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Many stepped wedge trials (SWTs) are analysed by using a mixed-effect model with a random intercept and fixed
effects for the intervention and time periods (referred to here as the standard model). However, it is not known
whether this model is robust to misspecification.

We simulated SWTs with three groups of clusters and two time periods; one group received the intervention
during the first period and two groups in the second period. We simulated period and intervention effects that
were either common-to-all or varied-between clusters. Data were analysed with the standard model or with
additional random effects for period effect or intervention effect. In a second simulation study, we explored
the weight given to within-cluster comparisons by simulating a larger intervention effect in the group of the trial
that experienced both the control and intervention conditions and applying the three analysis models described
previously.

Across 500 simulations, we computed bias and confidence interval coverage of the estimated intervention
effect.

We found up to 50% bias in intervention effect estimates when period or intervention effects varied between
clusters and were treated as fixed effects in the analysis. All misspecified models showed undercoverage of 95%
confidence intervals, particularly the standard model. A large weight was given to within-cluster comparisons in
the standard model.

In the SWTs simulated here, mixed-effect models were highly sensitive to departures from the model
assumptions, which can be explained by the high dependence on within-cluster comparisons. Trialists should
consider including a random effect for time period in their SWT analysis model. © 2017 The Authors. Statistics
in Medicine published by John Wiley & Sons Ltd.
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1. Introduction

Recent reanalysis of a high-profile stepped wedge trial (SWT) has brought into question methods
commonly used to analyse these complex studies [1–3]. SWTs are often analysed by using models that
make strong assumptions about the clustering in the data [4]. It is currently unknown if estimates from
these models are robust to deviations from these assumptions.

An SWT is a type of cluster randomised trial where clusters are randomised into groups. Each group
begins to receive the intervention at a different time so that all clusters start the trial in the control
condition, and by the end of the trial, all clusters are receiving the intervention.
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The control and intervention conditions can, in principle, be compared in two directions known as the
vertical and horizontal comparisons [4]. Vertical comparisons compare the outcomes of clusters in the
intervention condition with the outcomes of clusters in the control condition within the same time
period; because the order of rollout is randomised, each of these comparisons is randomised. Horizontal
comparisons compare outcomes from periods in the intervention condition with outcomes from periods
in the control condition in the same cluster; these are non-randomised before–after comparisons that are
confounded with time period.

In practice, most analysis methods for SWTs incorporate information from both the vertical and
horizontal comparisons in the intervention effect estimate and so need some way to adjust for period
effects [4]. The most common analysis model (hereafter referred to as the standard model) is a mixed-
effect model with a random intercept to account for clustering and adjusting for period effects as a fixed
categorical variable; this model is described by Hussey and Hughes [5]. Despite its wide use, guidance
for using this analysis model is lacking. The model makes strong assumptions about the correlation
structure of the data: The intervention effect and the period effects are assumed to be common to all
clusters. It is not currently known whether the intervention effect estimate and its precision are robust
to misspecifying these assumptions.

In the context of SWTs, we are most interested in estimation of the intervention effect and how robust
this effect is to misspecification of the intervention effect itself as well as misspecification of the period
effect. Previous research has found that misspecifying the random effects led to biased effect estimates
as well as biased precision of estimates [6]. In parallel cluster randomised trials with baseline
measurements and in cluster crossover randomised trials, it has been shown that analyses with
hierarchical models should include a random effect for period, sometimes referred to as a cluster-period
interaction, to avoid residual confounding [7–10].

The importance of specifying the period effect correctly will depend on how much the horizontal
comparisons contribute within the model. This has not been explored in the literature. If a large weight
is given to this comparison, any residual confounding of the intervention effect by the period effects
could lead to a biased estimate of the intervention effect.

In this paper, we will explore both issues with a simulation study comparing the standard model with
other mixed-effect models, focusing on a binary outcome with cross-sectional measurements. We then
run a second set of simulations to explore the weight given to horizontal comparisons by each analysis
model. Following the simulation studies, we explore the impact of misspecifying analysis models in our
motivating example.

2. Motivating example

There has been much debate in recent literature about the results of a reanalysis of a highly cited
SWT that investigated the effect on school attendance of a mass deworming intervention for school
children in Kenya [1–3]. The trial included 75 schools (clusters) that were randomised into three
groups and ran over 2 years. School attendance was measured as a binary outcome with multiple
observations for each individual child during each year. There was a geometric mean of 1180
(interquartile range (IQR) 908.5, 1864) observations in each school each year, with the attendance
assessed on the same children in year 2 as year 1. Children from schools in the first group began
receiving the intervention at the start of the first year. Children from schools in the second group
received no intervention during the first year and began receiving the intervention in the second year
of the study. Children from schools in the third group did not receive the intervention during these
two years (Figure 1).

In the reanalysis of this trial, it was found that the odds ratios (ORs) for school attendance for year 1
and year 2 were both smaller when analysed individually (OR = 1.48 and 1.23 respectively) than the OR
given by the standard model when the data were pooled from both years (OR = 1.82) [2]. We
hypothesised that this could have been because the analysis model was misspecified and explored two
potential types of misspecification:

(1) The period effects varied between clusters. The standard model assumes that the period effects are
common to all clusters. This could lead to a biased estimation of the intervention effect through
biased estimation of the period effects.

(2) The intervention effect varied between clusters. The standard model assumes that the intervention
effect is common to all clusters. Treating an effect that truly varies as a fixed effect has been
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shown to lead to biased estimation of that covariate [6], and so the estimate of the intervention
effect could be biased.

In this paper, we first used a simulation study based on the motivating example to explore the effect of
ignoring variability between the clusters in the period effect and intervention effect in the analysis of
SWTs. Second, we hypothesised that the effect of misspecification would by highly influenced by the
weight given to horizontal comparisons in each analysis model and so also performed a further set of
simulations to investigate this question. We then analysed the motivating example with different
analysis models and compared the results in light of the findings of the simulation studies.

3. Simulation study methods

3.1. Simulation study 1

To investigate the impact of ignoring heterogeneity between clusters in the period effect and intervention
effect, we compared analysis models that assumed these effects were common to all clusters (the
standard model) to analysis models which allowed these effects to vary between clusters. We performed
this with data in which the true underlying period effect and intervention effect were either common to
all clusters or varied between clusters. A description of the scenarios we used to compare the analysis
models is given, followed by the three analysis models we compared. A summary of the data scenarios
simulated is given in Table I.

We used the same trial design as our motivating example with clusters randomised into three groups
and followed for two time periods. During the first period, only the first group had received the
intervention, and during the second time period, the first and second groups had received the
intervention. The third group never received the intervention. This trial design was chosen due to its
simplicity; because there are only two time periods, the period effect is simple to model. The horizontal
comparison is only possible in one group; this allowed us to explore the weight given to this comparison.
To mimic the motivating example and to avoid issues with small sample size, we assigned 25 clusters to
each group and the number of observations in a cluster in each time period was drawn from a log-normal
distribution (μ=6.9, σ =0.74); this gave a geometric mean number of observations in each cluster in
each time period of 1027 (IQR 669, 1798).

The cluster-level distribution of the outcome in the first period and the change from period 1 to period
2 (the period effect) was based on group 3 of the motivating example. This group was chosen because it
did not receive the intervention. We modelled the log-odds in the first period and the log-OR period
effect from the motivating example as a bivariate normal distribution. This gave mean values for the
log-odds in period 1 and log-OR period effect, together with a 2 × 2 covariance matrix. This distribution
described the outcome and how it varied between the clusters in each period. The mean values were used
in all the simulation scenarios, but we manipulated the covariance matrix to create four scenarios of how

Figure 1. Schematic of motivating example: A stepped wedge trial (SWT) with 75 clusters randomised to three
groups. The trial consisted of two time periods (years). Group 1 switched to the intervention at the start of period
1. Group 2 switched to the intervention at the start of period 2. Group 3 did not switch to the intervention.
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the outcome varied between the clusters and periods (Figure 2). The mean odds in the first period was
6.61 (a proportion of 87%), and the mean OR period effect between the second and first period was
0.32, which was equivalent to an odds of 2.12 (proportion of 68%) in the second period. The covariance
matrices for each of the four scenarios are given in Data S1 and are described in the succeeding texts:

(1) Common period effect, high variability:
The period effect was common to all clusters with between-cluster variance = 1.81. This was the
amount of between-cluster variability observed in year 1 of the motivating example. This
represents a simple scenario with a large intracluster correlation coefficient (ICC = 0.20), where
the standard model would have a correctly specified period effect.

Figure 2. Simulated cluster-level log odds in each period effect scenario. A sample of 25 clusters is shown in
time periods 1 and 2. All are in control condition.

Table I. Summary of simulation study data scenarios.

Description Similar to
motivating
example?

Common to all simulations
Number of groups 3 Yes
Number of time periods 2. In period 1, group 1 received the

intervention.
In period 2, groups 1 and 2 received
the intervention.

Yes

Number of clusters 75 Yes
Cluster size Log-normal(6.9, 0.74) in each year.

Geometric mean = 1027
Yes

Correlation of measurements
within clusters

Independent within cluster-periods No

Mean outcome in year 1 Odds = 6.61 Yes
Mean change in outcome
from year 1 to year 2

Odds ratio = 0.32 Yes

Different scenarios
Period effect (1) Common period effect, high variability No

(2) Common period effect, low variability No
(3) Varying period effect, decreasing variability Yes
(4) Varying period effect, stable variability No

Intervention effect (a) Log(OR) = 0.41 common to all clusters No
(b) Log(OR) = 0.41, varying between clusters No

Intervention effect in group 2
Simulation study 1 Intervention effect in group 2 the same as group

1 log(OR) = 0.41
No

Simulation study 2 Intervention effect in group 2 is log(OR) = 1.5,
and group 1 is log(OR) = 0.41

No
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(2) Common period effect, low variability:
The period effect was common to all clusters with between-cluster variance = 0.25. This was the
amount of between-cluster variability observed in year 2 of the motivating example. This
represents a simple scenario with a lower ICC (ICC = 0.05), where, again, the standard model
would have a correctly specified period effect.

(3) Varying period effect, decreasing variability:
The period effect varied between clusters with the variability between the clusters decreasing
from the first period to the second period. The initial between-cluster variance was 1.81, and
the period effect variance was 1.89. The decrease in variability from period 1 to period 2 resulted
from a negative covariance between the initial value and the period effect of �1.72. This complex
scenario reflects the underlying trends seen in the motivating example. In this scenario, the
standard model would have a misspecified period effect.

(4) Varying period effect, stable variability:
The period effect varied between the clusters, but the between-cluster variance remained the same
for both periods. Here, the initial between-cluster variability and period effect variability
remained the same as in scenario (3), but the covariance was reduced to �0.94. This scenario
was chosen to assess the effect of a varying period effect without the additional complication
of the between-cluster variation reducing in the second period. In this scenario, the standard
model would have a misspecified period effect.

We simulated two scenarios for the intervention effect; these were not based on the motivating example:

(a) An intervention effect that was common to all clusters. We simulated an intervention effect log
(OR) = 0.41 (equivalent to OR = 1.5) for all clusters. We also simulated log(OR) = 0 to calculate
the type I error rate. In these scenarios, the standard model would have a correctly specified
intervention effect.

(b) An intervention effect that varied between clusters drawn from the distribution log(OR) ~N
(0.41, 0.3). This gave a geometric mean OR = 1.5 with an IQR = 1.05–1.97. We also simulated
a distribution log(OR) ~N(0, 0.3) to calculate the type I error rate. In these scenarios, the standard
model would have a misspecified intervention effect.

The variation in the intervention effect was modelled as being independent of the underlying outcome
and period effect between-cluster variability. This meant that the intervention effect varying between
clusters would lead to increased variability between the clusters in period 2 as more clusters were
receiving the intervention in this period.

Each scenario led to the odds of the outcome occurring in each cluster-period. From this, the
observations within each cluster-period were sampled from a binomial distribution, assuming
independence within each cluster-period. This assumes a cross-sectional design and is a deviation from
the motivating example, where children were observed multiple times during the study, chosen for
simplicity.

All combinations of these parameters were simulated.

3.2. Simulation study 2

Second, we hypothesised that the horizontal comparisons would depend on the model assumptions more
heavily than the vertical comparisons. To aid interpretation of the results of simulation study 1, we
sought to investigate the contribution of the horizontal comparisons to each analysis in each scenario.

In the trial design used for this paper, only group 2 contributed horizontal comparisons because
groups 1 and 3 remained in the same condition for both periods of the study (Figure 1). This meant that
we could investigate the weights given to the horizontal and vertical comparisons by identifying how
much weight was given to group 2 relative to groups 1 and 3.

To do this, we reran the simulations but with an intervention effect log(OR) = 1.5 in group 2 of the
trial but kept an intervention effect in group 1 of log(OR) = 0.41. An unbiased intervention effect
estimate from horizontal comparisons alone would have an expectation of E(log(OR)) = 1.5. An
unbiased intervention effect estimate from vertical comparisons alone would have an expectation of
0.41<E(log(OR))<1.5 depending on the weights given to each cluster and to periods 1 and 2 of the
trial. Comparing the intervention effect estimates of each model in each scenario to the horizontal
comparison E(log(OR)) = 1.5 allowed us to see how much the horizontal comparisons contributed to
the analysis compared with the vertical comparisons. Such a large imbalance in the intervention effect
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between groups is, of course, unlikely (although not impossible); this simulation study was designed to
investigate the contributions of vertical and horizontal comparisons, rather than to explore a realistic
scenario.

4. Analysis models

Each simulated data set was analysed with three analysis models, each making different assumptions
about the period effect and intervention effect.

4.1. Standard model

First, we used the standard method of analysis [4,5]: a mixed-effect logistic regression with a random
intercept and fixed effects for intervention effect and period effect:

yijk ¼ μþ βZ j þ θX ij þ ui (1)

where yijk is the log odds of the outcome in cluster i in year j for observation k, μ is the mean log odds of
the outcome in period 1 in the control condition, β is the period effect log-OR comparing the outcome in
periods 2 and 1, Zj is an indicator of year, 0 for the first year and 1 for the second year, θ is the
intervention effect log-OR, and Xij is an indicator of whether cluster i received the intervention in year
j, uieN 0; σ2u

� �
is a random intercept allowing for variability in the outcome between clusters.

This model assumes that the period effect and the intervention effect are common to all clusters so is a
misspecified model in scenarios where either the period effect or intervention effect varied between
clusters.

4.2. Random period model

Second, we added a random effect for period to the standard model:

yijk ¼ μþ β þ við ÞZ j þ θX ij þ ui (2)

where
ui
vi

� �eMVN
0

0

� �
;

σ2u σ2u;v
σ2u;v σ2v

 ! !
are a random intercept and random effect for period

respectively.
This model assumes that the intervention effect is common to all clusters but allows the period effect

to vary between clusters. It is a misspecified model in scenarios where the intervention effect varies
between the clusters.

Sometimes, other literatures have used a different model to allow the period effect to vary between the
clusters [11,12]. For details on how these models relate to one another, see Data S2.

4.3. Random intervention model

Third, we added a random effect for the intervention to the standard model:

yijk ¼ μþ βZ j þ θ þ zið ÞX ij þ ui (3)

where
ui
zi

� �eMVN
0

0

� �
;

σ2u σ2u;z
σ2u;z σ2z

 ! !
are a random intercept and random effect for intervention

respectively.
This model assumes that the period effect is common to all clusters but allows the intervention effect

to vary between clusters. The model is a misspecified model in scenarios where the period effect varies
between the clusters.

Whilst the random period and random intervention models allow for variability in the period and
intervention effect respectively, they can estimate a variability of close to zero if the effect is common
to all clusters. The random period model is correctly specified in the scenario with common period
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effect, and likewise, the random intervention model is correctly specified in the scenario with common
intervention effect. Similarly, the random intervention model allows for a covariance between the
intervention effect and the intercept (σ2u;z ) but allows this covariance to be zero, as is the case in our
simulation study.

5. Estimands and performance measures

We ran 500 simulations for each combination of parameters. This allowed us to estimate the intervention
effect to within 5% accuracy, assuming a variance estimate of 0.05. This variance is conservative as it is
larger than the estimated variance we saw in the motivating example.

From the analysis models, we collected the estimated fixed effects, their standard errors, and the
estimated between-cluster covariance matrix.

We calculated the mean, standard deviations, 95% confidence intervals (CIs), and the IQR of the
intercept, intervention effect, and period effect estimates from the 500 simulations. We calculated
percentage bias as

percentage bias ¼ β̂ � β
β

 !

where β is the true effect and β̂ is the mean of the effect estimates.
We calculated the coverage of 95% CIs as the proportion of simulations with the true effect contained

within the 95% CI of the estimate. We calculated the type 1 error rate as the proportion of simulations
with true OR = 1 with P < 0.05 against a null of the intervention effect OR = 1.

In the set of simulations with a different intervention effect in group 2 (simulation study 2), we
compared the mean of the intervention effect estimates with the horizontal intervention effect of log
(OR) = 1.5.

Simulations were run in R version 3.2; the lme4 package was used for mixed-effect models.

6. Results

6.1. Model convergence

The standard model converged in all simulations for both simulation studies. When either the period
effect or the intervention effect varied between clusters, the random period and random intervention
models also converged in >99% of all simulations. However, when both period effect and intervention
effect were common to all clusters, the random period model failed to converge in 3% to 9% of
simulations and the random intervention model failed to converge in 4% to 33% of simulations.
Estimates from these models were excluded from performance statistics. Further details of convergence
of the models are given in Data S3.

6.2. Simulation study 1 results

6.2.1. Bias of fixed-effect estimates. Figure 3 gives the mean and IQR of intervention effect estimates
for each scenario. A table of the mean values is given in Data S4.

Where there were common period and intervention effects, all three models performed similarly, with
estimation of the intervention effect in line with the true underlying effect.

Where the period effect varied between the clusters, only the random period model gave unbiased
estimates of the intervention effect. Depending on the scenario, the standard model had between
�20% and �8% bias and the random intervention model between �51% and �8% bias. Bias was larger
when the period effect varied with decreasing variability than with stable variability but was similar
regardless of whether there was a common or varying intervention effect. We also observed bias in
the period effect estimates and intercept estimates from the standard model and random intervention
model (Data S5 and S6).

Where the intervention effect varied between the clusters and there was a common period effect, the
random intervention model and the random period model gave unbiased estimates of the intervention
effect. Only the standard model intervention effect estimates had substantial bias (�9% and �16% bias
for common period effects with high and low variabilities respectively).

J. A. THOMPSON ET AL.

© 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3670–3682

3676



Where either the period effect or intervention effect varied between clusters, the standard model
intervention effect estimates had greater variability compared with the random period model or random
intervention model. Differences were larger when the period effect varied between clusters than when
the intervention effect varied between clusters. For example, the standard model intervention effect
estimates were 3.6 times as variable as the random period model estimates when the period effect varied
between clusters with decreasing variability with common intervention effect, whereas the standard
model intervention effect estimates were 1.5 times as variable as the random intervention model
estimates when the intervention effect varied between clusters with common period effect with high
variability.

6.2.2. Standard errors, coverage, and type 1 error. In scenarios with a common period and intervention
effect, 95% coverage was maintained regardless of the analysis model and the estimated standard errors
were similar across analysis models (Figure 4 and Data S7 and S8).

When period effect or intervention effect varied between clusters, the standard model gave
standard errors that were markedly smaller than the random period model and random intervention
model. The mean intervention effect standard error from the standard model was less than 0.33
and 0.26 times the mean standard error of the random period model and random intervention model
respectively.

The inappropriately small standard errors given by the standard model were in part explained by
downward bias in the estimation of between-cluster variability (Data S9). For example, when variability
was stable over the two time periods with a variance of 1.79, the standard model estimated the variance
as 1.26.

The bias in estimates, standard errors, and increased variability in estimates led to undercoverage of
the 95% CIs of the intervention effect estimates (Figure 4). For the standard model, undercoverage
was severe when either the intervention effect or the period effect varied between clusters (<25%
coverage). Similarly, the random intervention model had undercoverage when the period effect varied
between clusters (74% and 88% coverage for decreasing and stable variability respectively) regardless
of intervention effect variability. Finally, the random period model had undercoverage of CIs when
the intervention effect varied between clusters with a common period effect (86% and 88% coverage
for common period effect with high and low variabilities respectively).

Type 1 error rates followed the same patterns as coverage (Data S10).

Figure 3. Comparison of intervention effect log(OR) from different analysis models and scenarios with true
geometric mean intervention effect log(OR) = 0.41 in all groups. Vertical grey line: true log(OR). Hollow point:
mean estimate. Solid barred line: 95% confidence interval. Dashed line: interquartile range (IQR) of estimates.
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6.3. Simulation study 2 results

Figure 5 gives the estimated log(OR) for each scenario where the group 1 and 2 intervention effects
differed (log(OR)=0.41 in group 1 and log(OR)=1.5 in group 2).

All analysis models gave a mean estimated intervention effect close to the group 2 effect when there
was a common period effect and a common intervention effect; this was the case in the high and low
variability scenarios. This suggests that, in these scenarios, the intervention effect is largely estimated
from horizontal within-cluster comparisons in group 2; groups 1 and 3 appeared to contribute to
estimation of the period effect but had little influence on the intervention effect estimate.

The standard model estimates remained close to the group 2 intervention effect in all scenarios. The
downward bias we observed in our first set of simulations suggests that at least some of the movement
away from the group 2 effect is because of bias and not because of a reduction in the contribution of the

Figure 5. Comparison of intervention effect log odds ratios from different analysis models for all scenarios
with the intervention effect larger in group 2 than group 1. Vertical grey lines: true intervention effect in group
1 (log(OR) = 0.41) and group 2 (log(OR) = 1.5). Hollow point: mean estimate. Solid barred line: 95%

confidence interval. Dashed line: interquartile range (IQR) of estimates.

Figure 4. Comparison of estimated intervention effect (a) standard errors and (b) 95% confidence interval
coverage for different analysis models and scenarios with a geometric mean intervention effect of log
(OR) = 0.41 in all groups. Vertical grey line: 95% coverage. Hollow point: mean estimate. Solid barred line:

95% confidence interval. Dashed line: interquartile range (IQR) of estimates.
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horizontal comparisons. This implies that the standard model was continuing to estimate the intervention
effect largely from horizontal comparisons in group 2.

In contrast, when the period effect varied between clusters, the random period model gave
intervention effect estimates much further from the horizontal comparison estimates. This implies that
the horizontal comparisons in group 2 could not contribute as much information to the analysis because
there was less certainty about separating the period effect and intervention effect in these comparisons.
This was similar in the scenarios where the intervention effect varied between clusters but the period
effect was common for both the random period and random intervention models, but to a smaller degree.

7. Example

For our motivating example, we hypothesised that the standard model gave a larger intervention effect
than either of the two time periods analysed separately because the standard model was misspecified by
ignoring variability in either the period effect or the intervention effect. Our simulation study suggests
that this is not the case because we would expect the standard model to underestimate the intervention
effect with these types of misspecification, rather than overestimate the effect. However, we also found
that the standard model gave a very large weight to the horizontal comparisons. This does help to explain
the counterintuitive results seen in the motivating example [2].

We reanalysed the deworming trial by using the three analysis models investigated in the simulation
study and additionally looked at years 1 and 2 separately by using a mixed-effect model with a fixed
effect for intervention and a random intercept to attain estimates for the intervention effect from vertical
comparisons. In line with the published reanalysis of this study, we ignored pupil-level clusters from
multiple observations of the same pupils; this is in line with research suggesting that it is sufficient to
adjust for the highest level of clustering alone, known as passing the buck [13].

The results in Table II are different from the published reanalysis as we have used a different version
of the data (see Data S11 for details) and have not adjusted for covariates other than period [14].

We found that the standard model combining data from both years of the study gave a larger estimate
of the intervention effect than either year analysed separately, which is as was found in the reanalysis
[4].

Adjusting for variation between clusters in the period effect or intervention effect (i.e. using either the
random period model or random intervention model) increased the intervention effect standard error and
reduced the intervention effect towards the null. Both approaches gave an intervention effect estimate
between the estimated effect in year 1 and year 2. This suggests that the horizontal comparisons are
contributing less to these analysis models than to the standard model; this is consistent with the findings
of our second simulation study into the contribution of the horizontal comparisons.

The random period model found strong evidence of variability in the period effect (p < 0.001), and
the random intervention model found strong evidence of variability in the intervention effect
(p < 0.001). Because the period effect and intervention effect are confounded with one another,
evidence of variability in the intervention effect could be caused by variability in the period effect or vice
versa. The random period model estimated a between-cluster covariance matrix similar to the simulation
study scenario with varying period effect with decreasing variability. The random intervention model

Table II. Intervention effect estimates from motivating example with different analysis models.

Model Odds ratio
(95% CI)

Standard
error

P-value P-value of
random period
or intervention

effect

Separate year analysis
(vertical comparisons)
Year 1 1.67 (0.90,3.10) 0.32 0.11
Year 2 1.19 (0.95, 1.50) 0.12 0.13

Combined analysis
Standard model 1.74 (1.67, 1.81) 0.02 <0.001
Random period model 1.26 (1.02, 1.57) 0.11 0.03 <0.001
Random intervention model 1.25 (0.96, 1.62) 0.13 0.09 <0.001

J. A. THOMPSON ET AL.

© 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3670–3682

3679



estimated lower variability between clusters in the intervention condition than in the control condition
because of the reduced variability in year 2. This is a scenario that we did not consider in our simulation
study where we only investigated a scenario with greater variability in the intervention condition.
Inspection of the data suggests that the random period model is the most appropriate one. A mixed-effect
model with a random effect for period run on observations from group 3, which never received the
intervention, finds strong evidence of variability in the period effect (p < 0.001). But a mixed-effect
model with a random effect for intervention run on observations from groups 1 and 3, where the
intervention effect is not confounded with the period effect, finds no evidence of variability in the
intervention effect (p = 0.34).

The random period model suggests that there is some evidence that the deworming intervention
increased school attendance (OR = 1.26, 95% CI 1.02, 1.57; p = 0.03). The effect found by using this
model is weaker, both in terms of absolute size and level of statistical significance, than the effect found
by using the standard model. There are still limitations in these data and this analysis, on which further
information has been published elsewhere [1–3].

8. Discussion

We found biased estimates and serious undercoverage of CIs in the SWT scenarios we simulated when
the analysis model ignored variability between clusters in the period effect or intervention effect. In
these scenarios, results from the standard model were driven largely by the horizontal comparisons.

We have shown that, in the scenarios we considered, misspecifying the random effects of mixed-
effect models can result in biased intervention effect estimates. The standard model underestimated
the intervention effect when either the period or the intervention effect varied between the clusters.
The underestimation when the period effect varied may result from the standard model estimating an
intervention effect averaged over the two periods, whereas the true effect for this scenario was a
within-period intervention effect. This is analogous to the difference between the population-averaged
effect and the cluster-specific effects that are given by different analysis methods. In the presence of
intervention effect variability, the standard model also gave biased estimates of the intervention effect.
The random intervention model had even larger bias when it was misspecified than the standard model.
Conversely, the random period model had only negligible bias in estimates in all scenarios we
considered. These results are consistent with previous research into misspecifying mixed-effect models
in cluster randomised trials [7,9]. We have built on this literature and shown that these results extend to
SWTs. This highlights how sensitive mixed-effect models can be to misspecification of model
assumptions.

Caution is needed beyond estimation of the intervention effect itself. In our simulation study, the bias
extended to standard errors and between-cluster variability. The latter has implications for reporting the
ICC, as recommended by the Consolidated Standards of Reporting Trials guidelines [15]. In addition to
the implications for inference, the bias in standard errors has implications for determining the power and
sample size of SWTs. Because the standard error from the standard model is used in most current
methods of SWT sample size calculations [12,16–18], they should not be applied when the period effect
or intervention effect is expected to vary between clusters, at least in relation to the characteristics of the
trial exemplar used in this paper. Instead, the method developed by Hooper et al. may be more
appropriate [11].

The result of these biases was undercoverage of CIs for the intervention effect. If model assumptions
do not hold, we risk being overconfident in our conclusions. We found particularly severe
undercoverage when using the standard model. This has been seen in previous research into misspecified
random effects [6,19] and has recently been seen in the setting of SWTs [20]. This is reflected in our
analysis of the motivating example; we see a large increase in the standard error of the intervention
effect, and so CIs are much wider when moving from the standard model to the random period model
or random intervention model.

The results from our simulation study could be explained by the excessive weight given to the
horizontal comparisons, even with a lower ICC = 0.05. Because the horizontal comparisons are
within-cluster comparisons, they avoid the additional variability of between-cluster variation. This
means that if the period and intervention effects can be separated, the horizontal comparisons will be
given more weight than the vertical comparisons by all the analysis models we considered. However,
by making the stringent assumption that period and intervention effects are the same in every cluster,
the standard model assumes too much certainty in separating the period and intervention effects. The
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reason that the standard model performed poorly in the simulation study was because of its reliance on
the horizontal comparisons.

In the design we studied, the weight given to horizontal comparisons also meant that greater weight
was given to some groups of clusters than others. The implications of this are not well understood. When
there is a large difference in the weight given to each group, the intervention effect estimate no longer
represents an average effect across the clusters and interpretation becomes more difficult. Further
research is needed to explore this issue in more traditional SWT designs with more groups and when
all clusters have observations in the control and intervention conditions, and so all clusters contribute
through horizontal comparisons.

A criticism of the random intervention model and, to a lesser extent, the random period model is that
they sometimes had problems with convergence. This occurred almost exclusively when both the period
effect and the intervention effect were common to all clusters; the non-convergence resulted from the
models attempting to estimate a true variance of zero, the boundary of the parameter. In this scenario,
all the analysis models gave unbiased effect estimates and appropriate CI coverage. We would suggest
that an analysis plan gives an alternative, simpler model to use in case of convergence issues due to lack
of variability. In our simulation study, this procedure gave good coverage and no bias in the scenarios
with common period effect and intervention effect, where convergence was an issue (data not shown).

Given that the mixed-effect model can be so sensitive to model assumptions, other analysis methods
should be considered. This choice should be prespecified and prior knowledge used to justify the
assumptions made by the chosen analysis method. We found the random period model to be the most
robust of the models considered, but there was still undercoverage of CIs in some scenarios. Some have
suggested using permutation tests on the standard model [20]. Although this will give correct inference,
there is still a risk of biased intervention effect estimation. Alternative analysis methods that make fewer
assumptions may be more appropriate. Generalised estimating equations have been suggested for the
analysis of SWTs [21] and have been shown to be more robust to misspecification of the correlations
in the data in other settings [22], but this robustness has yet to be assessed in the context of SWTs.
Analysis methods that only make use of the vertical comparisons are desirable as they require no
assumptions about period effects, but there are no such methods currently published, and these analyses
are less efficient [23]. Sensitivity analysis could also be used to assess the robustness of results.

We have only considered a limited range of designs in this simulation study. We used a very simple
SWT design to make the analyses as transparent as possible; this design only had two steps, and not all
clusters received the intervention in the course of the study. Further research is needed to confirm that
our findings hold for other SWT designs. In more traditional SWTs, all clusters receive both the control
and intervention conditions, and so all clusters contribute horizontal comparisons. Because the problems
we highlight arise from the horizontal comparisons, this might exacerbate the problems we identified.
We have only considered two values for the ICC when the period effect was common to all clusters
and have not assessed the effect of ICC when period effects vary between clusters. In scenarios where
these effects varied between clusters, the baseline ICC was 0.20, which, in many contexts, would be
considered large. Additionally, there was large variability in the period effect; the effect of a less variable
period effect needs further exploration. It is not known how common it is for the period and intervention
effects to vary between clusters in practice; however, we have based this simulation on real trial data.
Large clusters were used in the simulation study to reflect the motivating deworming trial; however,
similar results were seen with a smaller mean cluster size of 250 (data not shown). We used a large
number of clusters in each group to avoid small sample issues.

Whilst further research is needed to explore the potential for bias in a wider range of designs and
settings, we have demonstrated that there is a potential for the standard model to give biased intervention
effect estimates and undercoverage of CIs. These simulations provide clear evidence that the standard
model for analysis of SWTs can be both highly sensitive to the data meeting the model assumptions
and highly dependent on non-randomised horizontal comparisons. We urge those conducting SWTs
to ensure an appropriate analysis is used.
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