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There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in
the replication and propagation of viruses. Expression or targeting of host miRNAs can
be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-
cycles and promote infection through complex regulatory pathways. miRNAs can also
be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share
common sequences with host miRNAs or have totally different sequences. They can
regulate a variety of biological processes involved in viral infection, including apoptosis,
evasion of the immune response, or modulation of viral life-cycle phases. Overall,
virus/miRNA pathway interaction is defined by a plethora of complex mechanisms,
though not yet fully understood. This article review summarizes recent advances and
novel biological concepts related to the understanding of miRNA expression, control
and function during viral infections. The article also discusses potential therapeutic
applications of this particular host–pathogen interaction.

Keywords: microRNAs, viral microRNAs, virus life cycle, gene expression, clinical perspectives

BACKGROUND

To date, different classes of regulatory small-RNAs have been identified which differ in their
biogenesis, length, and tissue distribution (Ghildiyal and Zamore, 2009; Kim et al., 2009). Among
the small RNAs are microRNAs (miRNAs). miRNAs are involved in the control of a broad range
of cellular activities, such as development, immune function, and cell death (Sayed and Abdellatif,
2011). Genes can encode single miRNAs or clusters of two or more miRNAs, which are processed
from common primary transcripts, called pri-miRNAs (Lee et al., 2004). The pri-miRNAs are
processed by the nuclear RNAse III endonuclease DROSHA to generate intermediate precursors
of about 70 nucleotides (nt) in length, named pre-miRNAs. The pre-miRNAs are further processed
by the cytoplasmic RNAse III endonuclease Dicer to generate mature miRNAs of about 22 nt in
length. Proteomic analyses revealed the presence of several RNA-binding proteins that regulate
miRNA biogenesis (Gregory et al., 2006; Guil and Caceres, 2007; Trabucchi et al., 2009; Suzuki
et al., 2011) in both physiological and pathological contexts (Frezzetti et al., 2011; Abdelmohsen
et al., 2012; Repetto et al., 2012; Emde et al., 2015; Hata and Lieberman, 2015).

Mature miRNAs are loaded into Argonaute proteins (mainly AGO2) to form the miRNA-
induced silencing complex (miRISC) (Ha and Kim, 2014). One strand of the mature miRNA
(the guide strand) targets mRNAs to promote degradation or translational blockade in the
Processing-Bodies (Kulkarni et al., 2010). Canonically, miRNAs target the 3′ untranslated
region (3′-UTR) or the coding sequence (CDS) of mRNAs by base pairing with nucleotides
2–7 of the miRNA 5′ end, which is called the seed-sequence (Lewis et al., 2003, 2005;
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Brennecke et al., 2005; Friedman et al., 2009; Pasquinelli, 2012).
Some studies claim, however, that about 60% of miRNA binding
activity is non-canonical, and involves portions of miRNA
sequences located outside of the seed and/or with seed-like motifs
including mismatches or bulges (Chi et al., 2012; Helwak et al.,
2013).

MicroRNAs were shown to play a role in the replication
and propagation of viruses, including cellular antiviral responses
and/or in the promotion of viral infections through complex
regulatory pathways. It was also shown that miRNAs encoded by
viral genomes can be expressed in host cells and participate in
the lifecycle and in the cellular consequences of infection. This
article review focuses on recent advances in the understanding of
miRNA expression and function during viral infections, aiming
at providing insights into their role in the pathogenesis of these
infections. The article also discusses future directions for research
and clinical use of miRNAs as antiviral agents.

VIRUSES INDUCE HOST miRNAs AND
REGULATE THEIR TURNOVER AND
FUNCTION

In early phases of viral infections, innate sensors of host cells
detect viral products and initiate signal cascades involved in the
antiviral responses. Antiviral miRNAs are components of this
response. Some viruses have the capacity of manipulating host
miRNAs into escaping an antiviral response or to promote viral
infection.

Viral Infections Can Induce the
Transcription of Host miRNAs Involved in
the Antiviral Response
To initiate and maintain an antiviral innate response while
the more specific adaptive response takes place, cells have
developed a microbial pathogen recognition system based on
pathogen recognition receptors (PRRs). PRRs, which include
Toll-like receptors (TLRs), retinoic acid-inducible gene I-like
receptors and Nod-like receptors, recognize a broad spectrum
of motifs common to viral pathogens and this recognition
activates a downstream antiviral cascade that includes miRNAs
(Li and Shi, 2013). For instance, in hepatitis C virus (HCV)-
infected hepatocytes, type I interferon (IFNα/β) production
caused by endosomal TLR activation rapidly modulates the
expression of numerous host miRNAs, including miR-196, miR-
296, miR-351, miR-431 and miR-448, that target the HCV RNA
genome with the aim to inhibit viral replication (Pedersen et al.,
2007).

Virus-dependent activation of PRRs can also induce the
expression of miRNAs able to promote innate immunity
through a positive feedback regulatory loop. In an infection
by the vesicular stomatitis virus (VSV), miR-155 and miR-223
expression is induced in macrophages through a RIG-I/JNK/NF-
κB-dependent pathway. MiR-155 expression is also induced in
an infection with Epstein–Barr virus (EBV) in B-cell lymphomas
(Figure 1), by a mechanism involving the Activator protein 1

(AP1) transcription factor and DNA hypomethylation (Yin et al.,
2016).

In turn, both miRNAs promote the type I IFN-mediated
antiviral response by suppressing cytokine signaling 1 (SOCS1)
(Wang et al., 2010) and FOXO3 (Chen et al., 2016), respectively.
Another example of SOCS1 suppression was observed in
patient developing dengue hemorrhagic fever (DHF) and this
suppression is associated with elevated levels of miR-150 in
CD14+monocytes infected with DENV2 (Chen et al., 2014).

Viral Infections Can Inhibit the
Maturation of Host miRNAs Involved in
the Antiviral Response
The role played by miRNAs in antiviral defenses can be
counteracted by viruses that deploy specific virulence factors,
referred to as viral suppressors of RNA silencing (VSRs), which
target several components of the host silencing machinery
including small RNA processing, stability and activity via AGO
effectors (Wu et al., 2010). The 2b protein of the cucumber mosaic
virus (CMV) inhibits AGO1 slicer function independently of its
dsRNA-binding activity (Feng et al., 2013), while the p19 protein
of the tomato bushy stunt virus (TBSV) inhibits miRISC loading
activity by binding to small double-stranded (ds)RNAs (Lakatos
et al., 2006). These mechanisms promote viral replication.

Flaviviruses, which are single-stranded (ss) positive-RNA
viruses, interfere with the miRNA processing machinery through
an accumulation of the non-coding (nc) subgenomic flavivirus
RNA (sfRNAs) that induces sequestration of the dsRNA binding
proteins Dicer and AGO2 (Moon et al., 2015). This viral strategy
is put in place by different flaviviruses, including Murray valley
encephalitis virus (MVEV), Japanese encephalitis virus (JEV),
West nile virus (WNV), Yellow fever virus (YFV), and Dengue
virus (DENV) (Schnettler et al., 2012; Bavia et al., 2016).

An indirect regulation of miRNA biogenesis has been
observed in HeLa cells infected by vaccinia virus (VACV),
a member of the Poxviridae family with a linear double-
stranded DNA genome. VACV abrogates the expression of Dicer
independently of VACV decapping enzymes via a mechanism
that remains to be clarified (Grinberg et al., 2012) (Figure 1).

Viral Infections Can Accelerate the
Degradation of Host miRNAs Involved in
the Antiviral Response
Different viruses encode ncRNAs that contain sequences
complementary to those of host miRNAs, thereby promoting
their degradation. The γ-herpesvirus saimiri (HVS) expresses
a small U-rich ncRNA, HSUR 1, which contains a sequence
complementarity to miR-27 (Cazalla et al., 2010). Binding
with HSUR 1 induces miR-27 degradation and this down-
regulation activates T-cells during HVS infection (Guo et al.,
2014). Recently, it was demonstrated that this mechanism was
dependent of a flexible conformation of the miR-27 binding
region on HSUR 1 (Pawlica et al., 2016). This mechanism has
also been reported with the Murine cytomegalovirus (MCMV)
(Libri et al., 2012; Marcinowski et al., 2012). Two other oncogenic
γ-herpesviruses, alcelaphine herpesvirus 1 and ovine herpesvirus
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FIGURE 1 | Viruses interfere with host miRNA biogenesis. Primary miRNAs (pri-miRNAs) processing, first to precursor miRNAs (pre-miRNAs) and then to
mature miRNAs, involves two ordered endonucleolytic cleavages. Following transcription by RNA polymerase II/III, the multiprotein complex containing Drosha
processes the pri-miRNA into a ∼70 nt hairpin pre-miRNA. Through the interaction with exportin-5 and Ran-GTP, the pre-miRNA is transported into the cytoplasm
where it undergoes a second round of processing catalyzed by Dicer. One strand of the resulting small RNA duplex, the mature miRNA, is loaded into the RNA
induced silencing complex (RISC) which post-transcriptionally regulates the expression of target genes. Expression of viral proteins termed viral suppressor of RNA
silencing inhibits the loading of miRNAs into the RISC complex (tomato bushy stunt virus p19 protein) or Ago2 activity (cucumber virus 2b protein). Multiple
processes mediated by Epstein–Barr virus are responsible for miR-155 upregulation, among which chromatin remodeling, cell signaling regulation and transcription
factor activation. Flaviviruses sfRNA and Vaccinia virus inhibit or reduce the expression of Dicer activity, respectively. Finally, several Herpesviruses encode viral
sequences complementary to mature miRNAs miR-17 and miR-27, leading to their degradation or the inhibition of the miRNA-induced regulation of mRNA targets.

2, encode viral homologes of miR-27 target genes leading to rapid
decay of this miRNA (Guo et al., 2014).

Human cytomegalovirus (HCMV) expresses an nc-transcript,
called miRNA decay element (miRDE), that contains several
binding sites for miR-17 family members, the binding of which
causes their degradation. This proviral function leads to an
upregulation of viral DNA synthesis and viral production during
lytic infection (Lee et al., 2013) (Figure 1).

These examples show that viral infections can trigger the
expression of antiviral miRNAs, but can also regulate miRNA
turnover and function in order to favor their own propagation.
The mechanisms by which miRNAs are degraded after a viral
infection need to be clarified but could involve 3′-end addition
of non-templated nucleotides by tailing enzymes, followed by
degradation by exonucleases (Ameres et al., 2010; Marcinowski
et al., 2012; McCaskill et al., 2015).

HOST miRNAs CONTROL VIRAL RNA
PRODUCTION AND TURNOVER

Host miRNAs have been reported to directly target viral RNAs to
promote or inhibit the viral lifecycle.

Host miRNAs Can Directly Block Viral
Replication
Elevated levels of miR-296-5p were detected in Enterovirus 71
(EV71)-infected human rhabdomyosarcoma (RD) and SK-N-
Sh cells. MiR-296-5p targets both capsid protein VP1 and VP3
coding regions in the viral genome as a response to viral infection
(Zheng et al., 2013). Other miRNAs inhibit EV71 replication,
such as miR-23b that targets the EV71 VP1 RNA coding region
(Ho et al., 2016).

Coxsackievirus B3 (CVB3) is an RNA virus belonging to
the Picornaviridae family that provokes cardiomyopathies. In
HeLa cells, miR-342-5p targets the 2C-coding region of the
viral RNA, which results in its degradation (Wang et al.,
2012).

Herpes simplex virus type 1 (HSV-1) replicates in epithelial
cells and persists in a latent form in sensory neurons. Lytic
replication and reactivation from latency depend on the
expression of viral Infected Cell Protein 0 (ICP0), which is
controlled by the cell-specific miR-138 in neurons (Pan et al.,
2014).

Another example is provided by miR-548g-3p that targets the
Stem Loop A promoter element of DENV 5′-UTR, inhibiting the
recruitment of the viral RNA-dependent RNA polymerase (NS5)
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to the viral genome and resulting in a blockade of viral replication
(Wen et al., 2015).

Host miRNAs Can Suppress Proviral
Host Factors
Host miRNAs can play an antiviral role by targeting host
mRNAs that encode proviral proteins. In human EAhy926 cells
infected with DENV-2, miR-223 downregulates the microtubule-
destabilizing protein stathmin 1 (STMN1), thereby inhibiting
viral replication (Wu et al., 2014). MiR-199a-3p inhibits the
replication of different viruses, including herpesviruses and
alphaviruses, via downregulation of ERK/MAPK, oxidative stress
and PI3K/AKT pathway activation (Santhakumar et al., 2010).
The WNVKUN-induced miR-532-5p downregulates SESTD1
(SEC14 and spectrin domains 1) and TAB3 (TGF-beta activated
kinase 1/MAP3K7 binding protein 3) mRNAs to block WNV
replication (Slonchak et al., 2015).

Host miRNAs Can Act As Proviral
Factors through Direct Interaction with
the Viral Genome
Competition for miRNA binding has been reported in the case
of human diseases and is termed “competitive viral and host
RNAs” (cvhRNA) (Li et al., 2014). In infected cells, the interaction
between viral RNAs and host miRNAs could be necessary for
viral RNA stability, replication, or infection (Jopling et al., 2005).
Therefore, viral RNAs harboring common miRNA-binding sites
with host mRNA could act as sponges and sequester endogenous

miRNAs. In fine, the stability and translational efficiency of
cellular mRNA targets (“targetome”) is increased in infected cells
(Figure 2). The liver-specific miR-122 is an example of such a
strategy adopted by HCV (Luna et al., 2015). MiR-122 binds
two sites within the 5′-UTR of the HCV RNA genome and this
binding moderately stimulates viral protein translation (Henke
et al., 2008) while it protects the genome from XRN1-mediated
degradation (Shimakami et al., 2012; Li et al., 2013; Sedano
and Sarnow, 2014). In addition, miR-122 competes with cellular
poly(rC)-binding protein 2 (PCBP2) binding to the HCV RNA
genome and thereby promotes replication and packaging (Masaki
et al., 2015). Similarly, pestiviruses hijack miR-17 and let-7 family
members to promote their replication. Indeed, both let-7s and
miR-17s directly interact with the 3′-UTR of the viral genome so
as to stabilize the bovine viral diarrhea virus (BVDV) RNA and
increase its translation (Scheel et al., 2016). Finally, miR-10a star
strand (miR-10a-3p) directly targets CVB3 3D-coding sequence,
thereby favoring its replication. Further in vivo investigations
are required to elucidate the role of miR-10a-3p during CVB3
infection, in which a post-transcriptional regulation seems to be
involved (Tong et al., 2013).

Host miRNAs Can Act As Proviral
Factors by Inhibiting Antiviral Host
Factors
In DENV and VSV-infected monocytes/macrophages, and in
JEV (strain JaOArS982) -infected human microglial brain cells
(CHME3), the induction of miR-146a expression suppresses type

FIGURE 2 | Host miRNAs directly improve RNA virus replication. Direct interaction of 3′ end- bovine viral diarrhea virus (BVDV), 3D-coding of region Coxsackie
virus B3 (CVB3), and 5′-IRES of hepatitis C virus (HCV) RNAs with host miR-17, let-7, miR-10a-3p, and miR-122, respectively, increases viral replication (dark
arrows). The unusual interaction between host miRNA and increasing amounts of viral RNA during replication implies a diminution of the interaction of the host
miRNA with its cellular targets (“sponge effect”) (dark dotted inhibition arrows). MiR-10a-3p targets mRNAs implicated in temozolomide resistance (Ujifuku et al.,
2010) indicating that miR-10a-3p is not only a passenger miRNA but has a functional role in the cells [image source for CVB3 (Luo et al., 2010) and HCV
(Lindenbach and Rice, 2013)].
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FIGURE 3 | Host miRNA-146a favors viral replication. MiR-146a expression is increased upon vesicular stomatitis virus (VSV), Japanese encephalitis virus (JEV),
and Dengue virus infection. In the case of VSV infection, miR-146a expression is increased in a RIG-I dependent manner. The RIG-I protein interacts with VSV RNA
via its helicase domain, leading to the nuclear transcription of pri-miR-146a by NF-kB, and to an increasing amount of miR-146a. The proviral function of miR-146a is
explained by the diminution of target mRNAs such as IRAK1, IRAK2, which are essential partners of the type I interferon response [image source for JEV adapted
from Luca et al. (2012)].

I IFN production by targeting IL-1 receptor-associated kinase
1 (IRAK1), IRAK2, and tumor necrosis factor (TNF) receptor-
associated factor 6 (TRAF6), thereby enhancing viral replication
or allowing viral escape to cellular immune response (Hou et al.,
2009; Wu et al., 2013; Zhang and Li, 2013; Sharma et al., 2015)
(Figure 3). EV71 infection in RD cells also led to elevated
levels of miR-146a. In this model, AP1 is the key transcription
factor involved and miR-146a suppresses IRAK1 and TRAF6
expression leading to the inhibition of IFN production, and viral
evasion to host immune attacks (Ho et al., 2014). White spot
syndrome virus (WSSV) infection induces the up-regulation of
miR-9041 and miR-9850, which in turn inhibit the JAK/STAT
pathway, an inhibition resulting in the reduced expression of
interferon-induced genes (Huang et al., 2016). HCV-dependent
upregulation of miR-373 in hepatocytes is another example of
a viral-induced inhibition of the JAK/STAT pathway, through
targeting JAK1 and IFN-regulating factor 9 (IRF9) mRNAs
(Mukherjee et al., 2015). Finally, type I interferon production
is downregulated by non-structural proteins 1 and 2 (NS1 and
NS2) encoded by RSV genome through the induction of miR-29a,
which targets the IFN-alpha receptor (IFNAR1) 3′-UTR (Zhang
et al., 2016) (Figure 4).

Altogether, host miRNAs influence the fate of viral infections,
by inducing antiviral responses, by modulating cellular tropism
or by playing a facilitating role in various phases of the viral
life-cycles. However, because cellular miRNAs control multiple
processes, their hijacking by viruses leads to the derepression

of various cellular mRNAs, causing aberrant host protein
expression. The most likely hypothesis is that viral adaptation was
the result of host miRNA–mRNA interaction alterations, making
the host cell environment favorable to viral persistence/chronicity
(Li et al., 2014).

VIRAL miRNAs (v-miRNAs)

Besides host miRNAs and the various roles they play in the virus–
host interaction and resulting infection, certain viruses have been
shown to generate their own miRNAs, which play a role in the
viral life-cycles and may induce metabolic perturbations in the
infected cells (Table 1).

v-miRNA Biogenesis
DNA Virus v-miRNAs
Since the discovery of the expression of miRNA by DNA viruses
(Pfeffer et al., 2004), many research investigations have been
conducted to identify and unravel the roles of these v-miRNAs.
The functions described so far encompass regulation of viral
persistence, proliferation and long-term survival of host cell and
host immune evasion (Tycowski et al., 2015). Like eukaryotic
miRNAs, v-miRNAs are generally processed by DROSHA and
Dicer. In some cases, such as adenoviruses, pre-v-miRNAs can
be directly transcribed and processed by Dicer, skipping the
DROSHA step (Aparicio et al., 2006; Tycowski et al., 2015).
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FIGURE 4 | Host miRNAs that favor viral replication via the inhibition of the Jak/STAT signaling pathway. Cellular miRNAs (miR-9041, miR-9850, miR-29a,
and miR-373) are upregulated during DNA [White spot syndrome virus (WSSV)] or RNA (respiratory syncytial virus, HCV) viruses infections. The proviral function of
miR-9041, miR-9850, miR-29a, and miR-373 is explained by the diminution of target mRNAs coding for key elements of the JAK/STAT signaling pathway, such as
STAT, IFNAR, JAK1, IRF9. Consequently, the formation of the STAT-IRF9 complex is impaired and the activity of the ISRE (interferon-stimulated response element)
promoter is reduced (dotted arrows) [image source for HCV (Lindenbach and Rice, 2013)].

In HVS infection, which causes T-cell leukemias and
lymphomas in new world primates, three pre-v-miRNAs are
encoded immediately downstream of three Herpesvirus saimiri
U snRNAs (HSURs 2, 4, and 5), forming chimeric HSV pri-
snRNA/v-miRNAs. These chimeric transcripts are then processed
by the Integrator host complex into pre-miRNAs from the 3′-
end and Herpesvirus saimiri U snRNAs (HSURs) from the 5′-
end extremities (Cazalla et al., 2011). These v-miRNAs, which
do not bind to the HVS genome, repress many host mRNAs,
preferentially those encoding cell cycle regulators (Guo et al.,
2015).

Another class of DROSHA-independent miRNAs includes the
Murine Gammaherpesvirus 68 (MHV68) v-miRNAs which are
essential for transition to latency in the key virus reservoir of
memory B-cells and for pathogenesis (Feldman et al., 2014).
These v-miRNAs are transcribed as chimeric pri-RNAs consisting
of tRNAs linked to pre-microRNA hairpins. Host tRNaseZ
cleavage removes the tRNA and frees the pre-microRNA for
Dicer processing (Bogerd et al., 2010; Diebel et al., 2010).

Cytoplasmic RNA Virus v-miRNAs
Although this is debated, it appears that some cytoplasmic RNA
viruses could generate v-miRNAs (Swaminathan et al., 2013).
The WNV Kunjin strain contains a sfRNAs in the 3′-UTR of
its genomic RNA with several stem–loops that serve as Dicer
substrates for the generation of v-miRNAs called KUN-miR-1.
These v-miRNAs enhance viral replication (Hussain et al., 2012).

The discovery that cytoplasmic RNA viruses could be
engineered to produce functional miRNAs emphasizes the
existence of cytoplasmic, non-canonical, miRNA biogenesis
pathways. For instance, infection of BHK cells by cytoplasmic
recombinant Sindbis viruses (rSINVs) allows the expression
of virus-derived cytoplasmic pri-miRNAs (c-pri-miRNAs). The
viral-induced translocation of DROSHA into the cytoplasm
initiates the processing of these c-pri-miRNAs and the biogenesis
of miRNAs (Shapiro et al., 2012).

Retrovirus v-miRNAs
Retroviruses constitute a class of positive-sense ssRNA viruses,
ubiquitous in nature, causing cancers and immunodeficiency
syndromes, which are reverse transcribed to dsDNAs that
integrates the host genome (Zheng et al., 2012). The capacity of
Human immunodeficiency virus 1 (HIV-1) to encode v-miRNAs
has been extensively studied both in silico and in vivo (Bennasser
et al., 2004). HIV1-miR-H1 is generated from a pre-miRNA
sequence within the 3′-end of the viral genome. In human
mononuclear cells, this v-miRNA has been reported to selectively
target the apoptosis antagonizing transcription factor (AATF)
transcript, thereby suppressing the expression of c-myc, Par-
4, Bcl-2 and the RISC protein Dicer. This v-miRNA also
downregulates the host miR-149, which targets the viral accessory
protein Vpr (Kaul et al., 2009). A 50 nt HIV-1 TAR motif located
within the 5′ end of the viral genome is also a source of several
v-miRNAs (Narayanan et al., 2011). Other retroviruses than

Frontiers in Microbiology | www.frontiersin.org 6 May 2017 | Volume 8 | Article 824

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00824 May 11, 2017 Time: 15:31 # 7

Bruscella et al. Viruses and miRNAs: More Friends than Foes

TABLE 1 | Viruses, v-miRNAs and their functions.

Viruses v-miRNAs Functions Target RNA Reference

DNA viruses

γ-Herpesvirus saimiri (HVS) miR-HSURs Host cell cycle regulators
repression

P300 transcriptional activator,
BiP, WEE1

Guo et al., 2015

Murine Gammaherpesvirus
68 (MHV68)

mghv-miRNAs Transition to latency in memory
B cell and pathogenesis

Und. Feldman et al., 2014

Ovine herpesvirus-2
(OvHV-2)

OvHV-2-miR-5 Latency ORF50 Riaz et al., 2014

Herpes simplex virus 1
(HSV-1)

miR-H2-3p Latency ICP0 Umbach et al., 2008

Epstein–Barr virus (EBV) BARTs Associated-cancer
development

LMP-1 Lo et al., 2007

Latency BZLF1, BRLF1, MAPKK2 Jung et al., 2014

Human cytomegalovirus
(HCMV)

miR-UL112-1 Latency IE1 Grassmann and Jeang, 2008

miR-US4-1, miR-US5-1,
miR-US5-2, miR-UL112-1

Antiviral immune response
evasion

ERAP 1, IL6, multiple endocytic
pathway components

Kim et al., 2011; Hook et al., 2014

Kaposi’s sarcoma-associated
herpesvirus (KSHV)

miR-K-1 Latency IκBα Lei et al., 2010

miR-K12-5, miR-K12-9,
miR-K12-10a, miR-K12-11

Antiviral immune response
evasion

TWEAKR, IRAK1, MYD88, AID Abend et al., 2010, 2012;
Bekerman et al., 2013

Cytoplasmic RNA viruses

West nile virus Kunjin
(WNVkun)

Kun-miR-1 Viral replication enhancement GATA4 Hussain et al., 2012

Retroviruses

Human immunodeficiency
virus 1 (HIV-1)

HIV1-miR-H1 Cellular apoptosis induction AATF Kaul et al., 2009

Viral protein R (Vpr) stabilization miR-149

Host target genes are in italic, viral target genes are underlined, Und., undetermined.

HIV generate v-miRNAs using either canonical or non-canonical
miRNA biogenesis pathways. They include the avian leukosis
virus (Lakatos et al., 2006; Yao et al., 2014), the bovine leukemia
virus (BLV), the bovine foamy virus (BFV) (Kincaid et al., 2012;
Burke et al., 2014; Whisnant et al., 2014), and the simian foamy
virus (SFV) (Tycowski et al., 2015).

v-miRNAs Functions
Regulation of Viral Life-Cycles
Several v-miRNAs are generated from the antisense strand
of viral protein-coding genes, showing a perfect match to
their target mRNAs. In general, these antisense v-miRNAs are
involved in the lytic or latency phase transition (Grassmann
and Jeang, 2008). For instance, EBV expresses the BamHI-A
antisense transcripts (BARTs) that produces v-miRNAs. The
EBV BARTs produce two clusters of miRNAs (12 and 15
v-miRNAs in Clusters 1 and 2, respectively). It was reported
that BART cluster 1 miRNAs target the viral LMP-1 3′-UTR, a
prime candidate for driving nasopharyngeal carcinoma (NPC)
development. Negative regulation of LMP1 expression may thus
favor EBV-associated cancer development (Lo et al., 2007).
Moreover, BART20-derived v-miRNA promotes the latency
phase by targeting two EBV immediate-early genes, including
BZLF1 and BRLF1 (Jung et al., 2014).

Human cytomegalovirus lytic replication is regulated by miR-
UL112-1 that targets the IE1 (immediate early viral protein)

3′-UTR, thereby sustaining the latency phase (Grassmann and
Jeang, 2008). Likewise, the ovine herpesvirus v-miRNA, OvHV-
2-miR-5, targets ORF50 mRNA and maintains latency (Riaz
et al., 2014). A v-miRNA-dependent strategy is also employed by
HSV-1, which encodes miR-H2-3p that directly targets latency-
associated transcripts, including the viral immediate early gene
transactivator (Umbach et al., 2008).

Host mRNA Regulation
Viral-miRNAs can also regulate the expression of host mRNAs.
v-miRNAs from KSHV target different host mRNAs, including
the IκBα mRNA, activating NF-κB signaling and preventing
viral lytic replication (Lei et al., 2010). Similarly, the EBV
specific BART18-derived v-miRNA targets the MAPK kinase
kinase 2 mRNA, thereby preventing the initiation of lytic
viral replication (Qiu and Thorley-Lawson, 2014). Other EBV-
or KSHV-expressed v-miRNAs reduce the expression of pro-
apoptotic proteins or inhibit cell cycle progression (Gottwein
and Cullen, 2010). Notably, v-miRNAs from some gamma-
herpesviruses, such as KSHV and Marek’s disease virus type 1
(MDV-1), or retroviruses, such as SFV, share the same seed-
sequence of miR-155 and regulate the miR-155 targetome (Guo
and Steitz, 2014).

Several v-miRNAs enhance viral survival by targeting genes
involved in the antiviral immune response. For example, the
KSHV-expressed miR-K12-10a directly reduces the expression
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of TWEAKR (TNF-like weak inducer of apoptosis receptor)
(Abend et al., 2010), whereas miR-K12-9 and miR-K12-5
target the TLR/Interleukin-1R signaling cascade at two distinct
points (IRAK1 and MYD88), thereby reducing inflammatory
cytokine mRNAs expression (Abend et al., 2012). The KSHV-
expressed miR-K12-11 and miR-K12-5 prevent the recognition
of infected cells by natural killer (NK) cells by directly targeting
the activation-induced cytidine deaminase (AID) coding gene
(Bekerman et al., 2013). Similarly, HCMV-expressed v-miRNAs
favors the evasion from the NK antiviral response (Nachmani
et al., 2009). The HCMV v-miR-US4-1 alters the MHC class I
presentation pathway by targeting endoplasmic reticulum-
resident aminopeptidases, such as ERAP1, a “molecular ruler”
for antigenic peptide production in T-lymphocytes (Kim et al.,
2011). Moreover, HCMV-expressed miR-UL112-1, miR-US5-1,
and miR-US5-2 control mRNAs encoding IL6 and TNF-α, which
are involved in the secretory pathways, thereby altering the
secretion of host cytokines and ultimately blocking the antiviral
response (Hook et al., 2014).

These observations indicate that viruses, including DNA
viruses, cytoplasmic RNA viruses and retroviruses, produce
v-miRNAs through or independently of the DROSHA-dependent
maturation pathways. These v-miRNAs generally play a proviral
role by enhancing the viral life-cycles, impairing the expression
of genes involved in antiviral responses or regulating cell
metabolism (Table 1). Thus, specific v-miRNAs could represent
an interesting target for antiviral interventions.

THERAPEUTIC MANIPULATION OF
miRNAs FOR ANTIVIRAL THERAPY

Recent advances in the field of antiviral therapy consist of
specifically inhibiting a viral component in order to block the
viral life-cycle, and thereby inhibiting viral production. The roles
played by several host miRNAs and by v-miRNAs pave the way
to specific antagomirs approaches. Such an approach has been
applied to HCV in several in vitro and in vivo proof-of-concept
studies. A specific inhibitor (antagomir) of miR-122 [miravirsen,
Santaris Pharma, Hørsholm, Denmark] entered into human
clinical trials (Janssen et al., 2013). In a phase II trial, 5 weekly
miravirsen injections induced a dose-dependent reduction of
HCV RNA levels ranging from 1.2 to 3.0 Log international units
(IUs)/mL, which was maintained after treatment cessation. Five
out of 27 patients still had undetectable HCV RNA 14 weeks
after the end of therapy. In a recent trial (van der Ree et al.,
2017), RG-101, a hepatocyte targeted N-acetylgalactosamine

conjugated oligonucleotide that antagonizes miR-122, inhibited
viral replication by up to 5 Log IU/mL after one single injection
of the antagomir, and 3 out of 32 patients were even cured of the
infection. These very promising results suggest that antagomir-
based approaches are susceptible to profoundly and sustainably
inhibit viral replication.

Currently, a major barrier to the application of
miRNA/siRNA-based therapies is the non-toxic delivery
to infected sites (Tahamtan et al., 2016). Delivery of
sufficient amounts of miRNA/anti-miRNA molecules is indeed
challenging. Host miRNAs are key regulators of gene expression,
and their long-term manipulation may predispose one to
cellular abnormalities, impaired immunity, or even cell
transformation. Therefore, side-effects correlated with long-
term suppression/overexpression of host miRNAs may limit the
clinical use of such strategies. Targeting v-miRNAs rather than
host miRNAs could be a reasonable alternative in some cases.
More preclinical and early clinical studies are now warranted.

CONCLUSION AND PERSPECTIVES

In summary, we are far from fully understanding the molecular
mechanisms underlying the complex crosstalks between miRNA
pathways and viral infections. Deciphering the pathways of
v-miRNAs generation, for DNA or RNA viruses, remains
challenging as well. However, knowledge is increasing on the
diverse roles played by either host miRNAs or v-miRNAs
during viral infections. It is now necessary to decipher
virus/miRNA networks and unravel the detailed miRNA/v-
miRNA mechanism(s) during viral infections and the antiviral
response, in order to improve our antiviral armamentarium to
cure or control a number of viral infections without current
therapies.
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