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Abstract

Population sex ratios are of high ecological relevance, but are challenging to determine in

species lacking conspicuous external cues indicating their sex. Acoustic sexing is an option

if vocalizations differ between sexes, but is precluded by overlapping distributions of the val-

ues of male and female vocalizations in many species. A method allowing the inference of

sex ratios despite such an overlap will therefore greatly increase the information extractable

from acoustic data. To meet this demand, we developed a novel approach using Approxi-

mate Bayesian Computation (ABC) to infer the sex ratio of populations from acoustic data.

Additionally, parameters characterizing the male and female distribution of acoustic values

(mean and standard deviation) are inferred. This information is then used to probabilistically

assign a sex to a single acoustic signal. We furthermore develop a simpler means of sex

ratio estimation based on the exclusion of calls from the overlap zone. Applying our methods

to simulated data demonstrates that sex ratio and acoustic parameter characteristics of

males and females are reliably inferred by the ABC approach. Applying both the ABC and

the exclusion method to empirical datasets (echolocation calls recorded in colonies of lesser

horseshoe bats, Rhinolophus hipposideros) provides similar sex ratios as molecular sexing.

Our methods aim to facilitate evidence-based conservation, and to benefit scientists investi-

gating ecological or conservation questions related to sex- or group specific behaviour

across a wide range of organisms emitting acoustic signals. The developed methodology is

non-invasive, low-cost and time-efficient, thus allowing the study of many sites and individu-

als. We provide an R-script for the easy application of the method and discuss potential

future extensions and fields of applications. The script can be easily adapted to account for

numerous biological systems by adjusting the type and number of groups to be distin-

guished (e.g. age, social rank, cryptic species) and the acoustic parameters investigated.

Introduction

The proportion of males (POM) in animal populations is of great interest to ecologists and

conservationists, because sex ratios influence mating systems and effective population size, the

latter being crucial for the maintenance of genetic diversity [1]. In species whose sex cannot be

PLOS ONE | https://doi.org/10.1371/journal.pone.0199428 June 21, 2018 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Lehnen L, Schorcht W, Karst I,

Biedermann M, Kerth G, Puechmaille SJ (2018)

Using Approximate Bayesian Computation to infer

sex ratios from acoustic data. PLoS ONE 13(6):

e0199428. https://doi.org/10.1371/journal.

pone.0199428

Editor: Brock Fenton, University of Western

Ontario, CANADA

Received: January 30, 2018

Accepted: June 7, 2018

Published: June 21, 2018

Copyright: © 2018 Lehnen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: LL was funded by a PhD position in the

framework of the RTG 2010 Research Training

Programme (Deutsche Forschungsgemeinschaft,

German Science Foundation DFG; http://www.dfg.

de/; grant awarded to SJP, GK). Additional financial

support was provided by the Deutsche

Bundesstiftung Umwelt DBU (https://www.dbu.de/;

German Federal Environmental Foundation,

https://doi.org/10.1371/journal.pone.0199428
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199428&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199428&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199428&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199428&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199428&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199428&domain=pdf&date_stamp=2018-06-21
https://doi.org/10.1371/journal.pone.0199428
https://doi.org/10.1371/journal.pone.0199428
http://creativecommons.org/licenses/by/4.0/
http://www.dfg.de/
http://www.dfg.de/
https://www.dbu.de/


easily identified visually because they are elusive or nocturnal, or lack visible secondary sex

dimorphism, other means of determining the POM are required. Molecular sexing can offer

an alternative [2,3], but is usually time and cost-intensive, and often invasive due to the chal-

lenges arising from non-invasively collected samples, e.g. the need to process replicates of each

sample and the associated increase in costs [3,4].

In species with vocal sexual dimorphism, these issues can be circumvented by acoustic sex-

ing. In the last decades, passive acoustic monitoring has become a popular tool for collecting

information about biodiversity [5], population densities [6,7], animal movement and behav-

iour [8], and how these factors are impacted by anthropogenic activities [9]. Both in terrestrial

and marine environments, acoustic data have gained in importance [9,10] across taxonomic

groups from insects [11], amphibians [12], reptiles [13], fish [14,15], and birds [16] to mam-

mals [17–22]. Alongside species identity [21,23,24] acoustic data can encode information

about sex [25–28], individual identity [25,29], body size, age, and social group [28,30–32] or

geographic origin [33–35]. Sex identification based on calls, for example, has successfully been

applied to 25 of 69 investigated bird species lacking external sex dimorphism [36]. Acoustic

sexing was however less reliable or even impossible in many of the studied species due to vary-

ing degrees of overlap in acoustic characteristics of males and females. Such overlap, which is

commonly encountered across taxonomic groups [36,37], strongly limits the scope of the

application of acoustic data. Therefore, novel approaches are required that allow acoustic sex-

ing and inferences of sex ratios despite such an overlap.

To investigate the possibility to infer sex ratios and to provide sexing methods from acous-

tic data, we use Rhinolophus hipposideros (Rhip) as a biological model showing acoustic sexual

dimorphism with overlap between sexes [28]. This bat species is of high conservation concern:

it is classified as near threatened in the European Union Red List and listed in the annex II and

IV of the EU Habitats and Species Directive. Hence population monitoring is legally required.

In Rhip, the reproductive output of colonies is usually estimated by dividing the number of

juveniles by the number of adult females. The latter however cannot be easily determined from

visual counts of adults in the colony, because most bat species, including Rhip, show no visible

secondary sex dimorphism. As in many mammalian species, sex identification in bats mostly

relies on catching individuals and inspecting their sexual organs. For regular monitoring, this

approach is unsuitable due to the large time effort required and handling stress for the animals,

especially for vulnerable or threatened species. Current estimates of reproductive output there-

fore usually assume all adults present in the colony to be females. Males have however been

reported to be present in Rhip maternity colonies in the past [38–40]. Zarzoso-Lacoste & Jan

et al. [3] further demonstrated that the POM in maternity colonies can be substantial and

importantly, differ between colonies. Traditional estimates are therefore prone to underesti-

mate the number of offspring per female to an unpredictable degree and therefore call for

alternative methods to be developed and tested.

The high calling rates of echolocating bats make them ideal for acoustic monitoring (e.g.

[23,41]) and for developing methods of acoustic sexing. However, sexing based on simple

call parameters such as the call frequency has not yet been possible, because these acoustic

parameters overlap between sexes [28,42,43]. Hence, an approach that would allow a quick

and simple determination of sex ratios in free-ranging populations despite such an overlap

would greatly benefit monitoring programs and ecological studies. While different mixture

model approaches exist to address this situation (cf. section “Screening for and testing available

approaches”), we did not encounter an approach allowing reliable inference of the POM for

overlapping ranges of acoustic parameters. As a consequence, we use Approximate Bayesian

Computation (ABC) to infer sex ratios from passively recorded calls in a species with vocal sex

dimorphism, where acoustic value ranges of males and females overlap. The developed novel
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approach moreover allows the investigation of spatial or temporal changes in sex composition,

and the assignment of sex to calls. We additionally develop a simpler approach that only con-

siders calls outside the overlap zone. The performance of all methods is tested with simulated

data. We additionally validate the reliability of acoustic sex ratio determination with empirical

data (recorded echolocation calls) from four molecularly sexed Rhip colonies.

All methods are implemented in the provided R-scripts (S1 and S2 Files). Users do not

need to have programming experience if their study system meets the assumptions of the cur-

rently implemented approach, because the adjusted priors are the only input required. More

experienced users can change additional settings to relax various assumptions and extend the

approach to other study systems. Consequently, our approach has a wide range of applications

in ecology and conservation biology.

Materials and methods

Screening for and testing available approaches

We assessed the list of R-based cluster analyses and finite mixture modelling approaches avail-

able on CRAN (https://cran.r-project.org/web/views/Cluster.html) for their suitability con-

cerning our study question. The maximum-likelihood (ML) based package mclust [44] was

considered a promising candidate and its performance was tested (see S3 File for details) with

the simulated data described in the section “Simulated data set”. mclust performed relatively

poorly in determining the POM, especially for low sample sizes, i.e. 100 or 200 calls (S1 Fig).

The mclust package was therefore judged unsuitable for reliable estimation of the POM from

acoustic data in Rhip colonies, where datasets of fewer than 200 calls are not uncommon.

Other ML approaches were not tested as they did not meet the requirements of ratio inference

from univariate, normally distributed data.

A major advantage of Bayesian approaches compared to ML approaches is the specification

of priors [45] by the user, which permits the algorithm to draw on existing information, hence

potentially greatly increasing performance. In our study system, the value ranges of male and

female mean peak frequencies are known, providing information that can be used as priors to

improve performance in the estimation of POM. Existing Bayesian clustering approaches how-

ever do not allow the specification of uniform, or flat, priors where all possible values within

the range are equally likely a priori. To overcome this issue, we developed an ABC approach

that incorporates both the required feature of ratio inference from univariate, normally distrib-

uted data and the flexibility to define uniform priors.

Inferring sex ratios with ABC

The approach we developed is based on an ABC framework inferring the most likely parame-

ters given some observed distribution by comparing summary statistics of the observed data to

summary statistics of simulated datasets. In our case, the main parameter investigated was the

POM in a given dataset (set of echolocation call recordings from many individuals). The char-

acteristics of the simulated datasets are described in the section “Simulated data set” below. To

generalize our approach and to allow for some uncertainty in prior knowledge in acoustic

parameters for both sexes, we included three additional parameters: the mean peak frequency

of each sex separately (two parameters) and the standard deviation (sd) of peak frequency of

each sex. The latter was assumed to be equal for both sexes, and hence was represented by a

single parameter, an assumption that can be relaxed. Based on our own observations (I.Karst,

W. Schorcht, M. Biedermann) and published data on our focal species [28,46–48], the follow-

ing parameter priors (with uniform distribution) were used: POM: 0–1, mean peak frequency

of males: 104–107 (kHz), mean peak frequency of females: 108–111 (kHz), sd of peak
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frequency: 0.8–1.2 kHz. We used two additional constraints stating that the mean peak fre-

quency of males was at least 2.5 kHz, but not more than 5 kHz lower than the mean peak fre-

quency of females [47]. The comparisons between observed and simulated datasets used the

following summary statistics a) median of peak frequencies, b) mean of peak frequencies, c)

standard deviation of peak frequencies (all irrespective of sex), d) Kolmogorov-Smirnov dis-

tance between the observed and simulated distributions of peak frequencies.

We used the adaptive population Monte-Carlo ABC algorithm developed by Lenormand

et al. [49]. This algorithm was preferred over others as it was designed to minimise the number

of models necessary to reach a given quality of the posterior distribution and was the only one

providing reasonably good estimates when sex ratios were severely imbalanced (data not

shown). The ABC algorithm was implemented via the EasyABC package [50] in R version

3.4.2 [51]. Unless otherwise stated, the input arguments used for the algorithm were 1000 for

the initial number of simulations (nb_simul), 0.4 for the proportion α of best-fit simulations to

update the tolerance level at each step (alpha), and 0.01 as the stopping criterion (p_acc_min).

The values of alpha and p_acc_min can influence the quality of the posterior approximation,

and the present values were chosen as they performed best in simulations exploring all 42 dif-

ferent combinations of values between both parameters tested (alpha: 0.4, 0.5, 0.6, 0.7, 0.8, 0.9;

p_acc_min: 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05; see S2 Fig). The 95% highest density inter-

vals (HDI) of the estimates obtained via the ABC approach were computed using the ‘hdi’

function from the ‘HDInterval’ package [52].

Simulated data set

Simulations used in the testing phase of the ABC algorithm and to perform the ABC analyses

were implemented via a custom R script (S1 and S2 Files). For a given total sample size (here,

number of calls) and POM, we calculated the number of data points (calls) from females and

males, respectively, and simulated normally distributed peak frequency data for each sex sepa-

rately. We assumed the ratio of male to female calls to be equal to the ratio between the num-

ber of males and the number of females. The samples sizes used were 100, 500, 1000, 2500,

5000, and 10000; the POM ranged from 0 to 1 in incremental steps of 0.05, with 100 replicates

per parameter combination. The mean peak frequency was either set by the user to create test

datasets or was automatically chosen by the ABC algorithm. For the test datasets, the following

parameter values were used: male mean peak frequency = 106 kHz, female mean peak fre-

quency = 109 kHz, and sd of peak frequency = 1 for each sex. When running the ABC algo-

rithm, priors were used as defined in the above section. The normal distribution was used as it

fitted well to the distribution of peak frequencies observed in Rhip [47].

Inferring sex ratios by excluding the overlap zone

Mirroring approaches from species without overlapping acoustic value ranges, we developed a

second method determining sex ratios that solely considered calls that can be classified with

high confidence as male or female. The POM was then simply the proportion of male calls in

the dataset. Calls falling within the overlap range were therefore excluded in this method

(exclusion method). To investigate trade-offs between confidence levels and reductions in

sample size, we tested the performance of this method using different thresholds for the exclu-

sion zone. For simplicity, we always considered males to call lower than females, so that the

exclusion zone encompassed the right tail of the distribution of male calls and the left tail of

the distribution of female calls. In the most stringent case (widest exclusion zone), the lower

boundary of the exclusion zone was set to the frequency that was lower than the frequency of

99.9% of all female calls, and the higher boundary to the frequency that was higher than the

Acoustic sex identification
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frequency of 99.9% of male calls (Fig 1). The less stringent approaches used thresholds of 99

and 95%.

This exclusion method used normally distributed data with the mean of the acoustic param-

eter for each sex and the sd given by the ABC estimation. It can also be applied without using

the ABC method but then the value of these parameters must be provided by the user based on

prior knowledge of the system. We therefore examined how the accuracy of the assumed

parameter values affected the estimated POM. For this purpose, we explored the effect of

assuming mean peak frequency values that were up to 3 kHz higher or lower than the true

(simulated) value. For simplicity, we did not investigate errors in the assumed sd of peak fre-

quencies and the difference in mean peak frequency between sexes, hence our calculations are

most likely underestimating the true error. The 95, 99 and 99.9% thresholds were calculated as

explained above based on the user provided values of mean peak frequencies of males and

females. Calculations were carried out for male proportions between 0 and 1 in incremental

steps of 0.05.

Methods’ performance

The performance of the different methods in estimating the POM was evaluated by computing

the root-mean-squared error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XR

k¼1

ðpi � PÞ2=R

s

where pi is the estimate of the simulated (≙true) proportion of males P for the ith data set

(i = 1, 2, . . ., R).

Fig 1. Illustration of the exclusion method. The x-axis represents the acoustic variable of interest (e.g. peak

frequency) with different, but overlapping, distributions in males (blue) and females (red); both represented as a

probability density function. Red/blue dashed lines depict the investigated lower/upper boundaries for the exclusion

zone, with different stringency thresholds used to define the overlap zone.

https://doi.org/10.1371/journal.pone.0199428.g001
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Two-step approach for small data sets

As the precision of estimates obtained with the ABC method diminished with decreasing sam-

ple size (see Results), precise sex ratio estimation might be precluded for small datasets (i.e.

low numbers of calls). This applies to studies that are interested in temporal or spatial changes

in the POM, e.g. over a month or between different habitat patches, thus requiring estimates

on a daily basis or for restricted spatial areas. Using simulated data, we explored the use of a

two-step ABC procedure whereby we first estimated the acoustic parameters for each sex

(mean and sd) across the whole dataset (e.g. for a whole month). A second step used the 95%

highest posterior density interval of these estimates as new priors to run the ABC procedure

for a subset of these data (e.g. each day separately). This two-step approach assumes that the

sex-specific mean of acoustic parameters does not change in time/space within the dataset con-

sidered, i.e. the mean peak frequencies and sd do not change for example from day to day

(time) or between two foraging patches (space). We investigated the performance of the two-

step procedure using simulated datasets mimicking a POM increase over time in steps of 0.05

from 0 to 1 (≙21 steps, each representing a certain time period). The number of calls per period

was kept constant. Simulations were carried out for 25, 50 and 100 calls per period so that the

total number of calls per dataset was 525, 1050 and 2100, respectively. A total of 100 simulated

datasets was used per parameter combination.

Inferring the sex per recording

The ABC framework does not provide information about the sex of each data point (here,

call). Nevertheless, the information on acoustic parameters and the POM it provides can be

subsequently used to probabilistically assign a sex to each data point. To do so, we calculated

the likelihood ratio of a call being from a male versus a female as the conditional probability of

a call being from a male given its frequency divided by the conditional probability of a call

being from a female given its frequency. Following Bayes’ theorem, the conditional probability

of observing a male given the peak frequency can be written as:

PðMale j FreqÞ ¼ PðFreq j MaleÞ x PðMaleÞ = PðFreqÞ

The conditional probability of observing a female given the peak frequency can be written

as:

PðFemale j FreqÞ ¼ PðFreq j FemaleÞ x PðFemaleÞ = PðFreqÞ

The likelihood ratio (LR) can thus be reduced to:

LR ¼ PðFreq j MaleÞ x PðMaleÞ = PðFreq j FemaleÞ x PðFemaleÞ

Calls with a likelihood ratio >1 or <1 were considered as being from males or females,

respectively.

Using simulated datasets, we investigated the proportion of calls assigned to the correct sex

using this probabilistic approach. Simulated datasets and simulation parameters were as

detailed in ‘Simulated data set’ and the POM ranged from 0.1 to 0.9 in steps of 0.1. To investi-

gate the performance of the approach with varying levels of overlap between male and female

call distributions, differences of 1, 2, 3, 4, and 5 kHz between male and female mean peak fre-

quencies were considered. Sample sizes of 25, 50, 100, 500 and 1000 calls were investigated

with 1000 replicates per parameter combination (225,000 simulated datasets).

Acoustic sex identification
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Empirical dataset

The empirical data set consisted of Rhip echolocation calls recorded in four maternity colonies

in Thuringia, Central Germany, in the summers of 2015 and 2016 (see S1 and S2 Tables for

details). Accessing the roosts was approved by local nature conservation authorities (permit

Jena AV09_AGO7_17). One automatic recording device (Anabat SD2 bat detector, Titley Sci-

entific) was positioned inside each of the four studied roosts and directed towards the entrance

(ca. 3 m away) to record bats entering between 1:00 am and 6:00 a.m. using a zero-crossing

division ratio of eight. We used the Anabat CFCread program (Titley Scientific) to split the

continuous data into recordings, i.e. sequences of calls considered to be emitted by one animal

passing the detector (for details see S4 File: What is a recording in our study?). Recordings

were then filtered via the software AnaLook version 4.2.n to include only Rhip calls (S5 File).

Subsequently, calls with an average frequency (Fmean) below 100 kHz were removed as they

were outside the value range of the call parameter for adult Rhip and to exclude social calls,

which have a lower frequency [53]. Fmean and sd were calculated for each recording. The

mean of Fmean calculated over all calls for each recording was considered representative of

the acoustic parameter (i.e. peak frequency) of the emitter.

Molecular sexing

Bat faeces were non-invasively collected in the studied colonies during the summers of 2015

and 2016 (see Table 1). Newspapers were spread on the ground beneath the roosting sites and

faeces were collected approximately 10–20 days later (Table 1). Upon collection, faeces were

stored in plastic boxes (1 per colony) pre-filled to 1/3 with absorbing silica-gel beads to prevent

DNA degradation until analysis [54,55]. Animals were not touched during the sampling, and

accessing the roosts was approved by local nature conservation authorities (permit Jena

AV09_AGO7_17). DNA extraction and amplification, as well as multilocus genotyping were

carried out as described by Zarzoso-Lacoste & Jan et al. [3], but employing centrifugation

instead of a vacuum pump during DNA extraction (see S6 File for a detailed protocol). We

also used the same bioinformatics pipeline, with slight modifications: In the current study, all

relative fluorescence unit (RFU) peaks corresponding to sex specific alleles were visually re-

inspected and validated by plotting the RFUs for the appropriate marker with the aid of the R-

package Fragman [56]. Furthermore, we applied a different rule for the peak of the Y-linked

allele to be accepted: it was counted only if the corresponding peak was present in all three rep-

licates and higher than the peak of the X-linked allele in at least one replicate. An exception

was made in the rare case where a multilocus genotype (MLG) was found to be identical to

Table 1. Proportion of males and peak frequencies of the studied colonies. The proportion of males was estimated with the genetic (Gen.), acoustic ABC (ABC), and

acoustic 99.9% exclusion methods. The 95% highest density interval (HDI) is presented for parameters estimated via the ABC approach. Peak frequencies were estimated

with the acoustic ABC approach.

Samples Proportion of males ABC estimate of the mean peak frequency in kHz

ID a) b) c) Gen. ABC, mean (HDI) 99.9 Male, mean (HDI) Female, mean (HDI)

Thu22 144 138 78 0.22 0.21 (0.19–0.23) 0.19 105.9 (105.72–106.08) 109.1 (109.02–109.15)

Thu26 168 153 83 0.63 0.63 (0.57–0.69) 0.67 105.9 (105.78–106.09) 108.6 (108.39–108.86)

Thu47 40 38 19 0.32 0.37 (0.34–0.39) 0.34 105.5 (105.33–105.57) 108.8 (108.70–108.88)

Thu35 40 39 23 0.26 0.37 (0.32–0.41) 0.38 105.0 (104.73–105.27) 108.3 (108.14–108.56)

a) number of genetic samples.

b) number of samples that provided multilocus genotypes (MLGs) of sufficient quality (see Materials and methods for details).

c) number of unique MLGs.

https://doi.org/10.1371/journal.pone.0199428.t001
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another MLG in all loci but the sex specific one. In that case, the Y-linked allele was also

counted if it was missing in one replicate and if the corresponding peak was not higher than

the peak of the X-linked allele. In general, only MLGs with missing data at no more than two

loci were kept, provided that the peaks at the sex specific locus were unambiguous.

Results

Estimation of acoustic parameters and sex ratios with ABC

The estimated male and female mean peak frequencies matched the simulated values. Inaccu-

rate estimates were obtained however if the proportion of the focus sex was zero (Figs 2 and 3).

Both precision and accuracy increased with sample size (Fig 3). The estimated sd of call fre-

quencies was slightly underestimated when only one sex was present (Figs 2 and 3). Generally,

there was a slight upward bias in the estimated sd that disappeared with increasing sample size

(Fig 3).

POM values estimated via ABC showed a high degree of concordance with the real values

in the simulated data set for all sample sizes (Fig 4). Both precision and accuracy increased

with sample size (Figs 4 and 5). The RMSE did not exceed 0.05 for the lowest sample size (100

calls), and dropped to less than 0.02 when increasing the number of calls to 500 (Fig 5). Further

increases in the number of calls resulted in even lower RMSEs for all sample sizes tested, but

beyond 5000 calls the improvement became marginal (Fig 5).

For the four sampled Rhip colonies (empirical datasets), mean peak frequencies were

inferred to be between 105.0 and 105.9 for males, and between 108.3 and 109.1 for females

(Table 1). The POM estimates ranged between 0.21 and 0.63 depending on the colony, differ-

ing from the genetically determined one by 0 to 0.11.

Two-step ABC approach

Applying a two-step ABC procedure improved the performance of POM estimates compared

to an approach where acoustic parameters (male and female peak frequencies and sd) were

Fig 2. Mean peak frequencies of males and females and within-sex standard deviation of peak frequency. Same sd for both sexes, estimated via ABC

across simulations (i.e. including all tested sample sizes: 100, 500, 1000, 2500, 5000, 10000; with 100 simulated data sets for each of the 126 combinations of

a given proportion of males and sample size).

https://doi.org/10.1371/journal.pone.0199428.g002
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estimated separately for each subset (Fig 6). RMSEs below 0.04 were obtained for datasets of

50 calls, which matched the performance of the one-step approach but with a sample size

reduced by half (Fig 6).

The proportion of calls assigned to the correct sex using the probabilistic approach was

influenced by the difference in mean peak frequency between sexes, the number of calls as well

as the POM (Table 2; Fig 7). For minor overlaps between sexes (i.e. 4–5 kHz difference in

mean), the method performed extremely well (> 98% calls correctly assigned; Table 2). When

the overlap increased, the method still performed relatively well, with e.g. 78% calls correctly

assigned when the overlap zone comprises 95% of calls in the dataset (1 kHz difference,

N = 1000 calls; Table 2). The variance across datasets, but not the mean correct assignment,

decreased with increasing number of calls. The POM affected the results in two ways; first, the

more common sex had a larger proportion of correct assignment (Fig 7); second, the overall

proportion of correct assignments was higher for more unbalanced sex ratios (Fig 8).

Estimation of sex ratios via the exclusion method

Sex ratios estimated via the exclusion method varied in their performance in relation to the

thresholds considered for the overlap zone. The 99% and particularly 95% approach per-

formed as well as the ABC method for rather balanced sex ratios only, but resulted in higher

RMSEs for unbalanced ones (Fig 5). A threshold of 99.9% yielded similar RMSEs as the ABC

approach (Fig 5). However, the exclusion method was highly sensitive to the accuracy of the

prior information, i.e. assumed mean peak frequencies of males and females (Fig 9). The

Fig 3. Mean peak frequency of males (top) and females (middle) and the within-sex (equal for males and females) standard deviation of calls (bottom).

Estimated via ABC for the same datasets as in Fig 2, but plotted separately for the six different sample sizes (represented by blocks).

https://doi.org/10.1371/journal.pone.0199428.g003
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sensitivity was dependant on the difference between the true and assumed mean peak fre-

quency, the sign of this difference and the true POM.

The POM estimated via the 99.9% exclusion method in the four sampled Rhip colonies was

between 0.19 and 0.67 depending on the colony. These estimates differed from the corre-

sponding ABC results by 0.01 to 0.04, and from the genetically determined sex ratios by 0.02 to

0.12 (Table 1).

Fig 4. Proportion of males estimated via the ABC method versus the simulated (true) value. For 100, 500, 1000, 2500, 5000, and 10000 calls (same datasets as Figs 2

and 3). The dashed line depicts a perfect match between simulated and estimated values.

https://doi.org/10.1371/journal.pone.0199428.g004

Fig 5. Root mean square error (RMSE) for different sex ratios estimated via the exclusion method using thresholds of 95% (blue), 99% (yellow),

and 99.9% (green), and via the ABC approach (black). Blocks correspond to different sample sizes as indicated. The X-axis represents the simulated

proportion of males (from 0 to 1 in steps of 0.05, same datasets as Figs 2–4).

https://doi.org/10.1371/journal.pone.0199428.g005
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Discussion

We have developed and tested two methods to infer the sex ratio of groups of vocalizing ani-

mals where acoustic parameters of the signals overlap between males and females. The newly

developed Bayesian (ABC) approach infers male and female mean peak frequencies and the

according sd as well as the proportion of males (POM). These inferences can then be used to

separately analyse subsets of the data that correspond e.g. to certain time periods of interest

and/or to probabilistically assign a sex to single data points (e.g. calls). Finally, the inferred

acoustic parameters can be used to define the exclusion zone for a second, simpler approach

based on the exclusion of calls from the overlap zone.

Fig 6. Comparison of RMSEs obtained with the one-step versus the two-step ABC method.

https://doi.org/10.1371/journal.pone.0199428.g006

Table 2. Identification of the caller’s sex from simulated datasets. The difference between male and female simulated mean peak frequencies (Δ) was between 1 and 5

kHz. The number of calls per dataset ranged from N = 25 to N = 1000. Values presented correspond to the percentage (mean and sd) of individuals assigned to the correct

sex out of 9,000 simulations (1000 simulations per considered proportion of males going from 0.1 to 0.9 in steps of 0.1). The percentage of calls within the overlap zone

between sexes is also presented as a measure of overlap (mean and sd).

Mean (sd) % correctly assigned Mean (sd) % overlapping

Δ N = 25 N = 50 N = 100 N = 500 N = 1000 N = 25 N = 50 N = 100 N = 500 N = 1000

5 99.5 (1.4) 99.5 (1.0) 99.5 (0.3) 99.5 (0.3) 99.5 (0.2) 0.2 (1.2) 0.3 (1.3) 0.5 (1.5) 1.7 (2.1) 2.6 (2.6)

4 98.1 (2.7) 98.2 (1.9) 98.1 (0.7) 98.1 (0.7) 98.1 (0.6) 1.7 (4.6) 2.7 (4.7) 4.4 (5.2) 11.0 (7.1) 15.0 (7.9)

3 94.5 (4.6) 94.6 (3.4) 94.7 (2.5) 94.6 (1.6) 94.6 (1.4) 9.3 (11.7) 13.8 (11.8) 20.0 (12.5) 36.8 (13.2) 45.0 (12.8)

2 87.7 (7.0) 87.7 (5.4) 87.7 (4.5) 87.7 (3.5) 87.7 (3.4) 30.4 (19.9) 40.5 (18.6) 51.0 (17.2) 71.7 (12.3) 78.7 (10.1)

1 78.1 (10.2) 78.1 (8.9) 78.1 (8.3) 78.1 (7.8) 78.1 (7.7) 61.0 (22.2) 72.7 (17.0) 81.2 (12.8) 93.1 (5.4) 95.6 (3.6)

https://doi.org/10.1371/journal.pone.0199428.t002
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Acoustic parameter estimation via ABC

The estimate of the mean call frequency for a specific sex becomes more precise and accurate

with higher sample sizes and/or a higher proportion of that sex (Figs 2 and 3). However, in the

absence of males, male mean peak frequency values are systematically overestimated, because

calls from the left tail of the female distribution are treated as male calls. Vice versa, female

mean peak frequencies are systematically underestimated in the absence of females (Fig 2).

Consequently, call parameter estimates should be interpreted cautiously when inferred sex

ratios are very imbalanced (i.e. when the estimated proportion of one of the sexes is less than

0.05), especially for low sample sizes (i.e. less than 500 calls).

Our method of estimating call parameters has broad applications beyond the determination

of sex ratio. It could for example benefit studies interested in ecogeographic variation in call

parameters, which has been observed in various taxa [35,47,57,58]. Our method favours the

quick, relatively cheap, and non-invasive collection of a large amount of data, thus enabling

researchers to compare acoustic traits across many sites. Our method could also be used to

study other biological groups beyond sexes. For example, in some species, acoustic features dif-

fer based on social rank (e.g. [30,59]), age, or body size (e.g. [26,28,31,32,60]). Cryptic species

Fig 7. Percentage of calls correctly identified as male (yellow) or female (blue). In this example, simulated mean peak frequencies of both sexes differed

by 2 kHz and the number of calls per dataset ranged from N = 25 to N = 1000. Values are presented for 1000 simulated datasets per considered proportion

of males (0.1 to 0.9 in steps of 0.1) and number of calls.

https://doi.org/10.1371/journal.pone.0199428.g007
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could also be investigated if they differ (at least on average) for some acoustic parameter,

which is often the case [61–67]. Our ABC approach can be used to determine the values which

are characteristic for vocalizations of subgroups and to estimate their ratio in abundance. Even

though the method has been developed for obtaining ratios for two groups, it can be extended

to any number suitable for the study question.

Sex ratio estimation

We confirm the robustness of the ABC and to some extent the exclusion method for sex ratio

estimation with simulated data sets of varying sample size. Obtaining larger numbers of calls

clearly improves precision and accuracy, but even for as few as 100 calls, errors are minor for

the Bayesian approach (Fig 5). For our simulated datasets, the 99.9% exclusion method is

slightly less accurate than the Bayesian approach for small sample sizes, but performs better

compared to the 95% and 99% exclusion approaches (Fig 5). The exclusion method is very

straightforward, providing an advantage for practitioners (easily applicable and very quick).

However, the mean peak frequencies of males and females (and their sd) used in this approach

must be known with very high accuracy to obtain reliable POMs (Fig 9). If this is not the case,

we strongly recommend using the ABC method instead.

We additionally tested the ABC and exclusion methods with empirical data. For three of

the four Rhip colonies, the POM determined from recorded calls is nearly equal to the ratio

obtained via molecular sexing (Thu22, Thu26, Thu47; Table 1). These results provide clear

evidence that the reliable estimation of the POM from acoustic recordings demonstrated via

Fig 8. Influence of the proportion of males on the global percentage of correct sex assignment of calls when male and female mean peak

frequencies differ by 1–5 kHz. Values for different sample sizes (cf. Fig 7) and sexes are combined.

https://doi.org/10.1371/journal.pone.0199428.g008
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simulation also applies to empirical datasets. Our method thus can be used to obtain sex

ratios and hence, the number of females, providing more reliable information to calculate the

number of offspring per female in Rhip colonies from passive acoustic monitoring data. An

overestimation of the POM via ABC compared to molecular sexing was observed in the

remaining colony (Thu35; Table 1). Theoretically, the molecular sexing approach could suf-

fer from a bias introduced by different sampling probabilities of males and females, e.g.

because they prefer different hanging sites or due to differences in roost fidelity [3]. Due to

the very good match between molecular and acoustic sexing for the other three colonies we

however rather suspect an underrepresentation of some individuals in the recorded calls. The

roost of this colony has two entrances, but only one was acoustically monitored. Hence, if

more females than males preferred the unmonitored entrance over the one where recordings

were made, their calls might be missing or less frequent in the data set, resulting in an overes-

timation of males. Therefore, we strongly recommend considering sex-specific or individual

behavioural differences in the study design of future applications. Importantly, our method

assumes a similar acoustic detection probability for individuals belonging to different groups

of interest. If for example males call louder or more often than females, they will be overrep-

resented in the dataset and their proportion will be overestimated. If such differences in

detection probability are well quantified for the study species/context, they can be corrected

for when simulating datasets within the ABC method. For our target species, the calls are

used for orientation and hence likely to be emitted equally often and at similar intensity by

individuals of both sexes. Nevertheless, for a successful application of our method to other

contexts or species, similarities in signal detection probability should be considered and

discussed.

Fig 9. Impact of the accuracy of the assumed mean peak frequencies on the performance of the exclusion method (99.9% threshold). The x-axis

shows the difference between the assumed and true mean peak frequency of male calls. Green lines represent an overestimation of the proportion of

males, blue lines an underestimation. The dashed, broken, and dotted lines depict sex ratios estimated for different assumed male mean peak

frequencies when the simulated POM is 0, 0.5, or 1, respectively.

https://doi.org/10.1371/journal.pone.0199428.g009
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Two-step sex ratio determination for data subsets

We have developed and tested a method to track changes in the POM via a two-step ABC

approach. With this method, sex ratios can be estimated quite reliably even for relatively low

numbers of acoustic signals, e.g. short time periods such as days, or small spatial scales such as

single foraging/commuting sites. This allows the detection of temporal or spatial patterns in

the POM, which could provide interesting insights into the flexibility of social organisation

and behavioural differences of males and females in habitat use [68]. The method could be

used to compare sex ratios obtained for groups of migrating animals passing a recorder station

at different time periods (temporal) or to compare data simultaneously collected from differ-

ent stations (spatial), for example. Migratory birds are a particularly promising target for such

an approach, as acoustic signals even of flying flocks can be used for sex determination in cer-

tain species [69]. Furthermore, existing acoustic data from monitoring programs (e.g. [70])

could be used to test for within-species (or between—species, in the case of cryptic species)

temporal/spatial segregation or habitat preferences. Similarly to the estimation of acoustic

parameters, this temporal/spatial resolution method can also be applied to biological groups

other than sex. To ensure accurate estimates, the choice of the temporal/spatial scale will

depend on (1) the number of calls that can be obtained and, (2) the confidence in the dataset

to meet the assumptions of the method (i.e. the mean of acoustic parameters for each group

remaining constant through time/space).

Inferring the sex per recording

We have additionally established a method to probabilistically assign a sex to single acoustic

signals based on the acoustic parameters and the POM inferred from the ABC approach.

While not error-free at the individual level, our method provides a good strategy for detecting

overall patterns of sex-specific behaviour whose temporal/spatial resolution exceeds by far

even that of the two-step Bayesian method. As the sex assignment of a single acoustic signal is

based on the overall probability of signals being emitted by a male or female within the studied

group, which in turn depends on the sex ratio, the two-step ABC method should be used prior

to assigning a sex to single signals to confirm temporal/spatial homogeneity in sex composi-

tion, or to identify appropriate time periods/spatial scales over which the POM is stable in the

population.

Technical considerations for future applications

We have developed a method to infer the relative ratio in abundance of two (or potentially

more) groups of animals with partially overlapping value ranges of acoustic parameters. The

choice of parameters and distributions used in our investigation was driven by the biological

model used to empirically test the method. Our work therefore only covers a small range of

parameter combinations compared to what can be encountered in empirical datasets across

taxa. For example, normally distributed data are ubiquitous in biology and we expect many

datasets to conform to this distribution. Nevertheless, the use of other distributions is very

straightforward within the proposed framework which can therefore accommodate datasets

with a wide spectrum of distributions. The distributions can be any probability distribution

with a known mathematical function (e.g. normal) but also any empirical distribution

obtained by fitting an empirical dataset, offering within a single tool greater flexibility than

with conventional maximum likelihood or conventional Bayesian models. The range of esti-

mated parameters used in the ABC approach can be customised depending on the dataset. In

our case, we used the same sd for male and female peak frequencies but these can be decoupled

if needed. Similarly, we selected four summary statistics to compare the simulated and the
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observed dataset in the ABC procedure but different statistics could be used. We chose the

mean, median and sd of peak frequencies (irrespective of sex) and the Kolmogorov-Smirnov

statistic between the observed and simulated dataset as these are summarising well the varia-

tions observed in different distributions. However, the summary statistics can be easily and

quickly customised to improve performance if needed.

When developing the algorithm, Lenormand et al. [49] found that smaller alpha and

p_acc_min improved the quality of the posterior approximation but also increased the num-

ber of runs and hence time for completing the analysis. The authors recommended to use

alpha = 0.5 and p_acc_min between 0.01 and 0.05 depending on the desired level of conver-

gence. Our simulations show a limited influence of the values chosen for those parameters,

probably because of the simplicity of our datasets and quick convergence. Nevertheless, it

remains important to test the influence of these parameters and select those providing the

most accurate estimates based on simulated datasets mimicking the empirical datasets of

interest. More generally, we recommend that prior to studying sex ratio differences in empiri-

cal datasets, simulations mimicking those empirical datasets should be carried out to investi-

gate the reliability and limitations of the method.

Based on previous investigations of lesser horseshoe bats returning to their roost from for-

aging trips (data not shown), we chose the spatial arrangement of the recording device and the

temporal resolution of the recordings in a manner that limited the probability of two or more

individuals being recorded simultaneously. While the simultaneous recording of multiple indi-

viduals cannot be ruled out, the good agreement between the ABC estimates of POM and the

independent non-invasive genetic estimates suggests that those occurrences are not problem-

atic in our empirical dataset. This suggests that when two animals are unlikely to be recorded

simultaneously, one could simply use the mean peak frequency per recording (as done in our

study). An alternative would be to filter out those recordings or eventually, one could use the

peak frequency of each call instead of the mean peak frequency per recording. We did not

investigate this strategy in our empirical dataset because the prevalence of recordings with

high sd (suggesting simultaneous recording of more than one individual) was low (data not

shown). However, this issue should be investigated in other organisms/situations where such

recordings might be common, and especially when the acoustic parameters of calls of the emit-

ter are altered in the presence of other individuals [71,72].

Bats were recorded when entering the roost. Exiting bats were not recorded to avoid multi-

ple recordings per individual introduced by individuals going in and out or circling around

the entrance. Small entrances maximise the probability that individuals approach the record-

ing device from similar angles and at similar speed, leading to comparable Doppler shift on

all recordings. Setting up the recording device in a more open environment (e.g. foraging

grounds or commuting routes) might result in individuals approaching from different angles

and recordings being obtained from animals either approaching or going away from the

microphone, possibly leading to more ambiguous datasets. Although not tested here, choosing

a microphone with high directionality might limit the problem though at the cost of less

recordings being collected. Other non-mutually exclusive strategies might be to use the mini-

mum value of the peak frequency per recording (instead of the mean), which is likely to repre-

sent the call emitted when the individual is going away from the microphone. Datasets

collected in different situations might benefit from different data pre-processing steps prior to

sex ratio estimation and we encourage users to explore different options (cf. also the above par-

agraph). Filtering should also be performed when different types of acoustic signals (e.g. echo-

location versus social calls) are present in a dataset. Furthermore, in its current form, the

developed ABC approach is based on the assumption that the detection probability is equal for
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both groups whose ratio shall be inferred. This deserves special attention because noncompli-

ance with this assumption could lead to biases.

Conclusions

The methods developed here will allow scientists and applied conservationists to investigate

ecological questions dealing with the specific behaviour of groups of individuals in greater

detail, provided that acoustic di-/polymorphism exists between the focal groups. These can

comprise individuals that differ in an externally cryptic trait of interest, e.g. sex, species affilia-

tion, age cohort, size or weight class, or social rank. We present a toolbox that combines the

inference of acoustic parameters and sex ratio via ABC with downstream applications. The lat-

ter can be used to detect changes in group composition over time/space, or to assign single

acoustic signals to one of the groups. To allow a broad field of application, we describe the con-

ditions that must be fulfilled in order to apply our approach to other study systems and provide

suggestions on how to overcome some challenges that may arise. The approach is based on

acoustic data, which in many species can be acquired more easily than close-up morphological

or genetic data, thus providing a non-invasive, time-efficient, and relatively low-cost approach

to explore ecological traits that differ between groups of animals.
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a semi-automated acoustic monitoring system for primates. Methods Ecol Evol. 2015; 6: 753–763.

https://doi.org/10.1111/2041-210X.12384

21. Zsebők S, Czabán D, Farkas J, Siemers BM, von Merten S. Acoustic species identification of shrews:

Twittering calls for monitoring. Ecol Inform. 2015; 27: 1–10. https://doi.org/10.1016/j.ecoinf.2015.02.

002

22. Marcoux M, Ferguson SH, Roy N, Bedard JM, Simard Y. Seasonal marine mammal occurrence

detected from passive acoustic monitoring in Scott Inlet, Nunavut, Canada. Polar Biol. 2017; 40: 1127–

1138. https://doi.org/10.1007/s00300-016-2040-9

23. Walters CL, Freeman R, Collen A, Dietz C, Brock Fenton M, Jones G, et al. A continental-scale tool for

acoustic identification of European bats. J Appl Ecol. 2012; 49: 1064–1074. https://doi.org/10.1111/j.

1365-2664.2012.02182.x

24. Zamora-Gutierrez V, Lopez-Gonzalez C, MacSwiney Gonzalez MC, Fenton B, Jones G, Kalko EKV,

et al. Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call

design. Methods Ecol Evol. 2016; 7: 1082–1091. https://doi.org/10.1111/2041-210X.12556

Acoustic sex identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0199428 June 21, 2018 19 / 22

https://doi.org/10.1111/1755-0998.12727
http://www.ncbi.nlm.nih.gov/pubmed/29058809
https://doi.org/10.3161/150811012X654259
https://doi.org/10.1111/2041-210X.12527
https://doi.org/10.1111/brv.12001
https://doi.org/10.1111/brv.12001
http://www.ncbi.nlm.nih.gov/pubmed/23190144
https://doi.org/10.1098/rsos.160022
https://doi.org/10.1098/rsos.160022
http://www.ncbi.nlm.nih.gov/pubmed/27069667
https://doi.org/10.1111/2041-210X.12730
https://doi.org/10.1111/2041-210X.12730
https://doi.org/10.1016/j.biocon.2010.03.025
https://doi.org/10.1079/BER2004306
https://doi.org/10.1079/BER2004306
http://www.ncbi.nlm.nih.gov/pubmed/15301697
https://doi.org/10.1016/j.biocon.2004.10.005
https://doi.org/10.1016/j.biocon.2004.10.005
https://doi.org/10.1577/T04-142.1
https://doi.org/10.1890/12-2088.1
http://www.ncbi.nlm.nih.gov/pubmed/24147413
https://doi.org/10.1186/1742-9994-3-3
http://www.ncbi.nlm.nih.gov/pubmed/16507093
https://doi.org/10.1017/S0025315409991226
https://doi.org/10.1017/S0025315409991226
https://doi.org/10.1111/2041-210X.12384
https://doi.org/10.1016/j.ecoinf.2015.02.002
https://doi.org/10.1016/j.ecoinf.2015.02.002
https://doi.org/10.1007/s00300-016-2040-9
https://doi.org/10.1111/j.1365-2664.2012.02182.x
https://doi.org/10.1111/j.1365-2664.2012.02182.x
https://doi.org/10.1111/2041-210X.12556
https://doi.org/10.1371/journal.pone.0199428


25. Aubin T, Mathevon N, Staszewski V, Boulinier T. Acoustic communication in the Kittiwake Rissa tridac-

tyla: potential cues for sexual and individual signatures in long calls. Polar Biol. 2007; 30: 1027–1033.

https://doi.org/10.1007/s00300-007-0262-6

26. Puechmaille SJ, Borissov IM, Zsebok S, Allegrini B, Hizem M, Kuenzel S, et al. Female mate choice

can drive the evolution of high frequency echolocation in bats: A case study with Rhinolophus mehelyi.

PLOS ONE. 2014; 9: e103452. https://doi.org/10.1371/journal.pone.0103452 PMID: 25075972

27. Schuchmann M, Puechmaille S, Martin Siemers B. Horseshoe bats recognise the sex of conspecifics

from their echolocation calls. Acta Chiropt. 2012; 14: 161–166. https://doi.org/10.3161/

150811012X654376

28. Jones G, Gordon T, Nightindale J. Sex and age differences in the echolocation calls of the lesser horse-

shoe bat, Rhinolophus hipposideros. Mammalia. 1992; 56: 189–193.

29. Peake TM, McGregor PK, Smith KW, Tyler G, Gilbert G, Green RE. Individuality in Corncrake Crex crex

vocalizations. Ibis. 1998; 140: 120–127. https://doi.org/10.1111/j.1474-919X.1998.tb04548.x

30. Fischer J, Kitchen DM, Seyfarth RM, Cheney DL. Baboon loud calls advertise male quality: acoustic

features and their relation to rank, age, and exhaustion. Behav Ecol Sociobiol. 2004; 56: 140–148.

https://doi.org/10.1007/s00265-003-0739-4

31. Reby D, McComb K. Anatomical constraints generate honesty: acoustic cues to age and weight in the

roars of red deer stags. Anim Behav. 2003; 65: 519–530. https://doi.org/10.1006/anbe.2003.2078

32. Charlton BD, Zhihe Z, Snyder RJ. The information content of giant panda, Ailuropoda melanoleuca,

bleats: acoustic cues to sex, age and size. Anim Behav. 2009; 78: 893–898. https://doi.org/10.1016/j.

anbehav.2009.06.029

33. Maluleke T, Jacobs DS, Winker H. Environmental correlates of geographic divergence in a phenotypic

trait: A case study using bat echolocation. Ecol Evol. 2017; 7: 7347–7361. https://doi.org/10.1002/ece3.

3251 PMID: 28944021

34. Laiolo P, Rolando A, Delestrade A, de Sanctis A. Geographical variation in the calls of the choughs. The

Condor. 2001; 103: 287–297. https://doi.org/10.1650/0010-5422(2001)103[0287:GVITCO]2.0.CO;2

35. Puechmaille SJ, Gouilh MA, Piyapan P, Yokubol M, Mie KM, Bates PJ, et al. The evolution of sensory

divergence in the context of limited gene flow in the bumblebee bat. Nat. Commun. 2011; 2: 573. https://

doi.org/10.1038/ncomms1582 PMID: 22146392

36. Volodin IA, Volodina EV, Klenova AV, Matrosova VA. Gender identification using acoustic analysis in

birds without external sexual dimorphism. Avian Res. 2015; 6: 20.

37. Francis CM, Habersetzer J. Interspecific and intraspecific variation in echolocation call frequency and

morphology of horseshoe bats, Rhinolophus and Hipposideros. In: Kunz TH, Racey PA, editors. Bat

Biology and Conservation. Washington: Smithsonian Institution Press; 1998. pp. 169–179.
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47. Dool SE, Puechmaille SJ, Kelleher C, McAney K, Teeling EC. The effects of human-mediated habitat

fragmentation on a sedentary woodland-associated species (Rhinolophus hipposideros) at its range

margin. Acta Chiropt. 2016; 18: 377–393. https://doi.org/10.3161/15081109ACC2016.18.2.006

48. Wimmer, B, Kugelschafter, K. Akustische Erfassung von Fledermäusen in unterirdischen Quartieren
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