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A B S T R A C T

Background: Chondrons are composed of chondrocytes and the surrounding pericellular matrix (PCM) and
function to enhance chondrocyte-mediated cartilage tissue engineering. This study aimed at investigating the
potential effect of combined chondrocytes with chondrons on the production of proteoglycan and collagen-II (Col-
2) and the repair of defective knee cartilage in rabbits.
Methods: Chondrocytes and chondrons were isolated from the knee cartilage of rabbits, and cultured alone or co-
cultured for varying periods in vitro. Their morphology was characterized by histology. The levels of aggrecan
(AGG), Col-2 and glycosaminoglycan (GAG) expression were quantified by qRT-PCR, Alcian blue-based precipi-
tation and ELISA. The effect of combined chondrocytes with chondrons in alginate spheres on the repair of
defective knee cartilage was examined in rabbits.
Results: The isolated chondrocytes and chondrons displayed unique morphology and began to proliferate on day 3
and 6 post culture, respectively, accompanied by completely degenerated PCM on day 6 post culture. Evidently,
chondrocytes had stronger proliferation capacity than chondrons. Longitudinal analyses indicated that culture of
chondrons, but not chondrocytes, increased AGG mRNA transcripts and GAG levels with time and Col-2 mRNA
transcripts only on day 3 post culture. Compared with chondrocytes or chondrons alone, co-culture of chon-
drocytes and chondrons significantly up-regulated AGG and Col-2 expression and GAG production, particularly at
a ratio of 1:1. Implantation with chondrocytes and chondrons at 1:1 significantly promoted the repair of defective
knee cartilage in rabbits, accompanied by reduced the Wakiteni scores with time.
Conclusion: Combined chondrons with chondrocytes promoted the production of extracellular matrix and the
repair of defective knee cartilage in rabbits.
The translational potential of this article: This study explores that the combination of chondrons and chondrocytes
may be new therapeutic strategy for cartilage tissue engineering and repair of defective cartilage.
1. Introduction

Articular cartilage is a unique connective tissue and functions to help
the join movement by transmitting the movement-related loads. Because
it is prone to injury and difficult to repair, many peoples suffer from
articular cartilage damage. Even in young and middle-aged patients, the
trauma-related articular cartilage is usually difficult to be treated and can
seriously affect their life quality. The advance in tissue engineering
technology has led new therapeutic strategies to promote cartilage repair
and regeneration. However, it is well known that chondrocytes are prone
to dedifferentiation during the process of cartilage repair in vitro [1,2].
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The dedifferentiated chondrocytes usually lose some properties, leading
to a poor cartilage repair. This, together with degeneration of the
repaired tissues, becomes a major problem to restrict the clinical appli-
cation of tissue engineering [3,4]. In addition, which types of cells for
implantation and how to protect from their degeneration have not been
clarified.

Chondrocytes are commonly used as the seed cells for cartilage en-
gineering and they usually need to be expanded in vitro before implan-
tation due to the limited resource of cartilage tissues. However,
chondrocytes cultured in vitro can lose their differentiated phenotypes
and cellular mechanical properties with a reduced anabolic capacity [5].
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Chondrocytes are the unique type of cells in articular cartilage tissues and
surrounded by the pericellular matrix (PCM). The PCM is specific
extracellular matrix (ECM) and composed of type VI and IX collagens,
perlecan, hyaluronan, aggrecan monomers, biglycan, and other small
aggregates and other components [6]. These molecules, together with the
enclosed chondrocytes, form the “chondron” [7]. Because the PCM is a
circular matrix surrounding chondrocytes, it is theoretically an important
“medium” for the functions of chondrocytes [8]. Previous works have
shown that the PCM in the cell–matrix interface acts as a sensor of reg-
ulatory signals from the environment [9,10] and is crucial for the spatial
organization and functions of superficial chondrocytes [11,12]. As a
result, the PCM naturally forms a protective layer for the enclosed
chondrocytes from physical and osmotic damages to modulate their
biosynthetic responses [13,14]. Moreover, its interactions with Col-6 in
the PCM surrounding the cells can support the survival of chondrocytes
[15]. However, the roles of articular chondrons, especially for the PCM,
in the functions of rabbit chondrocytes are not fully understood [16].

Our previous study and those of others have shown that chondrons
with the intact PCM can be obtained from rabbit articular cartilage by
sequentially enzymatic digestions using dispase and type II collagenase
[17,18]. With a modified in vitro chondron microtubule suction me-
chanical analysis model, we found that freshly digested chondrons had
high biomechanical properties, which were declined with aging [19],
indicating that chondrons had better mechanical advantages in tissue
engineering cartilage and repair [20]. It is notable that growth factors,
such as osteogenic protein-1 (OP-1) [21], tumor growth factor beta 1
(TGF-β1) [22], insulin-like growth factor-1 (IGF-1) [21] and others, and
continual mechanical stimulation in the chondrocyte culture environ-
ment can promote the formation of the PCM [23]. The Col-6 component
in the PCM generated by hydrogel-embedded chondrocytes in culture has
potential implications for the success of tissue engineering [24].
Accordingly, we hypothesize that chondrons, including the wrapped
chondrocytes as a whole, can have better biological properties to pro-
mote the repair of articular cartilage defects.

This study aimed to explore the effects of chondrocyte/chondron co-
culture on the morphology, proliferation and matrix synthesis in chon-
drocytes in vitro and on the repair of articular cartilage defects in vivo.

2. Methods

2.1. Animals

New Zealand White rabbits (two-month-old, n ¼ 18) were obtained
from Shanxi Medical University Experimental Animal Center and housed
in a specific pathogen-free roomwith normal rabbit chow andwater. This
study was approved by the Institutional Animal Care and Use Committee
of Shanxi Medical University.
2.2. Isolation of chondrocytes and chondrons

Rabbit chondrocytes and chondrons were isolated, as a previous
report [20]. In brief, the rabbits were anesthetized with xylazine (2
mg/kg body weight) and euthanized by decapitation. Their full-thickness
articular cartilages were dissected from their femoral condyles and tibial
plateau of the knee joints. The chondrocytes were isolated from cartilage
tissues by sequential enzymatic digestions with 14 U/mL pronase (Sigma,
St. Louis, Missouri, USA) in Dulbecco’s Modified Eagle Medium-F12
(DMEM-F12, HyClone, Beijing, China) at 37 �C for 90 min and then
with 31.25 U/mL collagenase-2 (Sigma) in DMEM-F12 at 37 �C overnight
(about 10–12 h). Chondrons were isolated by enzymatic digestions using
30 U/mL dispase (Sigma) and 250 U/mL collagenase-2 (Sigma) in
DMEM-F12 at 37 �C with shaking for 3 h. The digested tissue products
were filtered through an 100-μm nylon cell strainer (BD, Franklin Lakes,
New Jersey, USA) and centrifuged. The isolated chondrocytes and
chondrons were collected, respectively.
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2.3. Culture of chondrocytes with chondrons and histology

The isolated chondrocytes and chondrons (2 � 105 cells/well) were
cultured in 6-well plates in DMEM/F12 medium with 10% fetal bovine
serum (FBS, HyClone) at 37 �C and 5% CO2 for 1, 3, 6, and 9 days,
respectively. The cultured monolayer chondrocytes and chondrons on
glass slides were fixed in Acetone for 10 min, stained with hematoxylin
(3 min) and eosin (3 min). The morphological characteristics of chon-
drocytes and chondrons were observed by phase-contrast microscopy. In
addition, chondrocytes and chondrons (2� 105 cells/well) were cultured
alone or mixed at a ratio of 2:1, 1:1 and 1:2, respectively for 6 days.
2.4. Glycosaminoglycan (GAG)

The levels of GAG released from the cultured chondrocytes and/or
chondrons (n ¼ 6 per group) were determined by Alcian blue-based
precipitation [25]. Briefly, the proteins in cell culture supernatants and
control media (100 μl each, in triplicate) were denatured with
guanidine-HCl, sulfuric acid, Triton X-100 and the contained GAG was
precipitated by Alcian blue solution (74,240, Chroma-Gesellschaft,
K�ongen, Germany) at 4 �C for 1 h. The precipitants in individual tubes
were high-centrifuged. After being washed, the pallets were solved with
guanidine-HCl/propanol solution, which were measured for the absor-
bance at 600 nm in a microplate reader. The levels of GAG in individual
samples were determined by a standard curve established using the
different concentrations of GAG.
2.5. Enzyme-linked immunosorbent assays (ELISA)

The levels of Col-2 in the supernatants of cultured cells were quan-
tified by ELISA using the Rabbit-collagen type II ELISA Kit (E10H2107,
R&D System, USA), according to the manufacturer’s protocol. Briefly, the
supernatants of different groups (n ¼ 6 per group) of cultured cells were
tested simultaneously in duplicate. The levels of Col-2 in individual
samples were quantified using a standard curve established with the
different concentrations of Col-2 provided [26,27].
2.6. MTT assay

The viability and proliferation of chondrocytes and chondrons were
examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay [28]. Briefly, chondrocytes and chondrons (5 � 103

cells/well) were cultured in triplicate in 96-well plates in DMEM/F12
medium for 1, 3, 6, and 9 days. During the last 4-h culture, individual
wells were added with MTT solution (M1020, Beijing Solarbio Science &
Technology, China) and the generated formazan was dissolved in DMSO,
followed by measuring their absorbance at 490 nm.
2.7. Quantitative real-time PCR (qRT-PCR)

The relative levels of aggrecan (AGG) and Col-2 to the control GAPDH
mRNA transcripts were quantified by qRT-PCR [29]. Briefly, we extrac-
ted total RNAs from the different groups of cells using Trizol reagent (15,
596–026, Invitrogen) and reversely transcribed them into cDNA using
the iScript™ cDNA Synthesis Kit (K1642, Fermentas, MD, USA). Subse-
quently, we quantified the relative levels of AGG and Col-2 mRNA
transcripts using the QuantiTect SYBR Green PCR Kit (K0251, Fermentas)
and specific primers. The primer sequences were AGG: Forward
50-TCTACCGCTGTGAGGTGATGC-30 Reverse 50-TTCACCACGAC-
CTCCAAGG-30, Col-2: Forward 50-ACACTGCCAACGTCCAGATG-30

Reverse 50-GTGATGTTCTGGGAGCCCTC-30; GAPDH: Forward
50-GGTGAAGGTCGGAGTGAACG-30, Reverse 50-AGTTAAAAGCAG-
CCCTGGTGA-30. Data were analyzed by 2�ΔΔCt.



Table 1
The modified Wakitani histological scoring system for evaluation of cartilage
repair.

Category Points

Cell morphology
Hyaline cartilage 0
Mostly hyaline cartilage 1
Mostly fibrocartilage 2
Mostly non-cartilage 3
Non-cartilage only 4

Matrix-staining intensitya

Normal (compared with host adjacent cartilage) 0
Slightly reduces 1
Markedly reduced 2
No metachromatic stain 3

Surface regularityb

Smooth (>3/4) 0
Moderate (1/2 to 3/4) 1
Irregular (1/4 to 1/2) 2
Severely irregular (<1/4) 3

Thickness of cartilagec

>2/3 0
1/3 to 2/3 1
<1/3 2

Integration of donor with host adjacent cartilage
Both edges integrated 0
One edge integrated 1
Neither edge integrated 2
Total maximum 14

a Metachromasia matrixes including proteoglycan staining intensity by
Safranin O and Col-2 immunohistochemistry staining compared with host adja-
cent cartilage

b Total smooth area of the reparative cartilage compared with the entire area of
the cartilage defect

c Average thickness of the reparative cartilage compared with that of the
surrounding cartilage.
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2.8. Cell encapsulation in alginate spheres

The cell encapsulation in alginate was prepared as described previ-
ously [30]. Briefly, chondrocytes, chondrons and chondrocytes/chon-
drons (1:1) were suspended in 1.2% alginate in 0.15 M NaCl at 5.8 � 106

cells/ml and dropped into a 102 mM CaCl2 solution to form different
spheres that were extensively washed.

2.9. A rabbit model of osteochondral defects

A rabbit model of osteochondral defects was generated, as described
previously [31]. Briefly, New Zealand white rabbits (four-month-old, n
¼ 30) were anesthetized with xylazine (2 mg/kg body weight) and
maintained with 10% chloral hydrate (1.0 ml/kg). The animals were
subjected to a medial parapatellar incision in the right knee joint, and
their cartilages were drilled to form a hole (4.0 mm in diameter and 3mm
in depth) in the trochlear center of femurs. The hole in individual rabbits
was filled with, or without, different groups of alginate spheres (n ¼ 10
per group), followed by suturing its skin. The animals were injected
intramuscularly with Penicillin daily for three consecutive days. At 6 and
12 weeks post operation, five rabbits from each group were euthanized
and their femoral trochlear grooves were dissected for subsequent
experiments.

2.10. Histologic evaluation

The femoral trochlear groove tissues were routinely fixed, decalcified
for 4 weeks, and paraffin-embedded. The sagittal sections (5 μm) were
routinely stained with haematoxylin and eosin or Safranin O. In addition,
the sections were subjected to immunohistochemistry using anti-Col-2
(1:200). The tissue repairs in the defect areas of each rabbit were eval-
uated for cell morphology, matrix staining, surface regularity, cartilage
thickness, and the donor integration in the recipients using the modified
Wakitani grading system [32,33] with a score range of 0–14. The lower
the score, the better the repair effect (Table 1). The scoring was per-
formed in a blinded manner by two observers, and there was no signif-
icant interobserver difference.

2.11. Statistical analysis

Data are present as mean � standard deviation (SD). The difference
between the groups was analyzed by analysis of variance (ANOVA) using
SPSS 13.0 software (SPSS, USA). Statistical significance level (α) was set
at 0.05.

3. Results

3.1. Characterization of rabbit chondrocytes and chondrons

To understand the role of chondrons in the function of chondrocytes,
rabbit chondrocytes and chondrons were isolated and cultured for
varying periods. Following culture for one day, both chondrocytes and
chondrons were small and rounded. Due to the PCM surrounding chon-
drocytes, the chondrons was still rounded at 3 days post culture, whereas
the chondrocytes displayed like fibroblasts with sharp spindles on day 3
post culture. When the PCM is completely degraded, the chondrons also
displayed like fibroblasts with sharp spindles on day 6 post culture. The
number of adherent cells in the cultured chondrons decreased signifi-
cantly, compared to chondrocyte on day 3 and 6 post culture (Fig. 1A).

MTT assays indicated that the chondrocytes began their proliferation
on day 3 post culture and gradually increased with the prolonged culture
time periods while the chondrons appeared to increase their OD values
on day 6 post culture, which were further greater at a later time (Fig. 1B).
As a result, the proliferation of chondrocytes was significantly stronger
than that of chondrons on day 3, 6 or 9 post culture. Furthermore, qRT-
PCR revealed that while there was a similar level of AGG mRNA
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transcripts in the cultured chondrocytes significantly higher levels of
AGGmRNA transcripts were detected in the cultured chondrons on day 6
and 9 post culture (Fig. 2A). In contrast, we detected very low levels of
Col-2 mRNA transcripts in the different groups of cells, except for a
dramatically higher level of Col-2 mRNA transcripts in the chondrons on
day 3 post culture (Fig. 2B). Moreover, Alcian blue-based precipitation
detected gradually increased levels of GAG in the supernatants of
cultured chondrocytes and chondrons beginning on day 3 post culture
(Fig. 2C). ELISA detected similarly low levels of Col-2 in the supernatants
of cultured chondrocytes and chondrons (Fig. 2D). Together, such data
indicated both rabbit chondrocytes and chondrons exhibited their bio-
logical characteristics in vitro.
3.2. Co-culture of chondrocytes with chondrons enhances the extracellular
matrix production in vitro

It is well known that chondrons can support the function of chon-
drocytes [34]. To determine the role of rabbit chondrons, we co-cultured
chondrocytes with chondrons for 6 days. We found that while culture of
chondrocytes or chondrons alone only promoted low levels of AGG
mRNA transcription co-culture of chondrocytes with chondrons at a ratio
of 2:1 or 1:1 significantly increased the relative levels of AGG mRNA
transcripts (Fig. 3A). The highest levels of AGG mRNA transcripts were
detected in the co-cultured cells at 1:1. A similar pattern of Col-2 mRNA
transcripts was observed among these groups of cells (Fig. 3B). In com-
parison with that in the chrondrocytes or chondrons alone, Alcian
blue-based precipitation detected significantly higher levels of GAG in
the supernatants of co-cultured chondrocytes and chondrons, particularly
for those with a ratio of 1:1 (Fig. 3C). However, ELISA revealed that there
was no significant difference in the levels of Col-2 in the supernatants of
cultured cells, regardless of their culture alone or co-culture (Fig. 3D).



Figure 1. Morphological characterization of rabbit chondrocytes and chondrons. The isolated chondrocytes and chondrons were cultured for the indicated time
periods and stained by H&E (A). The upper rows: Chondrocytes: The lower rows: Chondrons. Scale bar ¼ 5um (B) MTT analysis of the proliferation of chondrocytes
and chondrons at days 1, 3, 6 and 9 post culture (n ¼ 30). *P < 0.05 vs. the chondron group.

Figure 2. Analysis of mRNA transcripts, GAG and Col-2 production in rabbit chondrocytes and chondrons.
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3.3. Implantation of both chondrocytes and chondrons significantly
accelerates the repairs of cartilage defects in rabbits

To explore the role of chondrons and chondrocytes in the repairs of
cartilage defects, we induced knee cartilage defects in rabbits and
implanted with chrondrocytes/alginate, chondrons/alginate or chon-
drocytes/chondrons/alginate spheres, respectively (Fig. 4A). Six weeks
later, we examined the repairs of defective knee cartilage in individual
rabbits by histology and immunohistochemistry. As shown in Fig. 4B, the
defective areas in the chondrocytes/chondrons group were filled with
cartilage matrix whereas those in the chondrocyte or chondron group
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were filled with a little cartilage matrix formation, rather with fibrous
tissues. At 12 weeks post implantation, the cartilage matrix regenerated
to cover all defective areas in the chondrocytes/chondrons group. In
contrast, there was a little cartilage regeneration in the defective areas of
the chondrocyte or chondrons group, accompanied by high levels of Col-
2 expression, particularly in the chondron group (Fig. 4C). Quantitative
analysis of cartilage repairs by the Wakitani score system revealed that in
comparison with the chondrocyte group at 6 weeks post implantation,
significantly reduced Wakitani scores were detected in the chondron
group and the scores further significantly decreased in the chondrocyte/
chondron group (Fig. 4D). Furthermore, the Wakitani scores were also



Figure 3. Analysis of mRNA transcripts, GAG and Col-2 production following co-culture of rabbit chondrocytes and chondrons in vitro.
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significantly reduced in the chondrocyte group at 12 weeks post im-
plantation, a hallmark of continual cartilage self-repair in the defective
region of rabbits. Similarly, the Wakitani scores further significantly
decreased in the chondron or chondrocytes/chondrons group, particu-
larly in the combination group at 12 weeks post implantation. Collec-
tively, such data indicated that implantation of both chondrocytes and
chondrons accelerated the knee cartilage repair in rabbits.

4. Discussion

The cultured chondrocytes in vitro usually undergo degeneration by
changing its Col-2, Col-11 and proteoglycan into Col-1, Col-3 and Col-5
expression, gradually becomes fibroblasts [35]. Chondrons are mainly
composed of chondrocytes and surrounding PCM, and function to sup-
port the chondrocyte-related articular cartilage regeneration [36–39]. In
this study, we isolated chondrocytes and chondrons from rabbit knee
cartilage by sequential enzymatic digestions and we found that after
culture, both chondrocytes and chondrons displayed their unique
morphology and biological characteristics, consistent with our previous
report [20].

The PCM is primarily composited of Col-6 surrounding chondrocytes
and crucial for cartilage tissue engineering [40,41]. We found that the
isolated chondrons displayed a round shape up to 3 days post culture,
suggesting that the PCM surrounded the chondrocytes. In contrast, the
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isolated chondrocytes were present as fibroblast-like morphology on day
3 post culture with obvious proliferation. The PCM in the cultured
chondrons degraded on day 6 post culture, which led to the proliferation
of the enclosed chondrocytes. Such data suggest that the chondron may
be used as seeding cells, together with chondrocytes, for cartilage
engineering.

The PCM in the chondrons provides a microenvironment for gene
expression and metabolism in chondrocytes [42–44]. Actually, Vonk
et al. [45] found that chondrons expressed higher levels of Col-2, but
lower Col-1 than chondrocytes, which may stem from the inhibition of
the PCM on lipid peroxidation on the cell membrane surface to reduce
active oxidation, leading to increased Col-2 and Col-6 expression and
metabolism in chondrocytes and attenuating their hypertrophy and
dedifferentiation [46,47]. Although the numbers of chondrons were less
than that of chondrocytes, we observed that the relative levels of AGG
expression in the cultured chondrons were significantly higher than that
in the chondrocytes. Furthermore, we detected similar levels of GAG and
Col-2 in the supernatants of cultured chondrons and chondrocytes.
Hence, chondrons may promote the gene expression of chondrocytes and
delay their degeneration, benefitting matrix synthesis. When the
composition of the PCM changes, the chondrons will degrade, causing
the dedifferentiation of chondrocytes [48,49]. Thus, optimal culture of
chondrocytes and chondrons to expand them may be valuable for carti-
lage engineering in vivo.



Figure 4. Histological and immunohistochemistry analysis of the repairs of defective knee cartilage in rabbits.

W. Duan et al. Journal of Orthopaedic Translation 28 (2021) 47–54
Recent works have shown that co-culture of human chondrons with
MSCs produces more cartilage ECM than that in the co-cultured chon-
drocytes with MSCs [50,51]. In this study, we found that co-culture of
chondrons with chondrocytes, particularly at a ratio of 1:1, significantly
elevated the levels of AGG and Col-2 expression and GAG production in
vitro, suggesting that co-culture of them at a good ratio may promote
chondrogenesis. These results extended a previous observation that
co-culture of MSCs with chondrons increases the deposition of ECM [41,
52].

Chondrocytes embedded in alginate exhibited a rounded morphology
and a PCM feature [34]. This suggests that chondrocyte/alginate spheres
even with genetically modified chondrocytes can be implanted into the
defective regions of osteochondral articular cartilage to promote the
repair of defective cartilage in vivo [30]. Recent studies have shown that
co-administration of chondrons and adipose-derived stem cells or MSCs
increases articular hyaline cartilage formation [53,54]. In this study, we
found that implantation with chondrons/chondrocytes alginate spheres
significantly accelerated the repairs of defective knee cartilage in rabbits
by increasing the cartilage matrix and thicknesses, and reducing the
Wakitani scores in a trend of time-dependence. Such data indicated that
implantation of both chondrocytes and chondrons may be a new strategy
for intervention of defective knee cartilage. We are interested in further
investigating the molecular mechanisms underlying the action of this
therapy in accelerating the repairs of defective knee cartilage.

5. Conclusions

This study indicated that rabbit chondrons expressed higher levels of
proteoglycan and Col-2 than chondrocytes. Co-culture of chondrons with
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chondrocytes, particularly at a ratio of 1:1, significantly elevated AGG,
Col-2 and GAG production in vitro and implantation of chondrons/
chondrocytes alginate spheres significantly accelerated the repairs of
defective knee cartilage in rabbits by increasing the cartilage matrix and
thicknesses, and reducing the Wakitani scores. Therefore, combination of
chondrons and chondrocytes may be a new therapeutic strategy for
cartilage tissue engineering and repair of defective cartilage.
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Following culture for varying periods, the relative levels of AGG (A, n
¼ 4) and Col-2 (B, n ¼ 4) mRNA transcripts were quantified by qRT-PCR
and the levels of GAG (C, n ¼ 6) and Col-2 (D, n ¼ 6) in the supernatants
of cultured chondrocytes or chondrons were measured by precipitation
with Alcian Blue and ELISA respectively. Data are expressed as the
means � SD of each group of cells from three separate experiments. *P <

0.05 vs the chondrocytes; #P < 0.05 vs. the chondrocytes on day 1 post
culture; &P < 0.05 vs. the chondrocytes on day 3 post culture; xP < 0.05



W. Duan et al. Journal of Orthopaedic Translation 28 (2021) 47–54
vs. the chondrocytes on day 6 post culture.
Rabbit chondrocytes and chondrons were cultured alone or co-

cultured at a ratio of 2:1, 1:1 or 1:2 for 6 days. The relative levels of
AGG (A, n¼ 4) and Col-2 (B, n¼ 4) mRNA transcripts were quantified by
qRT-PCR and the levels of GAG (C, n ¼ 6) and Col-2 (D, n ¼ 6) in the
supernatants of cultured chondrocytes or chondrons were measured by
precipitation with Alcian Blue and ELISA respectively. Data are expressed
as the means� SD of each group of cells from three separate experiments.
*P < 0.05, #P < 0.05 vs. the chondrocytes or chondrons alone,
respectively.

A, Cell encapsulation in alginate spheres and implanted into the
osteochondral defective knee in rabbits. B, HE, safranin O, and Col-2
immunohistochemical staining at 6 weeks post implantation. C, HE,
safranin O, and Col-2 immunohistochemical staining at 12 weeks post
implantation. Scale bar ¼ 2 mm. D, Modified Wakitani scores among 3
groups at 6 and 12 weeks post implantation. #P < 0.05 vs. the chon-
drocyte group;＆P< 0.05 vs. the chondron group; xP< 0.05 vs. the same
group at 6 weeks post implantation. A total of five defect specimens in
each group at each time point, and 3 sections of each sample were
analyzed.
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