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Abstract: Sjögren’s syndrome (SS) is a T cell-mediated autoimmune disease of the systemic exo-

crine glands, such as salivary and lacrimal glands. A variety of T-cell subpopulations maintain im-

mune tolerance in the thymus and periphery through complex immune responses including cellular 

and humoral immunity. The T-cell subpopulations exhibiting abnormal or unique phenotypes and 

impaired functionality have been reported to play important roles in the cellular mechanisms of 

autoimmunity in SS patients and animal models of SS. In this review, we focused on follicular 

helper T cells related to antibody production and regulatory T cells to control immune tolerance in 

the pathogenesis of SS. The unique roles of these T-cell subpopulations in the process of the onset 

or development of SS have been demonstrated in this review of recent publications. The clinical 

application of these T-cell subpopulations will be helpful for the development of new techniques 

for diagnosis or treatment of SS in the future. 
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1. INTRODUCTION 

 Sjögren’s Syndrome (SS) is an autoimmune disease that 
targets exocrine glands, such as lacrimal and salivary glands. 
The primary clinical symptoms are sicca syndrome, includ-
ing dry eyes and mouth [1, 2]. In addition, SS often accom-
panies other systemic autoimmune diseases, such as rheuma-
toid arthritis and lupus [3, 4]. Because SS has a complex 
pathogenesis, fundamental treatments for this disease have 
not yet been established [5].  

 SS is generally considered to be a T cell-mediated auto-
immune disorder of the salivary and lacrimal glands. Several 
autoantigens in SS in humans and in mouse models of SS 
have been reported [6-9], and the relationship between 
autoreactive T cells and autoantigens in SS has been 
described. Moreover, anti-SSA and anti-SSB autoantibodies 
are widely known to be clinically useful autoantibodies in SS 
[10]. It appears that T- and B-cell responses during the onset 
or development of SS are differentially and intricately 
regulated by the interaction and communication of a variety 
of immune cells.  

 Follicular helper T (Tfh) cells are specialized providers 
of T cell help to B cells and are essential for Germinal Center 
(GC) formation, affinity maturation, and production of high-
affinity antibodies [11-13]. Many studies have demonstrated  
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that Tfh cells influence various immune responses, including 
autoimmunity and infection, in addition to other T-helper 
cell subsets [14, 15]. Tfh cells are increased in the peripheral 
blood and target organs in SS patients, together with en-
hanced memory B and GCB cells [16-19]. Therefore, Tfh 
cells have been highlighted for understanding the pathogene-
sis of SS. 

 Regulatory T (Treg) cells are one of the central players in 
complex immune responses required to maintain immune 
homeostasis [20-22]. In particular, increasing evidence sug-
gests that Treg cells can suppress and control the autoimmune 
response to protect the body from autoimmune diseases in 
humans and in animal models [23-25]. It is also well known 
that Treg cells play potent roles in the onset and development 
of SS [26, 27]. 

 In this review focusing on the pathogenesis of SS, the 
significant involvement of Tfh and Treg cells is highlighted to 
understand the precise molecular mechanisms of the patho-
genesis of this disease.  

2. ABNORMAL T-HELPER CELL SUBSETS IN SS 

 CD4
+
 T helper cells play a crucial role in the pathogene-

sis of SS (Fig. 1). A large population of CD4
+
 T cells and 

small numbers of B cells, CD8
+
 T cells, macrophages, and 

dendritic cells infiltrate the target organs, such as salivary 
and lacrimal glands, during the early stages of SS [28, 29]. 
With aging and disease progression, the infiltration of B cells 
or plasma cells increases in the autoimmune lesions. The 
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majority of infiltrating CD4
+
 T cells exhibits a memory 

and/or activated phenotype in the salivary glands of SS pa-
tients [30-32]. The pathogenesis of SS is mediated by the 
Th1 derived responses [33, 34]. Moreover, elevated numbers 
of IFN-� positive CD4

+
 T cells are detected in the salivary 

glands of SS patients, and intracellular cytokine analysis 
demonstrated the polarization of a Th1 phenotype [35]. Fur-
thermore, interleukin (IL)-2 and IFN-� are consistently de-
tected in the target tissues form SS patients [36], whereas IL-
4 and IL-5 are only detected in patients with high levels of 
B-cell accumulation in the salivary glands [37]. Several stud-
ies have evaluated cytokine profiles produced by a variety of 
cell types in SS patients. Among them, IL-10, IL-6, and 
Transforming Growth Factor beta (TGF-�) are also consis-
tently detected in all patients, whereas IL-12 mRNA is only 
detected in some of the patients [38, 39]. Further, many re-
ports demonstrated that the pathogenesis of SS in animal 
models is associated with Th1 cytokine-producing cells [38, 
39]. 

 Th17 cells are characterized by production of the proin-
flammatory cytokine, IL-17 and have been implicated in 
various immune responses, such as autoimmunity [40-44]. 
Th17 cells are observed in the autoimmune lesions of the 
salivary gland tissues of SS patients [27, 45]. In addition, IL-
17 levels are significantly elevated in the sera of SS patients 
compared with that of the controls [46, 47]. Because Th17 
cells also can produce IFN-�, Th17 cells seem to play a criti-
cal role in the IFN-�-mediated pathogenesis of SS. Further-
more, IL-18 and IL-23 produced by salivary epithelial cells 

also contribute to the pathogenesis of SS, activating or regu-
lating Th17 cells [45].  

3. TFH CELLS IN SS 

 Recently, Tfh cells have been identified as a CD4
+
 T-cell 

subset capable of activating B cells in the lymphoid organs 
[11-14]. Tfh cells play a crucial role in the formation and 
maintenance of the GCs of secondary lymphoid organs and 
the regulation of B-cell differentiation of memory B cells 
and plasma cells [11-14]. Tfh cells may also contribute to B-
cell activation, as a hallmark of SS is the frequent associa-
tion of Tfh cells with autoantibody secretion (Fig. 1). In ad-
dition, GC formation may be of critical importance for fur-
ther clarification of the disease pathogenesis (Fig. 1). 

 Tfh cells highly express the CXC Chemokine Receptor 5 
(CXCR5), which is critical for homing and signaling [14, 
48]. Moreover, the phenotype of Tfh cells includes the ex-
pression of the surface receptor inducible T cell co-
stimulator and programmed cell death protein 1 (PD-1) as 
well as the nuclear transcriptional repressor B-cell lym-
phoma 6 (Bcl-6) [14, 49]. In addition, IL-21 is another key 
cytokine produced by Tfh cells [50]. IL-21 plays an impor-
tant role in B-cell differentiation and antibody production, in 
combination with other cytokines [14].  

 T cell-mediated autoimmune diseases have been well 
studied and demonstrated using several SS animal models 
and patients [33, 51-53]. However, it is unclear whether the 
B cell-dependent mechanisms contribute to the onset of auto-

 
Fig. (1). Tfh cells and Treg cells in SS. Tfh cells are found in ectopic GC of autoimmune lesions in SS. Increased infiltrates of Th1 and Th17 

cells are detected in the target tissues of SS. Patrolling Treg cells are significantly decreased in the target organs. In the draining lymphoid 

tissues of SS, Th1 and Th2 cells are increased. Expansion of Treg cells is impaired, and circulating Treg cells are reduced in SS. 
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immunity. Thus, there is little evidence for understanding the 
pathogenesis of autoimmune diseases via B cell-mediated 
mechanisms. However, autoantibodies from different auto-
immune diseases are probably related to the severity or 
symptoms of the disease [54, 55]. In this context, Tfh cells 
play an important role in the B-cell autoimmune responses. 
The presence of peripheral Tfh cells is one of the biomarkers 
of autoimmune diseases, such as myasthenia gravis, auto-
immune thyroiditis, rheumatoid arthritis, multiple sclerosis, 
systemic lupus erythematosus, type 1 diabetes, inflammatory 
bowel disease, and SS in both humans and animal models 
[17, 56-63]. 

 The ectopic GC formation is observed in the salivary 
gland tissues of SS patients by histological analysis (Fig. 
2a). CD3

+
 T cells including Tfh cells infiltrate within GC in 

addition to the accumulation out side GC in salivary gland 
tissue from SS patients (Fig. 2b). Ectopic GC formation has 
been associated with development and outcome of B cell 
lymphoma [64-66]. In addition, a previous study 
demonstrated that a large number of Tfh cells were detected 
in the peripheral blood of SS patients at the time of disease 
onset, with aberrations of serum anti-Ro/SSA and anti-
La/SSB levels. Moreover, CD4

+
CXCR5

+
Tfh cells are sig-

nificantly elevated in the salivary gland tissues and periph-
eral blood of SS patients, together with aberrant B cells and 
plasma cells. This suggests that CD4

+
CXCR5

+
Tfh cells con-

tribute to the pathogenesis of SS by promoting the matura-
tion of B cells [61].  

 IL-21 is a key regulator of B-cell activation and is 
primarily secreted by Tfh cells. Previous reports have indi-
cated that the number of Tfh cells is significantly increased 
in the peripheral blood and that the expression of the IL-
21/IL-21 receptor is elevated in the salivary glands of SS 
patients [17, 67]. Other studies have also suggested that IL-
21 plays a pathogenic role in the onset or development of 
other autoimmune diseases, such as systemic lupus erythe-
matosus and rheumatoid arthritis [68-70]. On the other hand, 
salivary gland epithelial cells are capable of promoting Tfh-
cell differentiation and IL-21 secretion through the produc-
tion of IL-6 and inducible T cell co-stimulator ligand expres-
sion [71]. Increased serum IL-21 levels in SS patients are 
associated with systemic disease activity [72]. Furthermore, 
IL-21 and IL-21 receptor gene polymorphisms are associated 
with an increased susceptibility to several autoimmune dis-
eases [73-76].  

 Bcl-6 expression in T cells has been reported to be essen-
tial for the formation of Tfh and GC B cells [14, 49]. Recent 
studies have described the mRNA expression levels of Bcl-6 
to be significantly higher in ectopic GC of the salivary gland 
tissues from SS patients [77]. In addition to CXCR5, CD84 
and PD-1 expression were also detected on infiltrating lym-
phocytes in the salivary gland tissues of SS patients [77]. 

4. Treg CELLS IN SS 

 Treg cells are a unique subset of T cells that play an im-
portant role in the maintenance of immune tolerance [78, 
79]. The expression of the transcription factor forkhead box 
p3 (Foxp3) is the genetic hallmark of Treg cells [80, 81]. 
Moreover, naturally occuring Treg (nTreg) cells arise as a dis-
crete and largely stable lineage in the thymus [21, 82]. The 
nTreg subset exhibits a T-cell Receptor (TCR) repertoire that 
is distinct from those of Foxp3

�
conventional T cells and in-

duced Treg (iTreg) cells [83]. In contrast to nTreg cells, iTreg 
cells can be formed from naïve CD4

+
 T cells in the presence 

of TGF-� and IL-2 outside the thymus [79, 84]. Studies us-
ing animal models have demonstrated that the adoptive 
transfer of iTreg cells generated from naïve T cells can pre-
vent the onset of autoimmune diseases [85-87]. Thus, the 
number and function of Treg cells, including nTreg and iTreg 
cells, are maintained in our body to prevent and control the 
breakdown of immunological tolerance (Fig. 1). 

 A simple animal model of Inflammatory Bowel Disease 
(IBD) has been well characterized by the adoptive transfer of 
CD25

�
 naïve T cells into lymphopenic mice, such as 

recombination-activating gene
�/�

, severe combined immu-
nodeficiency, or irradiated mice [88, 89]. Considerable evi-
dence suggests that an altered balance between Treg cells and 
T effector cells in the intestinal microenvironment contrib-
utes to the onset or development of IBD [90, 91]. In addition, 
several studies have shown that Treg cells are also present 
within non-lymphoid sites in the periphery, including auto-
immune lesions, infectious sites, and tumor tissues [92-94]. 
Depletion of Treg cells from normal mice by injecting anti-
CD25 antibodies can induce the spontaneous development of 
various autoimmune lesions [95-97]. Tissue-resident Treg 
cells in non-lymphoid sites other than peripherally circulat-
ing Treg cells also contribute to the maintenance of local im-
mune tolerance. 

 The numbers of peripheral Treg cells in SS patients is 
significantly reduced compared with healthy controls [98]. In 

     

Fig. (2). Ectopic GC formation in the salivary gland tissue from SS patients. (a) Inflammatory lesions including CG in the lip biopsy tissue 

from a SS patient is shown by histological staining with hematoxylin and eosin. A lot of lymphocytes infiltrate extensively in the salivary 

gland tissue with destruction of acinar cells. (b) CD3
+
 T cells in lip biopsy tissue from a SS patient are shown by immunohistochemistry. 

Scale bar: 200 μm. 
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contrast, it was reported that CD4
+
CD25

high
 Treg cells are not 

impaired in primary SS patients based on experiments in-
volving an in vitro suppression assay [99]. In addition, the 
frequency of Foxp3

+
 Treg cells in the salivary gland tissues 

from SS patients correlates with the inflammation grade and 
certain risk factors for the development of lymphoma [26]. 

 We previously established a murine model for SS in 
NFS/sld mutant mice that were thymectomized 3 days after 
birth [6, 100]. Neonatal thymectomy in certain strains of 
mice results in the spontaneous development of inflamma-
tory lesions resembling human autoimmune diseases in the 
thyroid gland, ovaries, kidneys, testes, and stomach [101-
106]. The ratio of Treg cells to effector T cells in the SS 
model was significantly lower than that of control mice 
[107]. In addition, the in vitro induction of iTreg cells by 
TGF-� using naïve T cells from the SS mouse model was 
severely impaired [107]. Moreover, Treg cells derived from 
mice with SS exhibited an IFN-�-producing Th1-like pheno-
type [107]. An in vivo transfer of Treg cells from the SS 
model was not sufficient to provide protection from the onset 
of autoimmune lesions in the murine model of SS [107]. 
These findings suggest that the abnormal expansion, differ-
entiation, and inflammatory cytokines producing by Treg cells 
contribute to the pathogenesis of SS (Fig. 1). 

 C-C-chemokine receptor 7 (CCR7)-deficient mice have 
been well characterized as one of the models of SS [108]. 
Autoimmune lesions are observed in the lacrimal and sali-
vary glands in CCR7

�/�
 mice, similar to that observed in SS 

[108]. The enhanced immune response observed in CCR7
�/�

 
mice is caused by the defective lymph node positioning of 
Treg cells and consequent suppressor function impairment of 
the Treg cells [109]. In addition, our study demonstrated that 
CCR7 particularly controls the patrolling functions of Treg 
cells by regulating their migration into target organs [93]. 
Furthermore, we found that the migratory function of 
CCRKO Treg cells was impaired in response to sphingosine 
1-phosphate (S1P), suggesting that CCR7 participates in the 
molecular mechanism underlying the migratory function of 
peripheral Treg cells through S1P and one of its receptors, 
S1P1 [110].  

 The impaired migratory response of CCR7
�/�

 Treg cells in 
response to S1P occurs because of a defective association 
between S1P1 and a G-coupled protein [110]. In addition, 
TCR- and S1P1-mediated Ras-related C3 botulinum toxin 
substrate 1, extracellular signal-related kinase, and c-Jun 
phosphorylation required for activator protein 1 (AP-1) tran-
scriptional activity were significantly impaired in CCR7

�/�
 

Treg cells [110]. We also detected an abnormal nuclear local-
ization of Foxp3 following the abrogation of c-Jun and 
Foxp3 interaction in the nucleus of CCR7KO Treg cells [110]. 
These results indicate that CCR7 controls the migratory 
function of Treg cells through S1P1-mediated AP-1 signaling. 
This pathway is regulated through the interaction of CCR7 
with Foxp3 in the nucleus, thereby protecting the body from 
autoimmunity. Moreover, the histopathological findings of 
the salivary gland tissues from SS patients revealed that the 
number of CCR7

+
Foxp3

+
 patrolling Treg cells in the healthy 

control samples was significantly increased compared with 
SS patients [93]. This finding indicates that CCR7

+
 Treg cells 

patrol within the target organs of the salivary and lacrimal 
glands to protect against autoimmune lesions.  

 Recently, it has been reported that an IL-17-producing 
CD161

+
CD25

�
CD4

+
 T-cell subpopulation as effector cells 

and a CD161
+
CD25

+
CD4

+
 T-cell subpopulation as 

regulatory cells in peripheral blood mononuclear cells 
(PBMCs) from SS patients are related to the clinical severity 
of the pathogenesis of SS [111]. Compared with healthy con-
trols, a significant increase in the number of 
CD161

+
CD25

+
CD4

+
 T cells was also observed in PBMCs 

from SS patients [111]. In addition, the function of this 
unique regulatory cell population in SS patients is more im-
paired than that of CD161

�
CD25

+
CD4

+
 Treg cells [111]. 

5. RELATIONSHIP BETWEEN TFH AND Treg CELLS 

 Although IL-2 inhibits the differentiation and 
development of Tfh cells, the differentiation, maintenance, 
and function of Treg cells are promoted by IL-2 signaling 
[112, 113]. However, CXCR5-expressing T follicular regula-
tory cells control Tfh and GC B cell responses [114-116]. In 
addition, the depletion of Treg cells impairs the differentia-
tion of influenza virus-specific Tfh cells [117]. Treg cells may 
promote antigen-specific GC responses by controlling exces-
sive IL-2 signaling, which inhibits the differentiation of Tfh 
cells. However, direct evidence of the relationship between 
Tfh and Treg cells remains to be defined. In particular, it is 
unclear whether the direct or indirect interaction between 
Tfh and Treg cells influences the onset or development of 
autoimmune diseases, such as SS. 

CONCLUSION 

 SS is caused by multiple factors via the complex interac-
tion between the immune system and the target organs. Al-
though the precise mechanisms of the onset or development 
of SS remain unclear, the phenotypes or functions of Tfh and 
Treg cells in human SS patients and animal models of SS are 
abnormal or unique (Fig. 1). As these cells contribute to the 
regulation of SS pathogenesis, the clinical defection or ma-
nipulation of their cells would be expected to aid in the de-
velopment of new diagnosis techniques or treatment strate-
gies for SS.  
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