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G R A P H I C A L A B S T R A C T
� We have identified two novel miRNAs,
viz., hsa-miRNA-106a-5p and hsa-
miRNA-34a-5p being highly expressed
in the brain.

� Topological analysis delineates LGMN as
a hub (degree ¼ 28), emphasizing that
the network is dominated by LGMN.

� Major transcription factors of LGMN
have been screened.

� Expression heatmap results show high
and continuous expression of LGMN in
most regions of brain, especially in
frontal cortex.

� 200 ns molecular simulations of δ-sec-
retase-Oprea1 docked complex revealed
its high stability in terms of rmsd and
Rgyr.
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Background: System medicine approaches have played a pivotal role in identifying novel disease networks
especially in miRNA research. It is no wonder that miRNAs are implicated in multiple clinical conditions, allowing
us to establish the hubs and nodes for network models of Alzheimer's Disease (AD). AD is an age-related, pro-
gressive, irreversible, and multifactorial neurodegenerative disorder characterized by cognitive and memory
impairment and is the most common cause of dementia in older adults. Worldwide, around 50 million people
have dementia, and there are nearly 10 million new cases every year. δ-secretase, also known as asparagine
endopeptidase (AEP) or legumain (LGMN), is a lysosomal cysteine protease that cleaves peptide bonds C-termi-
nally to asparagine residues in both amyloid precursor protein (APP) and tau, mediating the amyloid-β and tau
pathology in AD. The patient's miRNA expression was found to be deregulated in the brain, extracellular fluid,
blood plasma, and serum.
Methods: Protein-Protein Interaction (PPI) networks of LGMN or δ-secretase were constructed using the Gene-
mania database. Network Analyzer, a Cytoscape plugin, analyzed the network topological properties of LGMN.
miRNAs related to Alzheimer's were extracted from the HMDD (Human microRNA Disease Database) and
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experimentally verified miRNA-gene interaction was obtained by searching miRWalk. Starbase v2.0 and miRanda
were used for screening miRNA of LGMN genes. Moreover, to understand the regulatory mechanism in AD, we
have screened major transcription factors of LGMN targeted genes using the Network Analyst 3.0, TRRUST (v2.0)
server, and ENCODE. The Genotype-Tissue Expression (GTEx) and BEST tool were used to investigate the
expression pattern of the LGMN gene. In parallel, we performed in-silico drug designing of the novel inhibitor
scaffold of δ-secretase as powerful therapeutic targets by using the concept of scaffolds and frameworks. In this
context, this study also aimed at identifying effective small molecule inhibitors targeting δ-secretase.
Results: Among the 16 experimentally verified miRNAs, Network analysis of the LGMN and its associated miRNA
identify novel hsa-miRNA-106a-5p and hsa-miRNA-34a-5p being more expressed in the brain. Our in silico high
throughput screening, followed by XP docking revealed Oprea1 as the lead. Molecular dynamic simulations of the
δ-secretase-docked complex have been carried out for a time period of 200 ns and revealed that Root Mean Square
Deviation (RMSD) of the protein Cα-backbone with respect to its starting position increased to 1.20 Å for the first
25 ns of the trajectory and then became stable around 0.6 Å in the last 170 ns course of the simulation. The radius
of gyration (RGYR) reveals that compactness was maintained till the end of simulations.
Conclusion: Network analysis of LGMN associated miRNAs lead to the identification of two novel miRNAs, being
highly expressed in the brain. This study also lead to the identification and expression of 10 Transcription factors
associated with LGMN. Expression Heatmap results show high and continuous expression of LGMN in most of the
regions of the brain, especially in the frontal cortex. Further, in silico drug analysis led us to the identification of
Oprea1 which could be taken for further investigation to explore its potential for AD therapy.
1. Introduction

Alzheimer's disease (AD) is the leading cause of dementia, is defined as
a progressive neurodegenerative disease with neuropathological hall-
marks: Neurofibrillary tangles and beta-amyloid plaques [1]. Worldwide,
around 50 million people have dementia, and there are nearly 10 million
new cases every year, and Alzheimer's disease is the most common form of
dementia and may contribute to 60–70% of cases (https://www.who.in
t/news-room/fact-sheets/detail/dementia). In the USA alone, it is esti-
mated that by mid-century, the population aged 65 and older with Alz-
heimer's dementia may grow to 13.8 million, representing a steep rise in
estimates compared to 2020 [2]. The neurofibrillary tangles formed by
hyperphosphorylated Tau protein lose their physiological role in promot-
ing microtubule stability in neurons [3, 4]. The phenotypic spectrum in AD
patients includes memory loss as well as a decline in other cognitive do-
mains (e.g., executive function, language, perceptual-motor), functional
decline, and especially in later stages neuropsychiatric symptoms (e.g.,
irritability, depression, agitation, and hallucinations) [5]. The secretases
viz., α-Secretase, β-secretase, and γ-secretase are proteases that control the
production of amyloid-β (Aβ) in the brain and represent the most prom-
ising drug targets for Alzheimer disease therapies.

Among Secretases, a new class of secretase dubbed as δ-secretase has
been in focus as a therapeutic target for AD recently. It has been found
that δ-secretase is progressively upregulated and activated during aging
in the mouse brain. Furthermore, human AD brains show high elevation
and activation of δ-secretase, compared to normal controls. Active
δ-secretase cleaves both amyloid precursor protein (APP) and tau which
play a major pivotal role in AD pathogenesis. Processing of APP by
δ-secretase facilitates β-Site amyloid precursor protein cleaving enzyme 1
(BACE1) to cleave APP, leading to Aβ upregulation [6]. Moreover, the Aβ
hypothesis and the tau hypothesis are the two commonly accepted hy-
potheses based on APP and Tau pathological characteristics. The amyloid
cascade hypothesis suggests that the imbalance between the production
and clearance of Aβ is the key trigger of a cascade of events that leads to
AD [7, 8]. As AD remains incurable at present despite decades of research
efforts, therapeutic intervention with disease-modifying agents to reverse
or slow down the neurodegeneration has drawn much attention [9].

1.1. MicroRNAs and AD

MicroRNAs are involved in many biological processes and diseases,
particularly multifactorial diseases, providing an excellent tool to probe
their mechanisms [10]. MicroRNAs, a class of non-coding RNAs, have
been acknowledged as important regulators for post-transcriptional gene
expression by either repressing translation or degrading target mRNAs
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[11]. Post the discovery of microRNAs, they have been identified as the
regulators most frequently implicated in many critical biological events,
such as development, growth, differentiation, and neurodegenerative
processes [12, 13]. Numerous microRNAs (miRNAs) have been consid-
ered as key players in the regulation of neuronal processes, e.g. studies as
explored by Quang et al., 2018, ameliorate that miR-25 may suppress
Kruppel-like factor 2 (KLF2) and stimulate the nuclear factor- E2-related
factor 2 (Nrf2) pathway, which further aggravates hippocampal neuron
injuries induced by Aβ1-42 in mice with AD [14]. Studies have also
demonstrated that the expression of several miRNAs changes in AD [15,
16, 17, 18]. The therapeutic potential of miR-155 via regulation of T cells
in AD has been described [19]. Several miRNAs are expressed in the brain
are involved in inflammation and microglia activation [20, 21, 22].
MicroRNAs play vital roles in neuronal development, synaptic plasticity,
and neurodegeneration [23].

1.2. δ-Secretases and AD

δ-secretase, AEP, or legumain, hereafter denoted by LGMN in this
study, is a lysosomal cysteine protease that cleaves peptide bonds C-
terminally to asparagine residues in both APP and tau, mediating the Aβ
and tau pathology in AD. It is a cysteine protease encoded by gene
legumain represented by ‘LGMN’ and involved in various cellular events,
including antigen processing, the cleavage of other lysosomal enzymes,
osteoclast formation, and normal kidney function [24, 25, 26, 27, 28].
Biochemically, secretase is highly regulated by its specificity for aspar-
agine residues and pH. Dysregulation of δ-secretase activity has been
implicated in various diseases, including cancers and neurodegenerative
diseases [29, 30, 31, 32, 33, 34].

We have investigated and analyzed the interactions of the LGMN
target gene in the context of a network, as well as the other important
genes providing a modular framework to it. The proposed analysis is
focused on approaches to network analysis to predict several unknown
AD-associated genes, which can be validated as reliable candidates
through in vitro/in vivo experiments.

2. Materials and methods

2.1. PPI network construction of LGMN associated genes

2.1.1. Construction of a protein-protein interaction (PPI) network
The network was constructed using the Genemania database [35] and

the resultfilewas verified and uploaded for further literature verification in
Cytoscape [36]. The first analysis focused on the topological properties of
thenetwork tounderstand its structure, and the possible existenceofhidden
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mechanisms. We calculated the degree distribution (P(k)), clustering coef-
ficient (c(k)), neighborhood connectivity CN(k) and centrality betweenness
(CB), closeness (Cc) using Cytoscape plugins, Network Analyzer [37], for
LGMN and the associated protein interaction network. The degree is
denoted by the means number of genes interacting with LGMN.

2.1.2. Identification of miRNA associated with LGMN networked genes
Screening of miRNA of LGMN genes was performed using Starbase

v2.0 [38], miRWalk v3.0 [39], and miRanda [40]. In this study, miRNAs
related to Alzheimer's were extracted from the HumanmicroRNADisease
Database (HMDD) and experimentally verified miRNA-gene interaction
was obtained by searching miRWalk v3.0.

2.1.3. Identification of transcription factors associated with the networked
genes

Transcription Factors (TFs) are key trans-acting factors in transcrip-
tional regulation. Therefore, explicating TF-target interactions is an
important step to understand the regulatory mechanism in human dis-
eases. In our study, we have screened major transcription factors of
LGMN targeted genes using the Network Analyst 3.0 [41] and TRRUST
(v2.0) server [42], ENCODE [43].

2.1.4. Validation of the expression pattern
We used the GTEx portal [44] to obtain the expression of LGMN in

different areas of the brain in form of a violin plot and organized the data
based on the median. Also, a spatiotemporal expression heatmap is
generated based on the calculated expression levels of LGMN in RNAseq
data from Brainspan [45], through BEST, a web server for brain
expression spatiotemporal pattern analysis [46]. We checked the
expression data from the public database BrainEXP [47] and found that
most of the contributing datasets did not collect agonal information.

In silico screening is efficient, and represents a simpler and less
expensive method, as proven by several docking studies [48, 49]. Mo-
lecular frameworks introduced by Bemis and Murcko [50], attempt to
organize the chemical known space to better predict the pharmacody-
namic activity of a certain type of structure [50]. Moreover, the concept
of scaffolds and frameworks is applied in drug discovery for the identi-
fication of classes of compounds, similarity searches, and many different
virtual screening techniques [50].

2.1.5. Repossession of LGMN inhibitors through shape-based screening
The compound 4-morpholin-4-yl-2,1,3-benzoxadiazol-7-amine

(shortly referred to as ‘morpholine derivative’ in this manuscript), was
used as an input structure for shape-based screening as the given com-
pound was found to have a therapeutic effect of an orally bioactive and
brain permeable δ-secretase inhibitor in mouse models of AD [51].
Briefly, the SMILE format and chemical structure of the given compound
was retrieved from Pubchem, Swiss Similarity, CHEMBL, Natural Com-
pound Database, online platforms which allows us to perform similarity
search chemical hits with respect to our reference structure [52, 53, 54].
Structures of 1,86,607 compounds were retrieved and processed for high
throughput screening, followed by XP docking, and Molecular Dynamics
simulation analysis against the LGMN.

2.1.6. Preparation of ligand and protein
Protein and ligand preparation were carried out as defined in (Iqbal

et al., 2017) [55]. Briefly, Crystal Structure of δ-secretase (PDB ID: 5LU9)
[52] was downloaded from the Protein Data Bank. Protein preparation
was done by the wizard of Schrodinger 14-2 [56] where missing
hydrogen and bond order was assigned followed by the refinement.
Structural waters being vital in mediating hydrogen bonds between re-
ceptor and the ligand were retained at the center of the grid within 20Å
edges of the catalytic site. All the compounds retrieved from various
databases were prepared and energy minimized using the Ligprep mod-
ule of the Schrodinger with probable tautomeric and ionization states at
pH ¼ 7 � 1 followed by minimization with OPLS 2005 force field [57].
3

2.1.7. Screening and Induced Fit Docking
Glide virtual screening within virtual screening workflow (VSW)

module of Schr€odinger and Glide molecular docking with extra precision
level resulted only in screening compounds with good binding towards
target proteins. The virtual screening and docking of 1,86,607 com-
pounds from the Pubchem, CHEMBL, and Super Natural Database library
of compounds was carried out using Schr€odinger [58]. Molecular dock-
ing is a computational simulation that predicts the preferred orientation
of a ligand with a receptor during their interaction to form a complex
with higher stability. In this study, GLIDE was used to perform flexible,
rigid, and Induced fit docking at the active site of δ-secretase for pre-
dicting the binding affinity and ligand efficiency to the target [58, 59].

2.1.8. Molecular dynamics simulations
Molecular Dynamics simulations were carried out using the Desmond

Software [60]. Briefly, Optimized Potentials for the Liquid Simulations
(OPLS)-2005 force field were used in this system to determine the protein
(δ-secretase) interactions with efficient ligandmolecules and solvatedwith
the simple point charged (TIP4P) water model. The orthorhombic water
box was used to create a 10Å buffer region between the protein atoms and
box sides. Systems were neutralized with Naþ ions. For energy calculation,
the OPLS-2005 force field was used. The Martyna-Tobias-Klein scheme
was used for pressure coupling. PME algorithm [61, 62] was used for
calculating the electrostatic forces; all runs have been performed at 300K at
constant volume and temperature (NPT ensemble) under certain periodic
boundary conditions. The MD simulations analysis of δ-secretase lead
complex were carried out for a period of 200 ns having 52,080 trajectories,
which were recorded for every 2.0 ps. Root Mean Square Deviation
(RMSD), Root Mean Square Fluctuation (RMSF), and potential energies
were evaluated in this study.

2.1.9. Normal mode analysis
We analysed our protein-ligand complexes and measured the pa-

rameters in terms of eigen value that determine relationship between
protein structure and ligand complexes of Oprea1, Cocrystal and þve
control (Aloxistatin) via Normal Mode analysis (NMA) method using
iMODS server [63]. The output of normal mode analysis is a collection of
points corresponding to the location of atoms and associated motion
vectors, where a vector at each point is known [63].

3. Results and discussion

3.1. PPI network construction of LGMN associated genes

The degree of LGMN in the network was found to be 28; i.e., 28
proteins interact with LGMN. The PPI network of LGMN and its associ-
ated proteins is shown in Figure 1a. For the given network, the LGMN
with the highest degree node was identified as a hub. Therefore, the
network is dominated by LGMN, so the structure, functioning, and con-
trol of the network are mainly performed by LGMN.

Hub genes in the network are the genes that are highly connected
with other genes in the network on a direct basis. The hub gene (LGMN)
plays an important role in maintaining and regulating the stability of the
Alzheimer's disease network. The topological properties in terms of
Centrality, Clustering Coefficient, Neighborhood Connectivity, Topo-
logical Coefficient, and Network density of LGMN associated PPI network
are shown in Table 1. We conducted GO enrichment analysis to expound
the potential biological process of genes involved in the LGMN regulatory
network by using Metascape online server (https://metascape.org/gp/).
LGMN and its associated genes were enriched in the biological process
including localization, cell proliferation, developmental process, cellular
process, response to stimulus, biological adhesion, signaling, multi-
organism process, locomotion, negative regulation of the biological
process, regulation of the biological process, positive regulation of the
biological process, biological regulation, metabolic process and multi-
cellular organismal process (Figure 1b) (Table S1). We observed that

https://metascape.org/gp/


Figure 1. PPI Network construction (a) PPI network of LGMN and its associated protein. (b) Bar graph of the top-level Gene Ontology especially depicting the
prevalence of Immune system biological processes of genes involved in LGMN regulatory network, colored by p-values. (c) Bar graph of disease enrichment of genes
involved in LGMN regulatory network, colored by p-values (d) The hexagonal-shaped red nodes represent transcription factors (TFs) associated with LGMN.

Table 1. Topological properties of LGMN.

Degree 28

Betweenness Centrality 0.793827

Closeness Centrality 1

Clustering Coefficient 0.126984

Neighborhood Connectivity 4.428571

Topological Coefficient 0.167582

Network Density 0.187
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LGMN and its associated genes were involved in cataplexy, chronic iri-
docyclitis, sequoiosis, encephalomyelitis, acute, disseminated, early-
onset periodontitis, podoconiosis, sleep paralysis (Figure 1c) (Table S1).

3.2. Identification of transcription factors associated with key genes

10 TFs were associated with LGMN protein; viz., L3MBTL2, FOXJ2,
HIC1, EBF1, ZFP2, MAZ, NR2C2, CEBPG, MLLT1, and HCFC1, has been
shown in (Figure 1d). The LGMN and associated TFs network were
constructed and visualized using Cytoscape. These data support the
finding that these genes may be important factors in AD, but there is a
need for future analysis.

3.3. Validation of the expression pattern of the LGMN gene

To study the tissue-specific gene expression and regulation of LGMN
in different areas of the brain (Figure 2a), we used the Genotype-Tissue
Expression (GTEx) tool. The expression pattern of LGMN is analyzed
and violin plots showing the expression distribution of LGMN in the brain
are shown in Figure 2a. To investigate the expression pattern of the
LGMN gene in different areas of the brain against the different age
groups, BEST tool was used to study the Spatio-temporal expression
heatmap. From the Spatio-temporal expression heatmap, it is evident that
regions of the brain viz., dorsolateral prefrontal cortex, orbital frontal
cortex, ventrolateral prefrontal cortex, inferolateral temporal cortex,
primary visual cortex, and cerebellar cortex show significant expression
4

of LGMN and can be depicted in Figure 2b. Both the results show high
and continuous expression of LGMN in most of the regions of the brain,
especially the frontal cortex. In the violin plot as represented in Figure 2a,
the TPM (transcripts per million) is the highest, and in Figure 2b, we can
see that LGMN is expressed at a different stage of the life cycle in the
different portion of the brain; i.e., the cerebellum, frontal, parietal,
temporal, and occipital cortexes are shown in Figure 2c. The LGMN is
expressed throughout the life cycle in the cortex of dorsolateral pre-
frontal, orbital frontal, and ventrolateral prefrontal cortex.

3.4. Identification of miRNA associated with key genes

The LGMN genes were associated with 16 experimentally validated
miRNAs (Figure 3a) such as hsa-mir-26b-5p, hsa-mir-192-5p, hsa-let-7e-
5p, hsa-let-7f-5p, hsa-mir-124-3p, hsa-mir-20a-3p, hsa-mir-217, hsa-mir-
433-3p,hsa-mir-1-3p, hsa-mir-128-3p, hsa-mir-129-2-3p, hsa-mir-146a-
5p, hsa-mir-194-5p, hsa-mir-23b-3p, hsa-mir-34a-5p, hsa-mir-375, etc
(Figure 3a). The LGMN and associated miRNA network was constructed
and visualized using Cytoscape. The miRNAs recognized by these data-
bases were considered as candidate miRNAs and intersected with the
LGMN. ThemiRNA expression pattern is shown in Figure 3b (Table S3) in
the brain. Disease ontology of significant miRNA was performed using
the MIENTURNET tools [64]. (MicroRNA ENrichment TURned
NETwork) makes use of the holistic approach of the network theory to
infer possible pieces of evidence (computational or experimental) of
miRNA regulation by capturing topological properties of the
miRNA-target regulatory network that would be not evident through a
pairwise analysis of the individual components. The statistically most
enriched GO terms were visualized in ggplot2 [65]. We observed that
hsa-miRNA-106a-5p and hsa-miRNA-34a-5p are more expressed in the
brain (Figure 3b) (Table S3).

In APP/PS1 mice, the level of has-miRNA-34a increased in tandem
with the increase in amyloid (A); however, in miRNA-34a knockout mice,
behavioral dysfunction was substantially reduced, owing to the inhibition
of γ-secretase activity [66]. γ-secretase-mediated proteolytic cleavage
produces NICD1, the active form of Notch1. As a consequence, blocking
either this cleavage pathway or Notch1 causes NICD1 levels to drop [67].



Figure 2. Expression level of LGMN (a) Violin plot from GTEx portal expression levels in different regions of the brain. (b) Spatio-temporal expression heatmap from
BEST tool (c) heatmap shows the expression of LGMN in the brain.

Figure 3. (a)The miRNA-gene regulatory network of AD-specific genes identified in brain datasets. The triangular-shaped cyan color node represents miRNAs (b)
heatmap shows the expression of miRNA in different tissue (c) The most significantly biological ontology of miRNAs targeted to LGMN (d) biological pathway of the
miRNAs targeted to LGMN.
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Table 2. Induced fit docking results of the δ-secretase-Oprea1 complex.

Compound Hydrogen
Bonding
Interactions

Hydrophobic
Interactions

Docking
Score

Glide energy
(kcal/mol)

Oprea1 Thr 250, Hie
252, Hie 256, Lys
259, Gln 269

Met 268, Thr
274, Ser 276, Thr
277

-13.64 -76.28

Cocrystal Gln 269, Thr 277 His 252, Lys 273,
Thr 274, Ser 276

-7.26 -52.41

þve Control
(Aloxistatin)

Gln 269, His 256,
Lys 259, Lys 273

His 252, Tyr 255,
Met 268, Thr 277

-6.51 -50.13
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The findings suggest that miR-34a affects the Notch signaling pathway
[68]. The increase in miR-34a expression is linked to a decrease in Notch
signaling. The hsa-miRNA-106a-5p showed the significant disease
ontology terms related to T�cell leukemia, agranulocytosis, neutropenia,
hepatitis, Sjogren's syndrome as depicted in (Figure 3c & 3d) (Table S4).
The hsa-miR-106a-5p is a well-knownmiRNA that is highly investigated in
uterine disease, breast carcinoma, and coronary artery disease. Notably,
concerning AD susceptibility, hsa-miR-106a-5 and hsa-miR-106b-5p -
miRNAs are found "upstream" of the genes linked to Alzheimer's disease.
Increased Aβ secretion was observed when cellular cholesterol efflux was
impaired by hsa-miR-106 suppression of ATP-binding cassette transporter
A1 (ABCA1) [69]. Studies have also found that miR-106-5p inhibits
Aβ42-induced tau phosphorylation at Tyr18 by targeting Fyn-tyrosine ki-
nase [70, 71]. We have crosschecked the identified miRNA's with previous
studies as carried out by Leidinger and coworkers in 2017 leading to the
identification of blood-based miRNA viz., hsa-mir-26b-5p [72]. Surpris-
ingly, as inferred from our analysis, we identified the same miRNA:
‘hsa-mir-26b-5p’ being dysregulated in the brain too and needs further
investigation to decipher its role.

3.5. Molecular docking simulations

We explored the δ-secretase inhibitory bioactive molecules through
molecular docking. Moreover, the concept of scaffolds and frameworks is
applied in drug discovery for the identification of classes of compounds,
similarity searches, and many different virtual screening techniques. 4-
morpholin-4-yl-2,1,3-benzoxadiazol-7-amine was used as an input struc-
ture for shape-based screening as the given compound was found to have
decreased the N368 truncation and phosphorylation of tau in tau P301S
mice by inhibiting the cleavage of tau by δ-secretase, which led to the
identification of Oprea1. The δ-secretase structure has a sequence length of
262 amino acids with a resolution of 2.27Å. We used structure similarity
search of ‘morpholine derivative’ as an input compound against the
δ-secretase. Glide energy which is an empirical scoring function that ap-
proximates the ligand binding free energy used to rank poses of different
ligands, more negative values represent tight binders. The screening of
bioactive compounds obtained from databases as mentioned above lead us
to the identification of 20 compounds, all compounds were filtered based
on glide energy. Out of which 3 compounds were put for XP docking,
followed by identification of one lead after performing Induced Fit
Figure 4. (a)-(c): 2D -Interaction diagram of the δ-secret
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Docking (IFD) using glide energy as a filter. Corresponding to the lowest
free energy (or highest score) provided by the Glide program the docked
conformation was selected as the most probable binding pose of top
compounds. In the current study, the identified bioactive compound
IUPAC name: 3-(1,3-Dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-meth-
anoisoindol-2-yl)-N-{5-[(4-nitrophenyl)sulfonyl]-1,3-thiazol-2-yl}prope-
namide also dubbed as Oprea1 in the current study, exhibited a docking
score of -13.64 and Glide Energy of -76.28 kcal/mol as shown in Table 2.
Aloxistatin being an cysteine protease inhibitor was used as a þve control
in studying protein ligand interactions. The binding affinities were better
than that of the input 4-morpholin-4-yl-2,1,3-benzoxadiazol-7-amine and
þve control (Aloxistatin) which bound with an affinity of -52.41 kcal/mol
and -50.13 kcal/mol respectively.

Hydrogen and hydrophobic interactions were analyzed using,
Maestro Visualiser and PyMol (PyMOL Molecular Graphics System,
Version 2.0 Schr€odinger, LLC). Interactions of the δ-secretase-Oprea1
docked complex are shown in Table 2. IFD studies reveal that the Oprea1
bound well at the active site target. Figure 4a–c represent the interaction
diagram of the δ-secretase-Aloxistatin, cocrystal-complex and Oprea1
docked complex respectively using LigPlotþ [73], wherein residues like
Thr 250, Hie 256, Lys 259, Gln 269, Lys 273, Thr 277 as
hydrogen-bonded while residues such as His 252, Tyr 255, Met 268, Lys
273, Thr 274, Ser 276, Thr 277 interacted hydrophobically. 3D active site
interaction ofþve control (Aloxistatin) and cocrystal have been shown in
Supplementary section (Figure S1). Based on the binding conformation
and in orientation, Oprea1 bound in the same orientation as that of
4-morpholin-4-yl-2,1,3-benzoxadiazol-7-amine.
ase-Aloxistatin, Cocrystal & Oprea1 docked complex.
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3.6. Molecular dynamics simulations

To study the steady nature and conformational stability of δ-secretase,
molecular dynamics simulations (MDS) of the δ-secretase-docked com-
plex have been carried out for a time period of 200 ns. The trajectories
were visualized and analyzed based on the trajectories of the reformed
simulations. Ligand properties in terms of Polar Surface Area (PSA),
Solvent Accessible Surface Area (SASA), and Radius of Gyration (rGYR)
have been shown in Figure 5, illustrating the stability of the δ-secretase-
docked complex into the δ-secretase binding pocket.

Figure 6a shows the Histogram plot and timeline of protein-ligand
contact of the δ-secretase-Oprea1 complex. Histogram reveals the resi-
dues; viz., Asn 196, Asn 211, Thr 250, His 252, Lys 253, Tyr 255, His 256,
Lys 259, Gln 269 interacted via hydrogen bonds while the residues viz., Lys
259 and Lys 273 also contributed via ionic bonds and salt bridges. Residues
such as Tyr 255, His 266, and Gln 269 contributed via water bridges too,
followed by hydrophobic interaction by His 266, Met 268, His 256, His
252 residues playing a pivotal role in deciphering the binding of Oprea1
into the active site pocket of δ-secretase. During the course of simulations,
residues such as Asn 196, Asn 211, Thr 250, His 252, Lys 253, Tyr 255, His
256, Lys 259, Gln 269 were key interacting residues with Oprea1. Lys 259
is one of the key residues which maintained the hydrogen bond with
Oprea1 during the entire course of 200ns simulations.

Structural deviation of the δ-secretase-Oprea1 complex was analyzed
using RMSD of overall protein and RGYR during the course of 200ns. As
shown in Figure 6b, RMSD of the protein Cα-backbone with respect to its
starting position increased to 1.20 Å for the first 25 ns of the trajectory
and then became stable around 0.6 Å in the last 170 ns course of the
simulation. The radius of gyration (RGYR) as shown in Figure 5 reveals
that compactness was maintained till the end of simulations. Further,
Figure 5. Ligand properties of Oprea1 in terms of PSA, SASA, and rGYR
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RMSF as depicted in Figure 7a, depicts that the fluctuation found among
the residues might be due to the presence of the loop. Thus, the confor-
mational stability of the docked complex was analyzedwhich reveals that
all complexes were highly stable, and provides the base for the interac-
tion stability analysis being essential for our study to decipher the
inhibitory potential of the Oprea1.

To illustrate the conformational changes of every ratable of δ-secretase-
Oprea1 complex, a torsional profile was calculated during the simulation
run of 0.00–200.00 ns. Figure 7b represents the probability density of
torsion of Oprea1, illustrated in terms of dial plots, data so obtained has
been plotted on bar plots (Histograms). Over a simulation period of 200 ns,
the conformational torsions have been illustrated in terms of Radial or dial
plots, wherein the initial simulation process is in the center of the dial plot
and the evolution of time is plotted radials outward. Throughout the
simulation time, Oprea1 was bound at the active site. RMSD of the Oprea1
complex remained consistent over the total simulation time.

Further, the protein-ligand contacts and ligand properties in the
δ-secretase-Oprea1 complex were analyzed to determine the conforma-
tional as well the interaction stability of the docked complex and can be
depicted in Figure 8. From the interaction profile, as shown in Figure 5, it
is revealed that key residues like Asn 211, His 266, Met 268, Gln 269
maintain the binding with the δ-secretase; however, the interaction as
provided by the Lys 259 were predominant and consistent throughout
the simulation time of 200ns revealing its role in the binding of Oprea1
into the binding pocket of the δ-secretase.

3.7. Normal mode analysis & eigen values

Eigen values associated to each normal mode represent the motion
softness, its value is directly related to the energy required to deform the
in terms of PSA, SASA, and rGYR into binding pocket δ-secretase.



Figure 6. Interaction profile interims of δ-secretase-Oprea1 complex interaction lead have been monitored via Histogram (Hydrogen bond, hydrophobic and ionic)
from simulation trajectory and (b): RMSD plot of the backbone of the δ-secretase-Oprea1.

Figure 7. (a): RMSF of interaction profile in terms of δ-secretase-Oprea1 complex, while as (b): represents the probability density of torsion of δ-secretase-Oprea1
complex illustrated in terms of dial plots/radial plots, data so obtained has been plotted on bar plots (Histograms).

S. Iqbal et al. Heliyon 7 (2021) e08502
structure. Normal mode analysis in terms of eigen value was investigated
for cocrystal, Oprea1 andþve control (Aloxistatin) complexes. The lower
the eigen value the easier the deformation. Stability of the Oprea1
docked complex can be adumbarated by its eigen value. Data depicted in
8

Supplementary section (Figure S2), reveals the stability of Oprea1 as that
of þve control (Aloxistatin) and cocrystal. The domain motions encoded
by a single normal mode have been summarised with handful of curved
arrows (Arrow field and Affine arrows), (Figure S3), where the longest



Figure 8. Protein-ligand contacts and ligand properties in the δ-secretase-Oprea1 complex.

S. Iqbal et al. Heliyon 7 (2021) e08502
path is depicted as wide curved arrow representing trajectories followed
by each dynamical domain. The arrows and dynamical domains have are
colored accordingly to improve the visualization of motions encoded in
the mode.

4. Conclusion

Network analysis is effective for identifying features of AD in humans,
as well as identifying genes that control pathological changes in network
properties. We analyzed transcriptomic profiles using integrative multi-
omics analysis to decipher system-level molecular signatures at the
protein (hub proteins, TFs) and RNA level (miRNAs). We identified that
LGMN and its associated genes are involved in multiple diseases.
Network analysis of LGMN associated miRNAs lead to the identification
of two novel miRNAs; hsa-miRNA-106a-5p and hsa-miRNA-34a-5p being
highly expressed in the brain. Identification and expression of 10 Tran-
scription factors associated with LGMN have also been unraveled. Spatio-
temporal expression heatmap results show high and continuous expres-
sion of LGMN in most of the regions of the brain, especially in the frontal
cortex. In a first-of-its-kind study, the LGMN gene-related regulatory
miRNAs resulted in the identification of AD-specific TFs and miRNAs
involved in AD. Our findings reveal the dysregulated miRNA: hsa-mir-
26b-5p could be used as a biomarker in the diagnosis of AD. In paral-
lel, IFD studies reveal that the Oprea1 bound well at the active site target
of the δ-secretase. Residues like Thr 250, Hie 252, Hie 256, Lys 259, Gln
269 as hydrogen-bonded, while residues such as Met 268, Thr 274, Ser
276, Thr 277 interacted hydrophobically. Furthermore, Molecular dy-
namic simulations investigation of the δ-secretase-Oprea 1 docked
complex have been carried out for a time period of 200 ns, revealed that
Oprea1 has better binding affinity than that of 4-morpholin-4-yl-2,1,3-
benzoxadiazol-7-amine reflected by RMSD, Rgyr, and RMSF profiles.
Conformational stability of the docked complex confirms the high sta-
bility of Oprea1 with δ-secretase and provides the base for the interaction
stability analysis being essential for our study to decipher the inhibitory
potential of Oprea1. We have identified and analyzed the interactions of
the target gene in the form of a network, and other important genes
responsible for the modular existence of the network. Thus, based on
Network analysis, the findings of our study ameliorate that identified
miRNAs and Transcription Factors involved in simultaneous multiple
associated diseases andmultiple roles of LGMN in regulating the different
pathways be further investigated for their potential role and implication
in combatting AD and AD-associated diseases. Further studies are needed
to establish dysregulation of mir-26b-5p in blood and brain, as biomarker
for AD to have clinical utility.
9
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