosensitivity and elicited cellular responses. Mechanosensation depends on ECM material
properties, being broadly demonstrated that ECM stiffness determines cellular response during MSC
differentiation into osteoblasts [43–45]. Furthermore, the communication also works the other way
around; cellular response alter ECM´s mechanical stiffness as well [46].

1.4.2. MMPs as Signal Regulators

The main function of matrix metalloproteinases (MMPs), a family of zinc-dependent enzymes,
is to degrade the proteins of the ECM, cleaving structural components such as collagen and gelatin.

MMPs expression and activity are regulated at multiple levels; inactive proenzyme transcription,
translation and secretion, as well as proenzyme activation or inactivation via signaling of different
factors like cytokines, growth factors or even ECM proteins. Normally, secreted MMPs are synthesized
as proenzymes which are activated by proteolytic cleavage of the N-terminal prodomain by serine
proteases or by active MMPs. Classic activators of MMPs include the activator protein-1, nuclear factor
kappa B, tumor necrosis factor- α, and the transforming growth factor beta (TGF-β) together with
some interleukins. There is growing evidence showing the importance of balance amongst MMPs
and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs) and the membrane anchored gly
coprotein RECK, for MSC fate and stage-specific expression during bone cells differentiation [47].

MSCs from different organs have shown differential expression and secretion of MMPs/TIMPs [48,49].
In fact, the treatment of these cells with a broad spectrum of MMP inhibitors leads to alterations in
migration, proliferation, and osteoblastic differentiation, supporting that these processes are MMP
dependent [48,50]. Mauney J. and Volloch V. showed that bone marrow MSCs undergoing adipogenic
differentiation, express more MMPs than TIMPs [51]. However, under osteogenic differentiation
conditions, cells express more TIMPs than MMPs, reinforcing the key role of MMP/TIMP balance for
matrix modulation and MSC differentiation [52].

MMPs, apart from ECM degrading enzymes, have a central role regulating several signaling
pathways by cleaving many circulating, cell surface and pericellular proteins irreversibly. Among the
molecules that are released by MMPs, TGF-β stands out, responsible of MSCs migration to resorbed
sites promoting bone formation [53]. MMP-mediated activation and release of TGF-β has been
described as a negative feedback mechanism to limit MMP expression and further TGF-β release [54].
Osteoclast secretion of MMP-9 activates trapped TGF-β in the ECM, and this TGF-β may downregulate
cathepsin K and MMP-9 expression; thereby controlling the amount of bone resorption that occurs by
mature osteoclasts [52]. However, TGF-β can also lead to an increase in MMP-13 expression, which is
related with increased osteoclast differentiation and activation [55,56]. Altogether, this evidence
underlines the required tight regulation and interconnection between TGF-β and MMPs pathways to
achieve a correct bone homeostasis.

1.4.3. TGF-β Signaling Pathway

As stated previously, TGF-β pathway plays a crucial role in bone metabolism regulating bone
mass and quality [57]. There are more than 40 members in the TGF superfamily, including bone
morphogenetic proteins (BMPs), growth and differentiation factors, activins, nodal, and Müllerian
inhibitory substance [58], in addition to TGF-β1, TGF-β2 and TGF-β3 isoforms, being TGF-β1 one of
the most abundant cytokines in the bone matrix [59].

In bone, TGF-β is produced as large precursor molecule by bone-forming osteoblasts, being
composed of mature TGF-β and latency-associated protein (LAP). TGF-β remains sequestered in
the ECM as an inactive, latent form since LAP remains noncovalently bound to mature TGF-β as
it is secreted. However, upon osteoclastic resorption, LAP is cleaved, releasing the active TGF-β.
A gradient of active TGF-β promotes the recruitment of MSCs to the recently resorbed bone surface
by inducing chemotaxis and proliferation [60]. Once MSCs reach these sites, they differentiate into
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osteoblasts in response to environmental factors (such as bone-matrix-derived insulin-like growth
factor 1) [61].

In addition to regulating the proliferation and differentiation of MSCs, active TGF-β has shown to
be also an important regulator for osteoclastogenesis in a dose-dependent manner. High concentrations
of active TGF-β generated at resorption areas inhibit the recruitment of osteoclast precursors,
protecting it from further resorption during bone formation process [62]. Instead, low concentrations
of active TGF-β induce the migration of osteoclast precursors [63]. This dual effect of TGF-β is
also important in osteoclast differentiation. Low TGF-β levels stimulate osteoclast differentiation,
whereas high levels inhibit such differentiation by regulating receptor activator of nuclear factor κβ
ligand (RANKL)/osteoprotegerin (OPG) ratio [64]. In normal conditions, osteoblasts and osteocytes
secrete RANKL, which binds to its receptor in osteoclasts (RANK) and promotes their differentiation.
However, TGF-β can induce the expression of OPG in osteoblasts, a cytokine that acts as a decoy
receptor for RANKL [65], thus inhibiting osteoclasts differentiation.

More recently, it has been shown that TGF-β presents both inhibitory and stimulatory effects in
human osteoclast differentiation via Smad1 and Smad3 signaling, respectively [66]. These facts points
out the complexity of TGF- β signaling governing the regulation of a wide range of bone metabolisms
cellular functions.

Other pivotal members of TGF superfamily are BMPs. BMPs induce MSCs differentiation into
bone [67,68] via the interaction with their cell surface receptors (BMPRs) in a canonical pathway similarly
to TGF-β, leading to the activation of Smads. Like TGF-β, BMPs also activate several non-Smad signaling
transducers, namely, mitogen-activated protein kinase (MAPK) pathways, including extracellular
signal-regulated kinases (ERKs), c-Jun amino terminal kinase (JNK), p38 MAPK, the IκB kinase,
phosphatidylinositol-3 kinase and Akt, as well as Ras homolog family GTPases.

Several studies have demonstrated that following TGF-β/BMP induction, both the Smad and p38
MAPK pathways converge at the runt-related transcription factor 2 (Runx2) gene to control mesenchymal
precursor cell differentiation [69,70]. Runx2 promotes the differentiation of progenitor cells into
osteoblast, preventing adipogenesis [71] and exhibiting its essential role in MSC fate determination.

1.4.4. Wnt Signaling Pathway

Wingless-type mouse mammary tumor virus integration site family (Wnt) is essential for skeletal
formation and development, being involved in a variety of processes like differentiation, proliferation
and synthesis of bone matrix by osteoblasts as well as osteoclasts differentiation and function [72,73].
In fact, alterations not only in the intensity, but amplitude, and duration of Wnt signaling pathways
affects skeletal formation during development, in addition to bone remodeling, regeneration, and repair
during the lifespan [74].

Wnts can trigger several signaling cascades, among them, the most studied is the canonical
Wnt/B-catenin pathway. Briefly, Wnt elicits the stabilization and nuclear translocation of β-catenin,
which is a transcription coregulator. In the absence of Wnt, β-catenin is phosphorylated by a large
protein complex (adenomatous polyposis coli/Axin/glycogen synthase kinase -3β-complex), leading to
its ubiquitination and proteasomal degradation through the β-TrCP/Skp pathway. However, when Wnt
is secreted, it binds to membrane Frizzled receptors and triggers a cascade of several intracellular
events, allowing β-catenin translocation to the nucleus, activating Wnt target genes expression [75].

Canonical Wnt signaling pathway promotes MSCs differentiation into osteoblasts by preventing
apoptosis in both; osteoblast progenitor cells and differentiated osteoblast [76]. As expected,
Wnt signaling is also involved in cellular lineage dichotomy; more precisely Wnt10a, Wnt10b and Wnt6
favor osteogenesis at the expense of adipogenesis; suppressing the differentiation of MSCs to adipocytes
while facilitating their differentiation to osteoblasts through the canonical Wnt pathway [77,78].

As stated throughout the present review, osteoclast progenitor differentiation is tightly regulated
by osteoblasts and osteocytes. In normal conditions, osteoblasts and osteocytes express RANKL,
which binds to osteoclasts receptor RANK, promoting their differentiation. However, the canonical



Cells 2020, 9, 2630 7 of 28

activation of Wnt signaling pathway in osteoblast-lineage cells enhances the expression of OPG, a decoy
receptor of RANKL, suppressing osteoclast differentiation and thus bone resorption [79].

2. Bone ECM Alteration in Pathological Conditions Associated with Fragility

There are numerous diseases related to bone fragility in which ECM is altered preventing to
perform its normal functions. Herein we´ll focus mainly on two bone disorders; the prevalent illness
osteoporosis and the rare disease OI, both characterized by low bone mass.

2.1. Bone Extracellular Matrix Composition

2.1.1. Bone Extracellular Matrix Composition in Osteoporosis

Osteoporosis is a worldwide disease characterized by reduction of bone mass and alteration
of bone architecture [80]. According to the National Institutes of Health Consensus Development
Panel on osteoporosis [81], it is defined as “a skeletal disorder characterized by compromised bone
strength leading to an increased risk of fracture.” Osteoporosis mainly occurs in postmenopausal
women [82] and elderly men [83], affecting approximately 200 million people [84–86], even more,
its prevalence is expected to increase significantly in the future because of aging of the population,
especially in developed nations [87]. Worldwide, approximately 8.9 million fractures are caused
by osteoporotic fracture annually: over 50% of postmenopausal white women and 20% of white
men will have an osteoporotic-related fracture in their lifetime [88]. Besides the health and social
challenges, osteoporosis represents a major concern of the health care systems because of its growing
economic burden.

The hazardous increase in the risk of fractures is a major cause of concern for the affected
population [3]. Although BMD measurement is one of the most widespread diagnostic tools, the majority
of fragility fractures occur in individuals whose BMD value is above the diagnostic threshold of
osteoporosis [89], stressing the notion that BMD is just one among several indicators of bone health.
Clearly, there is a need for improvement in the identification of patients at risk for fracture. To this extent,
assessment of fracture risk should also rely on other bone properties related with bone quality [90],
such as the composition of bone tissue (proportion of hydroxyapatite, water, type I collagen, and other
NCPs), the biophysical properties of these components (the degree and type of collagen crosslinking,
the mineral crystal size and their crystallinity), the ECM structure and the altered signaling pathways.
Hence, each one of these properties may independently contribute to the increased or decreased risk of
fracture, even without meaningful changes in BMD.

As an example of inorganic matrix bone composition of implication, it has been shown that
the degree of trabecular bone matrix mineralization is slightly reduced in premenopausal women
with idiopathic osteoporosis (osteoporosis of under 50 years adults with unknown cause) compared
to normal controls [91]. Concerning organic matrix, COL1A1 gene is implicated in reduced BMD
in osteoporosis; in fact, type I collagen polymorphisms (Sp1 [92] and +1245G/T [93]) play a role in
development of osteoporosis and fracture. Thus, osteoporosis may alter the collagen alignment and
mineral geometry in bone formed before and after the onset of this disease [94].

NCPs regulate the matrix assembly and play a significant role in the structural organization of
bone, thus influencing its mechanical properties [95]. NCPs levels vary during aging and disease such
as osteoporosis, leading to an increased fracture risk. That way, alteration in NCPs such OPN, OC and
ON could increase the risk of developing osteoporosis [96]. The role of OPN in bone remodeling has
been confirmed by studies on osteoporosis development in which ovariectomized (OVX) OPN+/+ mice
lost bone mass, while OVX OPN−/− mice showed higher bone volume than the earlier. Furthermore,
when OVX mice were treated with anti-OPN antibody, a marked inhibition in bone loss was observed,
along with a reduction in the number of resorptive areas [97]. These animal studies are in agreement
with observed in affected patients, in which higher levels of serum OPN were found in postmenopausal
women with osteoporosis, compared to nonaffected ones [98,99].
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OC is considered a marker of bone formation, therefore several epidemiological studies tried
to establish the role of serum and urinary OC detection as an accurate biomarker for osteoporosis.
However, the results are at least controversial. In spite some studies have reported that osteoporotic
women have increased serum OC [100–102], recently data revealed no significant difference in serum
OC level between postmenopausal osteoporosis cases and controls [39]. This could be explained by
OC molecules are quite heterogeneous in the circulation and can be influenced by glucose metabolism.

The third NCPs that is considered, ON has an important role in matrix regulation and
mineralization, making ON a good candidate for the osteoporosis onset [103]. In fact, ON-null mice have
decreased bone formation in addition to decreased osteoblast and osteoclast surface (the proportion of
the bone covered with osteoblasts or osteoclasts) and number, leading to decreased bone remodeling
with a negative bone balance, causing profound osteopenia [104]. Moreover, ON polymorphisms
seem to affect BMD in humans. Delany and coworkers observed that the haplotype commonly
associated to a high bone density is mainly expressed in normal subjects than in osteoporosis patients,
while the expression of ON haplotype associated to low BMD is higher in osteoporosis patients than in
controls [105].

Finally, both collagen [106] and NCPs undergo different post-translational modifications,
which alter the quality of the ECM and the response of bone to mechanical load. Hence, bone matrix
protein phosphorylation levels are tightly related with bone fracture risk. To address this gap, a recent
study has demonstrated that as people age, the total phosphorylation level declines by approximately
20% for bone matrix proteins [107]. Moreover, these outcomes suggest that the decline of total protein
phosphorylation of ECM contributes to bone fragility and could lead to development of osteoporosis.

2.1.2. Bone Extracellular Matrix Composition in Osteogenesis Imperfecta

Osteogenesis imperfecta (OI), also called “brittle bone disease”, is a rare genetic disorder
characterized by an increased susceptibility to bone fractures and decreased bone density [88].
In the majority of cases, it is caused by mutations in the COL1A1 or COL1A2 genes and, as expected,
associated to abnormality in the synthesis and/or processing of type I collagen. Nowadays, mutations in
up to 19 different genes have been identified in a dominant and recessive traits [108,109]. Besides the
genetic heterogeneity, OI presents a wide clinical variability [110] in where clinical manifestations range
from mild, with a nearly asymptomatic form, to most severe one resulting in perinatal mortality [111].
Genetic mutations that cause a quantitative reduction of type I collagen cause milder forms of OI
disease, and conversely, structural mutations of type I collagen, significantly affect the quality of the
bone matrix resulting in moderate to lethal forms of OI.

Since type I collagen is the major component of bone being essential for bone mineralization,
it can be assumed that changes in collagen quantity or quality will have detrimental effects on
mineralization. In line with this observation, several studies have claimed that OI patients have higher
average mineralization densities than age-matched healthy controls [112,113], and increased BMD
distribution [114]. It has been suggested that the higher mineralization is a consequence of abnormal
OI ECM assembly, which results in increased water fraction that is available for mineral deposition.
Thus, although mineralization in OI patients is increased, bones are brittle due to an alteration in bone
ECM formation and structure.

Moreover, there are OI patients presenting mutations in specific genes that directly affect the
bone mineralization process such as IFITM5 (Interferon induced Transmembrane Protein 5) [115] and
SERPINF1 (Serpin Family F Member 1) [116]. Histological studies on iliac crest biopsy specimens from
these OI patients described lamellae with irregular organization and a meshlike appearance [117,118].
Although the defective proteins that encode the genes mentioned are not involved in the synthesis of
type I collagen there is evidence for reduced type I collagen production and increased mineralization
in primary osteoblast cultures [119], even hypermineralization of bone tissue [120].

Regarding the organic matrix, OI patients present a reduced quantity of bioactive type I collagen due
to alterations in multiple processes that contribute to its synthesis, secretion, processing, assembly and
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interaction with other matrix components, as mentioned previously [121]. As type I collagen is the
most abundant protein in bone ECM, its normal level reduction will affect ECM composition and in
consequence, ECM functions.

On the other hand, several alterations in NCP levels have been reported in OI patients [122,123].
First, bone sialoprotein, OC [124] and alpha 2-HS glycoprotein concentrations were found increased in
cortical bone from OI patients [125]. OI cell matrices present not only a reduced level of proteins such
as collagen, but also a decrease in decorin [126] and ON [127]. Moreover, mutations in SPARC (the gene
encoding ON) have been identified in individuals with recessive OI [128], which demonstrated severe
bone fragility, pointing out that the collagen-binding function of ON plays a critical role in collagen
deposition in bone [129].

Osteoblasts from OI cultures exhibit reduced amounts of insoluble collagen deposition and
increased synthesis of the glycosaminoglycan hyaluronan when compared to ECM deposited by
osteoblasts from control individuals [130]. Defects in collagen secretion or deposition that might
contribute to the fragility of the OI bone by interfering with complete mineralization and/or normal
tissue architecture [129].

All in all, OI affects the ECM in multiple ways [121] and the study of OI has clearly highlighted
the essential role of material properties in bone strength [131].

2.2. Bone Extracellular Matrix Structure

2.2.1. Bone Morphology in Osteoporosis

Osteoporosis animal models and human patients share not only bone mass reduction but alteration
of bone architecture. Cortical bone of the mid-diaphysis in OVX mice (murine model of postmenopausal
osteoporosis), show a reduced tissue mineral density and increased cortical porosity, this later feature
also exhibited by OVX rat model of postmenopausal osteoporosis rat (Sprague-Dawley). An increase
in cortical vascular porosity may diminish bone strength as well as alter bone mechanotransduction
via interstitial fluid flow, both of which could contribute to bone fragility during postmenopausal
osteoporosis [132]. These results are in agreement with osteoporosis patients outcomes in which the
cortical bone becomes more and more porous with increasing age, and therefore, the largest loss of
absolute bone mass is in cortical bone [29]. Since cortical bone plays a major role in determining the
mechanical competence of bone and the risk of fracture, the age related alterations of its geometrical
features and its local porosity may alter bone strength and lead to bone brittleness.

Trabecular bone has been also shown to be affected in osteoporosis. The number of trabeculae,
the trabecular thickness and the degree of connectivity influence the mechanical strength of a bone.
Thus, in OVX mice (murine model of osteoporosis), the trabecular bone volume of the distal-metaphysis
is decreased [133]. Moreover, in male Wistar rats subjected to orchiectomy bone loss is observed too.
Separately, the orchiectomy led to significant tomographic alterations in the trabecular bone number,
trabecular separation, and trabecular pattern factor [134]. The same results have been reported in early
osteoporosis patients, since the bone loss is mainly a trabecular deficiency, and a decrease of all these
characteristics is observed [29]. Bones with increased risk for osteoporotic fractures, present remaining
trabecular tissue largely heterogeneous [135], with regions of different mineralization, stiffness and
strength. For example, it was demonstrated that bone structure deterioration of the tibial plateau
due to osteoporosis was region-specific [136], and the greatest decrease in bone volume fraction was
found in the medio-medial segments and the lowest bone volume was found in central segments
(tibial spine). It has been proposed that these changes are a transient and site-specific characteristic of
osteoporosis, whereby the trabecular tissue properties are altered varyingly as the disease progresses.
In addition, changes in the distribution of mechanical stimuli related to changes in the microarchitecture
of the trabecular have been studied [137]. Variations in the morphology of the trabecular bone have
been predicted, such as an increase of 30% in porosity, which significantly altered the distribution of
mechanical stimuli of the environment where the cells are located. These results suggests that changes
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in the microarchitecture cause a proportional decrease in the mechanical stimuli that may drastically
affect the mechanoregulation of bone regeneration, promote microcracks and accelerate osteoporosis.

2.2.2. Bone Morphology in Osteogenesis Imperfecta

Bone morphology has also been studied in patients suffering from OI [138], presenting BMD,
trabecular volumetric BMD, total bone area, and cortical bone area lower in OI than in healthy age- and
gender-matched controls [139]. Higher tissue mineral density was found for OI bone, a dramatically
rise in cortical porosity, canal diameter, and connectivity [140] along with a lower elasticity [141].
That way, compared to control group, the cortical thickness seems to be thinner in OI patients [142].

With respect to trabecular microstructure in patients with OI, significantly lower trabecular
parameters including bone volume fraction (BV/TV) and bone trabecular number (Tb.N) [142], as well
as increased trabecular spacing were observed in comparison to the control group. A tendency toward
thicker trabeculae was found [139]. These observed results are possibly due to increased bone turnover
that in turn increases trabecular perforations and thus leads to preferential loss of thin trabeculae [143].
Taking everything into account, the mutation-induced collagen defects alter the collagen matrix,
thereby affecting the mineralization and leading to increased brittleness.

2.3. Bone Extracellular Matrix Biophysical Properties

2.3.1. Bone Extracellular Matrix Biophysical Properties in Osteoporosis

Though osteoporosis is generally defined as a loss of bone mass, there are considerable
matrix changes, particularly in collagen crosslinks, which cause a loss of bone quality [3,18].
Enzymatic crosslinks have been shown to be reduced in osteoporotic patients with hip fractures
compared to healthy controls [144,145]. Moreover, collagen from the femoral head of osteoporotic
women has a higher degree of hydroxylated lysine residues (formed from nonenzymatic crosslinks)
than that from nonosteoporotic women [146].

Intermediate product generated from the nonenzymatic crosslink named AGEs accumulate with
age and disease [17], so it is not unexpected that osteoporotic bone presents significantly more AGEs
than normal healthy bone [144,147,148]. The activation of the RAGE (AGE receptor) inhibits osteoblast
proliferation and differentiation [149], reduces matrix production [150], reduces bone formation [151]
and increases osteoblast apoptosis [152], finally deteriorating bone’s mechanical properties. All things
considered, crosslinking properties of the matrix may alter the tissue properties and therefore play an
important role in the decreased bone formation found in osteoporosis [153].

How menopause affects bone quality has been and is an intense research line, given the tight
link between menopause and the development of osteoporosis. Thus, an analysis of bone matrix
quality from healthy women with and without menopause pointed out that women with menopause
demonstrate a decrease in mineral/organic ratio, microhardness, mineral maturity and crystallinity,
suggesting the alteration of local mineral content and microhardness [154], in spite that the mean
degree of mineralization was no different. Outcomes that are in line with previous study, in which
microhardness was significantly lower in osteoporotic patients compared with controls [155].

2.3.2. Bone Extracellular Matrix Biophysical Properties in Osteogenesis Imperfecta

When the secreted collagen type I has altered post-translational modification, leading to defective
crosslinking [156], the collagen reduces its ability to correctly bind to other matrix molecules.
Mutations in genes that are involved in collagen crosslinking have been reported in OI patients [157],
such as SERPINH1, FKBP10 and PLOD2 [123].

SERPINH1 encodes heat shock protein 47 (Hsp47), a collagen-specific molecular chaperone.
Hsp47 transiently associates with triple-helical procollagens in the endoplasmic reticulum (ER) and
dissociates at the cis-Golgi, returning to the ER via its ER retention signal [158]. Mutations in Hsp47
and consequent impairment of the chaperone function in the ER, lead to overhydroxylation and partial
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intracellular retention of procollagen I. Both consequences, ER stress and aberrant bone collagen
crosslinking, underlie the OI pathology associated to crosslinking defects, but further studies are
required [159].

Bruck syndrome is a disorder characterized by joint flexion contractures and skeletal dysplasia
that shows strong clinical overlap with OI but is caused by biallelic mutations in either the FKBP10
or the PLOD2 genes [160–162]. PLOD2 encodes lysyl hydroxylase 2 (LH2), the enzyme responsible
for hydroxylation of collagen telopeptide lysine. Telopeptide hydroxylysines are essential for the
hydroxyallysine pathway of crosslinking, which produces mature crosslinks in extracellular collagen
fibrils, crucial for the normal material properties of bone [163]. FKPB10 encodes FKBP65, an ER
resident peptidylprolyl isomerase that functions as a molecular chaperone that aids in the folding of
type I procollagen [164]. Moreover, it is involved in collagen crosslinking by specifically mediating
the dimerization of LH2, which is required for its activity [158,165]. Type I collagen isolated from
FKBP10 knockout mice revealed less stable crosslinks [166]. In the absence of FKBP10, collagen fibrils
deposited in matrix are sparse and disorganized, consistent with the defect in crosslinking [167]. Thus,
collagen monomers not able to crosslink may simply dissociate from fibers due to a low collagen
concentration in media, leading to bone fragility and deformity. Overall, mutations in genes related
with collagen processing and consequent impaired collagen crosslinking, lead to bone fragility, as can
observe in some bone brittle patients.

In order to delve into the understanding of the high bone matrix mineralization observed in
patients with OI, mineral composition (mineral particles size, alignment and mineral-to-matrix ratio)
were analyzed. Studies in the oim murine model (OI mouse) demonstrated that the hydroxyapatite
crystals are thinner and less-well aligned along collagen fibrils compared to controls [168]. That way, oim
bones have lower stiffness that may result from the poorly organized mineral matrix with significantly
smaller, highly packed and disoriented apatite crystals [169]. The same results were reported in OI
patients: the size of mineral particles was the same or smaller than controls [170], but their packing
density was increased [171]. Moreover, Raman spectroscopy showed that the mineral-to-matrix ratio
was higher in OI samples, while the crystallinity was lower [141], suggesting that the mineral crystals
were smaller but more abundant in the case of OI. These changes in crystal size, distribution and
composition contribute to the observed decrease in mechanical strength and consequent bone fragility.

To sum up, studies on OI bones have shown increased bone mineralization, accompanied by
hydroxyapatite crystals that are reduced in size, more densely packed and less-well organized along
collagen fibrils. These features lead to changes in intrinsic bone material properties with the consequent
increase in bone brittleness [131].

The following table summarized the different ECM alteration at matrix composition,
microarchitecture and biophysical properties level in osteoporosis and OI (Table 1).

2.4. Altered Bone Extracellular Matrix Signaling in Bone Pathologies

2.4.1. Integrins

The integrity of collagen type I molecule has revealed to be essential for a correct binding to
integrin cell receptors. Not all subunits that form integrins are equally affected in osteoporotic
patients, for instance, α2 integrin, which is part of α2β1 heterodimer, is downregulated, in osteoporotic
patients [172].

Another central aspect for this molecular interaction is the collagen triple helical conformation.
This structure requires a glycine as every third residue to stabilize it, generating the characteristic
(Gly-Xaa-Yaa)n sequence [173]. The glycine at that position is essential, since even a single Gly
substitution by another residue leads to OI phenotype [174]. Hamaia and colleagues, elucidated
the precise (Gly-Xaa-Yaa)n amino acid sequence in collagen required for integrin binding [175].
An interesting study focused on α2β1 integrin and how Gly mutations affect their integrin-collagen
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binding [174], pointed out that mutations occurring in crucial regions of collagen binding motifs avoid
integrin interaction and, consequently, cell adhesion, leading to severe or lethal OI phenotypes.

Table 1. Alterations in extracellular matrix (ECM) composition, structure and biophysical properties in
osteoporosis and osteogenesis imperfecta (OI).

Osteoporosis OI

Composition

Inorganic
matrix

Mineralization ↓ ↑

Mutated genes N/A IFITM5,
SERPINF1

Organic matrix

Type I collagen COL1A1 * ↓

NCPs

OPN

OPN +/+
→

bone mass ↓
OPN −/−

→

bone volume ↑

N/A

OC ↓ ↓

ON
ON −/−

→ bone
formation ↓

ON *→ BMD ↓

↓

Mutations in
SPARC

Structure

Cortical

TMD ↓ ↑

Porosity ↑ ↑

Elasticity N/A ↓

Areal BMD, cortical bone area N/A ↓

Trabecular

Bone volume ↓ ↓

Bone trabecular number ↓ ↓

Porosity ↑ N/A

Trabecular spacing N/A ↑

Tissue heterogeneity ↑ N/A

Thickness N/A ↑

Biophysical
properties

Collagen
crosslinking

Enzymatic ↓ N/A
Nonenzymatic ↑ N/A

Mutated genes N/A
SERPINH1,

FKBP10,
PLOD2

Mineral
composition

Mineral/organic ratio ↓ N/A

Mineral/matrix ratio N/A ↑

Microhardness ↓ N/A

Mineral
particles

Size N/A =/↓

Packing density N/A ↑

Crystallinity ↓ ↓

* Polymorphisms; ↓ decrease; ↑ increase; +/+ wild type; −/− knockout, =/↓ similar or decrease; N/A, not available;
for definitions of other abbreviations, please see the main text.

2.4.2. MMPs

Osteoclast activity is associated with an increase in MMP-9 expression which stimulates osteoclasts
resorption and degrades ECM matrix proteins like collagen type I [176]. MMP-9 serum levels have
been found to be overexpressed in osteoporotic bones [177]. In addition, high levels of MMP-2, as well
as fragments derived from bone collagen by the cleavage of MMP-2, have been found in the circulation
of osteoporotic patients [178]. Thus, in osteoporosis patients, the excessive MMPs activity and therefore
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osteoclasts activity is targeted by bisphosphonates, which reduce bone resorption by inhibiting the
enzymatic activity of MMPs in osteoclasts. Some examples are the bisphosphonates based on highly
selective MMP-2 inhibitors [179,180] and a TIMP-2-based MMP-14 inhibitor [181].

On the other hand, BMP1 is a metalloproteinase known to have procollagen C-proteinase activity
that cleaves the C-propeptides from procollagens I-III [182]. Mutations of the BMP1 gene lead to defects
in collagen processing and are associated with OI in humans [183–185] and other animal species such
as mouse and zebrafish [183,186,187], emphasizing the importance of all proteins involved in collagen
processing to achieve a correct bone formation. Studies of mesenchymal stem cells have demonstrated that
the collagen-binding α2β1 and α11β1 integrins both have an impact on osteogenic differentiation [172].

2.4.3. TGF-β

The existence of a fine-tuned bone ECM signaling to maintain bone microstructure becomes
unquestionable given the existence of a number of bone pathologies with alterations in key signaling
pathways, as an underlying pathological mechanism. Of relevance is the case of the TGF-β signaling
pathway, previously remarked, which is modulated by bone ECM proteins. A number of mutations
have been identified in different members of the signaling pathway, leading to an array of rare genetic
diseases, all of them sharing skeletal alterations such as compromised trabecular and cortical bone
microarchitecture (Figure 1).

Marfan syndrome (MFS), a connective tissue disorder with a wide range of musculoskeletal
and cardiovascular alterations, is caused mainly by mutations in FBN1 gene, which codes for
Fibrillin-1, an ECM structural protein which polymerizes into microfibrils. Fibrillin-1, which in bone
tissue represents less than 3% of ECM proteins, binds to latent TFG-β-binding proteins forming
large latent TGF-β complexes. Mutations in FBN1 gene lead to an increased pool of active TGF-β
and therefore to an enhanced TGF-β signaling, featuring lower bone mass exhibited by affected
individuals [188,189]. However, a high clinical variability is observed in MFS patients, and, in fact,
more than 1800 different mutations in FBN1 (only 12% recurrent) have been described [190]. Recently,
alterations in microarchitectural parameters have also been described in long bones from MFS adults:
trabecular bone shows reduced trabecular number and thickness as well as higher trabecular separation,
whereas cortical bone shows reduced thickness and increased porosity [191]. It is still unclear whether
there is an increased risk of fractures in MFS patients, recent studies point to an increased fracture risk
in both pediatric and adult MFS patients [172,192,193]. The increased fracture rate was not found in
pediatric patients with the lower mineral density, suggesting that an altered bone microarchitecture
could be playing a pivotal role in MFS fracture risk [192]. On the contrary, a recent study, found that,
in spite of the bone microarchitecture alterations, the estimated bone strength in MFS was similar to
that expected for healthy controls. This in silico prediction could be explained by the fact that MFS
bones exhibit an increased longitudinal growth, which could be counteracting the consequences of
having deficiencies in bone mass and microarchitecture [191].

Loeys–Dietz syndrome (LDS) is caused mainly by mutations in genes coding for TGF-β receptors,
TGF-βR1 and TGF-βR2. Mutations are predicted and/or in vitro verified to inhibit the kinase activity of
TGF-β receptors and therefore diminish the activation of the pathway, but paradoxically aortic tissues
of LDS patients show elevated TGF-β signaling [194]. In fact, patients show clinical features that
overlap with those shown by MFS patients, suggesting a common pathogenic mechanism, although in
this case, patients show more aggressive vascular disease. As regards skeletal tissue, patients show
thinner cortical bones, low BMD and increased risk of fractures [195,196] but, up to now, there are
no studies addressing bone microarchitecture in these patients. Mouse models carrying mutations
in TGF-βR2 recapitulate the low bone mass phenotype of LDS patients, resembling severe human
LDS [197]. Cortical bone at the femoral shaft of mice proved to be especially affected, with decreased
bone area and cortical thickness, whereas trabecular bone of the distal femur showed no differences
compared with controls. The greater affectation of cortical bone could explain the major risk of fractures
in long bones, pointing to a key role of TGF-β pathway in cortical bone maintenance.
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Figure 1. Roles of transforming growth factor beta (TGF-β) and Wnt signaling in bone strength
maintenance. Bone strength depends on bone mineral density and bone microarchitecture;
disturbances in any of them lead to increased risk of fractures. Human musculoskeletal disorders with
mutations in TGF-β or Wnt family members have revealed the key role of these pathways in regulating
bone strength. Thus, mutations in different TGF-β family members leading to an increased pool of
active TGF-β and therefore an increased TGF-β signaling give rise to rare disorders characterized by
low bone mineral density, alterations in bone microarchitecture and increased risk of fractures. This is
the case of Marfan (MFS) and Loeys–Dietz (LDS) syndromes and Camurati–Engelmann disease (CED),
with mutations in FBN1 (Fibrillin-1), TGFβ receptors (TGFβR1 and TGFβR2) and LAP, respectively.
In the case of the Wnt pathway, mutations leading to increased Wnt signaling can cause high bone
mass disorders, whereas inactivating mutations of the Wnt pathway are associated to low bone mass
disorders with different ranges of severities. Thus, heterozygous mutations in Wnt1 or SNPs in Wnt16
can lead to osteoporosis (OP) whereas homozygous mutations of Wnt1 cause osteogenesis imperfecta
(OI). Moreover, autosomal recessive loss of function mutations in LRP5 are known to cause the rare
osteoporosis pseudoglioma syndrome (OPPG) characterized by extremely severe childhood onset
osteoporosis. For definitions of other abbreviations, please see the main text. Red arrow increased
expression; green arrow decreased expression.
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Camurati–Engelman disease (CED), a rare skeletal dysplasia, is caused by mutations in the
N-terminal prodomain (LAP) of TGF-β1, leading to an increase TGF-β signaling [198]. The cortical
thickening of the diaphysis of long bones of the upper and lower limbs is the hallmark of the disease.
The existence of increase fractures in CED patients is controversial and there are no studies regarding
their microarchitecture in which could estimate bone strength. However, a transgenic mouse model of
CED exhibiting cortical thickness increased as in humans, showed a higher incidence of long bone
fractures along with increased cortical bone porosity [53].

These rare pathologies affecting bone show that overexpression of TGF-β signaling pathway deeply
affects bone microstructure leading to an increased risk of fractures. Interestingly, cortical bone tissue
seems to be especially affected in these pathologies characterized by TGF-β signaling hyperactivation,
emphasizing TGF-β’s crucial role in maintaining cortical bone tissue homeostasis.

In OI, one study that used two distinct mouse models of OI showed that excessive TGF-β signaling
is an important disease mechanism that contributes to the OI phenotype [199]. Although the precise
process that leads to TGF-β overactivity has not been worked out yet, it is likely that type I collagen
and consequent proteoglycan alterations in OI cause inefficient retention of TGF-β in the matrix.

Regarding osteoporosis, several TGF-β superfamily members (TGFB1, BMP2, BMP4,
and Sclerostin) [200] have been implicated as candidate genes in osteoporosis [201]. Indeed,
several polymorphisms in TGF-β1, related with higher serum TGF-β1 levels and significantly lower
bone mass, have been identified in patients with osteoporosis [202]. In addition, another study
identified single nucleotide polymorphisms (SNPs) in several TGF-β pathway components in patients
with osteoporosis (TGFBR1, TGFBR2, Smad2, Smad3, Smad4, and Smad7) [203], but the relevance of
these polymorphisms remains to be established.

2.4.4. Wnt

The bone-anabolic role of Wnt pathway was revealed by the existence of high bone mass disorders
along with the identification of causative gene mutations in key Wnt family members, responsible for
Wnt signaling cascade hyperactivation. This was the case of patients with heterozygous gain of function
mutations in lipoprotein receptor-related protein 5 (LRP5) (a coreceptor of the Wnt pathway [204]),
or loss-of-function mutations of its inhibitor sclerostin [205].

Conversely, loss-of-function mutations in LRP5 cause autosomal recessive osteoporosis-
pseudoglioma syndrome (OPPG) characterized by blindness from birth, very low bone mass in
early childhood and consequent increased risk of fractures and bone deformation [128].

In this regard, mutations in the fourth β-propeller of LRP5 have been associated with early
childhood-onset primary osteoporosis [206,207] (Figure 1). Interestingly, lithium, a known Wnt
pathway activator (mentioned above) is being currently in a clinical trial for OPPG (ClinicalTrials.gov
Identifier: NCT01108068).

Later studies identified that mutations or even variants in the sequence of Wnt ligands can lead to
osteoporosis with different ranges of severities [208]. Thus, a genomewide association study (GWAS)
identified a specific SNP of Wnt16, which was associated to individuals with decreased cortical bone
thickness and forearm BMD as well as increased fractures [209]. In the same way, heterozygous Wnt
inactivating mutations can lead to low bone mass and early onset osteoporosis [210–212]. For instance,
rare variations in the Wnt3a and DKK1 genes have been observed in patients with childhood-onset
primary osteoporosis [213]. Indeed, Wnt3a-mediated signaling stimulates bone formation and inhibits
bone resorption in OVX mice [214], pointing out Wnt3a as a potential therapeutic target for osteoporosis
treatment. In particular, Wnt pathway has been reported as a target in osteoporotic treatments [215],
the best therapeutic targets for promoting Wnt signaling are the several secreted endogenous inhibitors
that constantly exert a negative influence on this pathway to keep it tamed [216]. Thus, by targeting
these inhibitors one can activate Wnt signaling and increase bone mass [217]. Inhibition of sclerostin,
a Wnt antagonist secreted by osteocytes, leads to decreased bone resorption and increased bone
formation. Monoclonal antibodies against sclerostin (romosozumab [218,219]) have proven in clinical
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trials to be a very efficient osteo-anabolic approach to the treatment of osteoporosis, since they increase
bone formation, bone mass, and bone strength [220], therefore decreasing markedly fracture risk in
treated patients. Another Wnt ligand related with bone microarchitecture is Wnt1, since mutations
in the Wnt1 gene shows reduced trabecular and cortical parameters especially cortical thickness.
Interestingly, complete loss of function of Wnt1, due to homozygous or compound heterozygous
mutations, leads to moderate-to-severe OI [221].

3. Conclusions

In conclusion, bone ECM is tightly related to bone strength, and alterations of different ECM
factors could lead to diseases associated with bone fragility. Indeed, the skeleton derives its resistance
to fracture from multiple components regulated across several levels of hierarchical organization.

Firstly, the different cells and molecules that compose bone matrix affect bone resistance and,
therefore, are implicated in bone fragility. Thus, alterations in bone composition may affect bone
mechanical properties and thereby fracture risk. For instance, alterations in type I collagen molecules
give rise to OI, a rare disease characterized by bone fragility.

Bone microarchitecture has a crucial role in determining bone resistance. Cortical bone is densely
packed, providing the strength and rigidity to bones, whereas trabecular bone is less mineralized,
organized to optimize load transfer and disperse the energy of loading. That way, different cortical
(tissue mineral density and porosity) and trabecular (the number of trabeculae, trabecular thickness
and heterogeneity) parameters are altered in osteoporosis and OI, leading to a more brittle bone.

Then, biophysical properties of the bone ECM, such as the degree and type of collagen crosslinking,
the mineral crystal size and their crystallinity, are important determinants of cell behavior. Cells respond
differently to denatured collagen than mature, crosslinked collagen fibrils. In osteoporosis, bone quality
is affected, since there are considerable changes in collagen crosslinks, which cause loss of bone quality.
In OI, the secreted collagen type I can have altered post-translational modification, leading to defective
crosslinking. This collagen reduces its ability to correctly bind to other matrix molecules, leading to an
altered collagen network that is not able to support mechanical stimuli. Regarding mineral crystal size
and alignment, hydroxyapatite crystals are thinner and less well-aligned along collagen fibrils in OI
patients compared to controls, leading to decreased mechanical strength and consequent bone fragility.

Finally, ECM components provide a complex network of biochemical and physiological signals
to bone cells that contribute to bone homeostasis. In this way, TGFβ and Wnt signaling pathways
have been found to be major contributors to bone strength. Thus, the identification of different bone
disorders in which basal signaling of these pathways is altered, has been of crucial relevance in order
to decipher the role of TGFβ and Wnt pathways in bone strength.

All in all, the relative composition, organization and maturity of the mineral and organic bone
matrix, together with the cell-matrix signaling, determine the correct development, maintenance and
functionality of bone tissue.
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Abbreviations

advanced glycation end-products AGEs
bone mineral density BMD
bone morphogenetic proteins BMPs
Camurati–Engelman Disease CED
endoplasmic reticulum ER
extracellular matrix ECM
heat shock protein 47 Hsp47
latency-associated protein LAP
lipoprotein receptor-related protein 5 LRP 5
Loeys–Dietz syndrome LDS
lysyl hydroxylase 2 LH2
Marfan Syndrome MFS
matrix metalloproteinases MMPs
mitogen-activated protein kinase MAPK
noncollagenous proteins NCPs
osteocalcin OC
osteogenesis imperfecta OI
osteonectin ON
osteopontin OPN
osteoporosis-pseudoglioma syndrome OPPG
osteoprotegerin OPG
ovariectomized OVX
parathyroid hormone PTH
receptor activator of nuclear factor κβ ligand RANKL
runt-related transcription factor 2 Runx2
single nucleotide polimorfism SNP
transforming growth factor beta TGF-β
tissue inhibitors of metalloproteinases TIMPs
wingless-type mouse mammary tumor virus integration site family Wnt
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