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Abstract: Protein kinases play a pivotal role in signal transduction, protein synthesis, cell growth
and proliferation. Their deregulation represents the basis of pathogenesis for numerous diseases
such as cancer and pathologies with cardiovascular, nervous and inflammatory components. Protein
kinases are an important target in the pharmaceutical industry, with 48 protein kinase inhibitors
(PKI) already approved on the market as treatments for different afflictions including several types
of cancer. The present work focuses on facilitating the identification of new PKIs with antitumoral
potential through the use of data-mining and basic statistics. The National Cancer Institute (NCI)
granted access to the results of numerous previously tested compounds on 60 tumoral cell lines
(NCI-60 panel). Our approach involved analyzing the NCI database to identify compounds that
presented similar growth inhibition (GI) profiles to that of existing PKIs, but different from approved
oncologic drugs with other mechanisms of action, using descriptive statistics and statistical outliers.
Starting from 34,000 compounds present in the database, we filtered 400 which displayed selective
inhibition on certain cancer cell lines similar to that of several already-approved PKIs.

Keywords: protein kinase inhibitors; anti-proliferative fingerprint; anticancer drug screening;
data-mining; NCI-60 cells; drug discovery; targeted therapy; drug repurposing

1. Introduction

Protein phosphorylation is a reversible process that consists of the addition of a phosphate
group to the hydroxyl group of serine, threonine or tyrosine residues of protein substrates and occurs
through protein kinases [1]. It is one of the most important cellular mechanisms of regulation in signal
transduction, protein synthesis, cell growth and proliferation, thus, the deregulation of different kinases
is implicated in the pathogenesis of numerous diseases with inflammatory, nervous or cardiovascular
components [2,3]. Protein kinases’ impact in humans has transformed them into one of the most
“hunted” drug targets in the pharmaceutical industry in the past years, with almost one third of
pharmacological targeting in drug discovery being directed towards protein kinase inhibition [4].

Protein kinase inhibitors (PKI) can be classified based upon the structures of their drug-enzyme
complexes. Type I, I 1

2 and II inhibitors bind in the adenine pocket-forming hydrogen bonds with the
hinge region of the protein kinase, while type III and IV are allosteric inhibitors, and type V are bivalent
inhibitors binding to two different regions of the enzyme. The type VI compounds are irreversible
inhibitors covalently binding to the enzyme [5,6]. Analyses of the chemical structure profile of PKI
indicated that their chemical space is narrower, tend to have a rod-like or a rod-disc shape, and share a
group of common chemical scaffolds [7,8].

Due to their involvement in the regulation of processes like signal transduction, protein synthesis,
cell growth and proliferation, protein kinases play an important role in tumoral development in
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particular, as in most cancers the functions of various protein kinases are reported to be deregulated [1,9].
A great number of small molecules have been developed in the last decades to specifically or selectively
target protein kinases as antitumor therapies [1,10,11]. Imatinib was the first kinase inhibitor to
reach the market in 2001, and soon became the first-line therapy for chronic myelogenous leukemia
patients [12,13]. Second generation PKIs (dasatinib, nilotinib, bosutinib) and third-generation PKIs
(ponatinib) were rationally designed to target with high specificity the imatinib-resistant forms of
Bcr-Abl oncoprotein [12,14].

Activating mutations of the epidermal growth factor receptor (EGFR) were identified as the
major oncogenic driver of non-small cell lung cancers (NSCLC) and therefore considered an attractive
target for drug development [15]. Gefitinib and erlotinib were the first two reversible inhibitors of
EGFR, followed by the second generation of inhibitors (afatinib, dacomitinib, neratinib and canertinib)
designed to overcome clinical resistance [16]. The third generation of EGFR inhibitors (osimertinib) was
developed to target the resistance produced by the T790M mutation [17], where the aberrant change of
the normal threonine with a methionine as the gatekeeper residue increases the affinity for ATP [18].
Close to 60% of patients with melanoma harbor various mutations of B-RAF that cause activation of
the MAPK pathway. Vemurafenib and dabrafenib were developed to target the BRAFV600E mutation
and were approved for advanced-stage melanoma treatment [19,20]. Several vascular endothelial
growth factor receptor (VEGFR) inhibitors have been developed as anti-angiogenic agents [21]. Overall,
the U.S. Food and Drug Administration (FDA) has approved a number of small-molecule protein
kinase inhibitors for the treatment of malignant diseases. The most frequent targets of these drugs are
Bcr-Abl, B-Raf, VEGFR, EGFR and anaplastic lymphoma kinase (ALK) [22].

Discovery and development of new anticancer clinical candidates is a major direction of the
pharmaceutical industry, as well as government and non-government organizations [23]. Since its
establishment in 1955 by the U.S. National Cancer Institute (NCI), the Cancer Chemotherapy National
Service Center (CCNSC) systematic screening program has had a major impact on advancing
cancer therapies and significantly changed the traditional drug discovery process [24,25]. The NCI
continuously improved the screening systems and in the 1990s a panel of 60 human cancer cell lines
was established, representing nine major tissue types (brain, blood and bone marrow, breast, colon,
kidney, lung, ovary, prostate and skin). Over the last decades, compounds submitted by investigators
have been screened against this NCI-60 panel to determine their growth inhibition effect [26–28].

A compound is first tested at a single concentration and then, if found active, it is tested at five
different concentrations with 48 h drug exposure, and 50% growth inhibition (GI50), total growth
inhibition (TGI) and 50% lethal concentration (LC50) are computed [26]. Data analysis tools such
as the NCI’s Developmental Therapeutics Program (DTP)’s COMPARE algorithm use these outputs
on all 60 cancer cell lines to create a fingerprint profile that allows classification and can predict the
mechanism of action [29,30]. The fingerprint of cellular response in the NCI-60 assay can be used to
determine similar prototype compounds, and the usefulness of this data-mining approach has been
demonstrated in various studies [31–34].

The objective of this research was to find a simple, yet powerful method to identify a correlation
between the NCI-60 anti-proliferative fingerprint and the pharmacological mechanism in order to
search for new PKI independent of chemical scaffolds.

For this purpose, we propose generating a database for predicting the inhibition potential of
protein kinases based on the growth inhibition profile provided by the NCI’s DTP (Developmental
Therapeutics Program) project for a large number of compounds. The vast amount of data to be
analyzed would make a discriminant analysis too complex to be computed by accessible computers
and data-processing tools for all of the compounds provided by the NCI. Additionally, the lack of
results for a large number of cell lines, on which some compounds haven’t been tested on, would
render thousands of compounds not available for several types of analyses, as even one missing
result out of a series of 60 can determine a compound not to be taken into account in some statistical
approaches (for example, Pearson correlation or linear regression analyses).
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The current study aims to make use of some of the publicly available, free data provided by the NCI,
as in vitro tests have already been made for these compounds. This data, if correctly interpreted, could
help drug discovery chemists to identify probable overlooked, druggable compounds or promising
scaffolds suitable for inhibiting a specific target which may have been formerly avoided, either
accidentally or due to insufficient information.

This work describes the creation of a prediction dataset containing NCI-60 anti-proliferative
fingerprints of PKIs and non-PKI approved drugs and the application of its predictive potential
on a testing set extracted from NCI-provided data, in order to identify structures suitable for
PKI development.

2. Results

2.1. Testing Set Creation

NCI database interrogation for the creation of the testing set was performed through several data
preparation and cleaning steps, described in the Materials and Methods section. Filtering in vitro test
results expressed only as GI50 concentrations in µM units formed a starting set of 34,583 compound
lines, from which only 16,240 compounds displayed at least one statistical outlier, either upper or lower.
A selection for compounds with at least 50 shown test results out of 60 totally possible concluded
in a final testing set containing 9137 compounds, the others being discarded due to insufficient data.
The in vitro GI50 results were transformed to the corresponding negative log values (pGI50), for easier
data management, and the whole set contained 33,861 missing datapoints, representing only 6.18% of
total possible results. Descriptive statistics for the testing set are presented in Table 1.

Table 1. Descriptive statistics for the testing and predictive sets.

Descriptives Testing Set
Predictive Set

PKI Group AOD Group

No. of compounds 9137 18 80
No. of cell lines 60 60 60
Total datapoints 548,220 1080 4800
Missing values 33,861 49 122

Average no. of datapoints/compound 56.29 57.28 58.47
Average pGI50 value 5.10 5.74 5.46
Total no. of outliers 36,570 69 253

No. of outliers/compound 1–22
(Avg* = 4.00)

0–8
(Avg = 3.83)

0–14
(Avg = 3.16)

Range* 0.002–6.65
(Avg = 1.58)

0.54–3.98
(Avg = 2.27)

0.12–4.4
(Avg = 1.98)

Standard deviation 0.0003–1.6617
(Avg = 0.3022)

0.1168–1.3622
(Avg = 0.5116)

0.028–0.9999
(Avg = 0.4242)

No. = number; Avg* = average value; Range* (for a compound) = difference between the maximum value and
minimum value for all of the compound’s datapoints; PKI = protein kinase inhibitors; AOD = approved oncologic
drugs; pGI50 = negative log values of 50% growth inhibition concentration.

2.2. Predictive Set Creation

Generation of the predictive set was realized in two stages, resulting in two groups of
compounds—one of PKIs and one of other approved oncologic drugs (AODs). Out of 218 PKIs
extracted from the Protein Kinase Inhibitor Database (PKIDB), only 21 were traceable by chemical or
numerical identifiers and have been tested and described in the NCI database. After the selection of
compounds presenting no more than 10 missing pGI50 values out of 60 totally possible, only 18 compounds
remained, representing the PKI group. The approved oncologic drugs set (AOD) was formed similarly,
and after the same data preparation, out of 120 extracted compounds, 80 AODs remained. The resulted
predictive set, formed of 18 PKI and 80 AOD compounds tested on the NCI-60 panel, contained altogether
171 missing datapoints, which had to be replaced with average values of the other results in each
compound line. A statistical description of the predictive set can also be found in Table 1.
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2.3. Predictive Score Design

2.3.1. Cell Line Weight Factors

Cell line weight factors, further referred to as “weights” (details in Section 4.3.1), were generated
for each cell line for the predictive set, based on the frequencies of outliers in each group, PKI and
AOD, and are presented in Table 2, along with cell lines origin. The formula for weights calculation is
presented in the Methods and Materials section. Positive weights are attributed to the cell lines that
presented more outliers in the PKI group than the AOD group, representing cell lines that are more
sensitive or more resistant to a compound with protein kinase inhibition mechanism.

Table 2. Cancer cell lines encompassed in the NCI-60 panel with their weights calculated based on
lower and upper outlier frequency in each of the predictive set’s groups, sorted by represented tissue.

Cell
No.

Cell Line
Tumoral
Tissue
Type

Cell line Weight
Factors Cell

No.
Cell Line

Tumoral
Tissue
Type

Cell line Weight
Factors

Upper
Outliers

Lower
Outliers

Upper
Outliers

Lower
Outliers

1 CCRF-CEM Leukemia −4.44 0.00 31 M14 Melanoma 5.56 −2.50
2 HL-60(TB) Leukemia −20.00 5.56 32 MDA-MB-435 Melanoma 3.06 0.00
3 K-562 Leukemia 11.67 11.11 33 SK-MEL-2 Melanoma 1.81 −1.25
4 MOLT-4 Leukemia −6.94 −1.25 34 SK-MEL-28 Melanoma 11.11 −3.75
5 RPMI-8226 Leukemia −1.94 5.56 35 SK-MEL-5 Melanoma 3.06 0.00
6 SR Leukemia −6.39 5.56 36 UACC-257 Melanoma 1.81 −2.50
7 A549/ATCC NSCLC −1.25 −1.25 37 UACC-62 Melanoma 1.81 −1.25
8 EKVX NSCLC 27.78 −6.25 38 IGROV1 Ovarian 1.81 −1.25
9 HOP-62 NSCLC 0.00 4.31 39 OVCAR-3 Ovarian 0.00 3.06

10 HOP-92 NSCLC 8.61 −3.75 40 OVCAR-4 Ovarian −1.25 −7.50
11 NCI-H226 NSCLC 11.11 4.31 41 OVCAR-5 Ovarian 5.56 −2.50
12 NCI-H23 NSCLC −1.25 −1.25 42 OVCAR-8 Ovarian 0.00 −1.25
13 NCI-H322M NSCLC 27.78 −5.00 43 NCI/ADR-RES Ovarian −1.25 −14.44
14 NCI-H460 NSCLC −10.00 −1.25 44 SK-OV-3 Ovarian 9.86 9.86
15 NCI-H522 NSCLC 1.81 0.00 45 786-0 Renal −3.75 4.31
16 COLO 205 Colon 5.56 −1.25 46 A498 Renal 24.03 4.31
17 HCC-2998 Colon −2.50 −1.25 47 ACHN Renal 15.42 −5.00
18 HCT-116 Colon 4.31 4.31 48 CAKI-1 Renal 17.22 −7.50
19 HCT-15 Colon −2.50 −7.50 49 RXF 393 Renal 4.31 0.00
20 HT29 Colon 9.86 0.00 50 SN12C Renal 0.00 −1.25
21 KM12 Colon 16.67 4.31 51 TK-10 Renal 16.67 −6.25
22 SW-620 Colon 0.00 5.56 52 UO-31 Renal 3.06 −8.75
23 SF-268 CNS 0.00 0.00 53 PC-3 Prostate −1.25 −2.50
24 SF-295 CNS −1.25 0.00 54 DU-145 Prostate −2.50 −1.25
25 SF-539 CNS 4.31 5.56 55 MCF7 Breast −2.50 0.00
26 SNB-19 CNS 0.00 −0.69 56 MDA-MB-231/ATCC Breast −1.25 −5.00
27 SNB-75 CNS 6.11 −1.25 57 MDA-MB-468 Breast −3.75 0.00
28 U251 CNS −1.25 5.56 58 HS 578T Breast 7.36 −2.50
29 LOX IMVI Melanoma −3.75 0.00 59 BT-549 Breast 1.81 −3.75
30 MALME-3M Melanoma 5.56 −1.25 60 T-47D Breast −3.75 1.81

NSCLC = non-small cell lung cancer; CNS = central nervous system; NCI-60 = National Cancer Institute’s previously
tested compounds on 60 tumoral cell lines.

Idealizing for simplification, a high weight factor for a certain cell line, close to 100, implies that
an outlier value for that line will most of the time appear for one of the compounds in the PKI group
rather than for one in the AOD group, and therefore inhibiting the proliferation of that specific cell line
is characteristic to PKIs. A weight factor of 0 indicates equal probabilities of appearance in both of the
groups, therefore the respective cell line is not significant for identifying a potential PKI.

2.3.2. Predictive Score Calculation

A score was generated based on cell line weights (explained in Section 4.3.2) and the quality of
one datapoint of being an outlier in the corresponding NCI-60 array. This score roughly estimates
the potential of a compound being a PKI, the higher values indicating an increased probability of
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inhibiting a protein kinase, and values lower than 10 indicating a reduced likelihood of the compound
being a kinase inhibitor. Scores for the 9137 testing set compounds ranged from −74.58 to 118.33, with
an average of −1.25, a median of −1.94 and SD of 18.76.

2.3.3. Data-Mining Results Analysis

Out of 9137 compounds of the testing set, 409 resulted in displaying score values above 10 while
also presenting upper fence values larger than 6, these compounds appearing to be the most promising
potential PKIs. Data regarding the selected potential PKIs can be found in Supplementary material
(Table S4), while descriptive statistics regarding these compounds are presented in Table 3.

Table 3. Descriptive statistics for the 409 compounds identified as potential PKIs.

Descriptives Resulted Compounds Set

Number of compounds 409
Total datapoints 24,540
Missing values 2207
Average pGI50 5.90
Total outliers 1907

No. outliers/compound 1–19 (Avg = 4.66)
Range 0.44–6.66 (Avg = 2.03)

Standard deviation 0.0914–7.1358 (Avg = 0.4363)
Score values 10–118.33 (Avg = 19.66)

SD of score values 10.1343
Upper fence values 5.02–10.19 (Avg = 6.61)

SD of upper fence values 0.7577

Upper fence-SD = standard deviation, Avg* = average value.

The 409 potential PKIs resulting from the prediction were analyzed using chemical database
manager DataWarrior 5.2.1 software [35]. Based on their chemical structures, several physicochemical
descriptors were generated, along with their calculated descriptive statistics. The range and standard
deviation values of these descriptors depict a very heterogeneous dataset, as can be observed in Table 4.

Table 4. Descriptive statistics for the computed physicochemical properties of the 409 predicted
potential PKIs.

Minimum Maximum Mean Standard
Deviation

Molecular weight 119.19 1546.61 423.55 186.92
cLogP −13.21 13.71 3.25 2.90

No. of H-Acceptors 0 45 5.78 4.82
No. of H-Donors 0 28 1.51 2.62
Total surface area 91.17 1084.60 295.57 134.93

Relative polar surface area −0.01 0.69 0.23 0.12
Molecular flexibility 0 0.86 0.37 0.18

Molecular complexity 0.38 1.28 0.83 0.14
No. of non-C/H atoms 1 47 6.88 4.93

No. rotatable bonds 0 40 5.89 6.12
No. rings closures 0 20 3.40 2.00

No. of aromatic rings 0 8 2.06 1.49

Bemis–Murcko skeletons represent chemical frameworks with only the rings and the linker atoms
connecting them [36,37]. They were generated in order to assess the diversity of the chemical space
represented by the predicted PKIs molecules [38]. This analysis resulted in 222 different skeletons
describing the whole set, meaning that, on average, one molecular skeleton described less than two of
the predicted potential PKIs molecules. Structures have little in common, as the most encountered
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skeleton was that described by the hexagon graph, which represented only 26 compounds, meaning
probably the only common element for these compounds was containing a six-membered cycle in
their molecule.

The large number of compound skeletons, along with the high range values for all of the
descriptors computed, imply that the 409 compounds are structurally very diverse. Additionally,
when corroborating the skeletons with the descriptives of molecular weight and number of atoms, it is
readily understandable that these compounds come from all classes of molecules, ranging from small
molecules to organometallic complexes to polypeptides and macrocyclic structures.

The top 10 best-scoring compounds, identifiable by NSC (Cancer Chemotherapy National Service
Center number) are presented in Table 5. Similarities between a known PKI from the predictive set and
some of the potential PKIs predicted by the developed method can be observed in Figure 1, where the
distributions of upper outliers for both sets (18 known PKIs and top 10 potential PKIs) are presented.
For example, out of 8 outliers for each of the compounds, 5 cell lines (8, 13, 15, 47 and 48) can be seen
to be common outliers for both afatinib (dark green in Figure 1a) and NSC 693255, also known as
tyrphostin AG-1478 (light blue in Figure 1b).
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Figure 1. (a) Distribution of the pGI50 upper outlier values obtained for the NCI-60 cancer cell lines
for the 18 PKIs from the predictive set. (b) Distribution of the pGI50 upper outlier values obtained
for the NCI-60 cancer cell lines for the top 10 best-scoring compounds illustrated in Table 5. Cell line
numbers correspond to cell line names as initially presented in Table 2 and are separated by tissue
types for easier interpretation. The graph shows colored bars corresponding to a certain compound
wherever the pGI50 value was identified as being an upper outlier for that compound. By comparison,
some similarities between profiles of some of the PKIs from the predictive set and the top 10 predicted
potential PKIs can be observed.
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Table 5. Top 10 best scoring compounds.

Compound Score Upper
Fence

Upper Outlier
Count Outlier Cell Lines

NSC 693255 118.33 6.278 8 ACHN, CAKI-1, EKVX, IGROV1, NCI-H322M,
NCI-H522, SK-OV-3, TK-10

NSC 686288 62.5 6.435 11 A498, CAKI-1, IGROV1, K-562, MCF7, NCI-H460,
OVCAR-5, SW-620, T-47D, TK-10, UACC-257

NSC 665910 54.16 7.016 2 A549/ATCC, HS 578T, NCI-H226, NCI-H322M, SF-295,
SK-OV-3, SNB-19, TK-10

NSC 669364 52.36 6.225 5 ACHN, DU-145, EKVX, NCI-H522, SK-OV-3
NSC 24112 52.08 6.120 6 A498, HCT-116, HOP-92, HT29, K-562, SR

NSC 22323 51.94 7.234 9 CCRF-CEM, EKVX, HCT-116, HOP-62, HOP-92, HT29,
K-562, MOLT-4, NCI-H23, RPMI-8226

NSC 61805 49.30 6.276 6 COLO 205, EKVX, MCF7, MOLT-4, PC-3, RXF 393, TK-10

NSC 239072 48.75 8.003 13
A498, A549/ATCC, ACHN, COLO 205, HCC-2998,
HL-60(TB), HOP-92, K-562, MDA-MB-231/ATCC,

MDA-MB-435, NCI-H460, SF-295, TK-10
NSC 676469 48.61 6.093 6 ACHN, HCT-15, K-562, M14, TK-10, UACC-62

NSC 650395 47.77 8.784 9
A498, BT-549, CAKI-1, HCC-2998, HOP-62, HOP-92,

MCF7, MDA-MB-231/ATCC, OVCAR-3, PC-3, RXF 393,
SF-295, SK-OV-3, SNB-19, UACC-62

Upper outlier = any pGI50 value bigger than the upper fence (1,5 * IQR); IQR = interquartile range; NSC = Cancer
Chemotherapy National Service Center number.

The majority of the chemical structures of the top 10 best-scoring compounds predicted to target
protein kinases don’t share the typical structure of most PKIs, supporting thus the utility of this method
to help the medicinal chemist to find new leads for the design of future PKIs. The structures of these
compounds are presented in Figure 2.Molecules 2020, 25, x FOR PEER REVIEW 9 of 17 
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2.3.4. Predictive Method Validation

Internal validation of the score results was performed in the form of a ROC (receiver operating
characteristic) curve analysis, assessing the accuracy of the scoring system on the predictive set.
The ROC curve graph is presented in Figure 3. Descriptives for the scores of the predictive set
compounds can be found in the Supplementary Material section, Table S3. Based on this analysis,
the cut-off value for the score was set to be 10.21, with an area under the curve of 0.952, sensitivity of
0.833 and 1–specificity value of 0.50.Molecules 2020, 25, x FOR PEER REVIEW 10 of 17 
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When analyzing the scores for the compounds of the predictive set, it was observed that 15 PKIs
out of 18 forming the PKI group presented scores higher than the cut-off value (with NSC 732517,
NSC 741078 and NSC 747971 obtaining score values of 0, representing false-negative results), while
from the AOD group, 4 out of 80 compounds scored higher than 10.21, (NSC 26271, NSC 138783, NSC
719345 and NSC 719627, with score values of 37.50, 17.50, 17.64 and 18.89, respectively), representing
false-positives. Therefore, judging by the cut-off values, the scoring method has a calculated precision
rate of 0.789 and a recall rate of 0.833.

Additionally, external validation of the method was performed using NCI’s COMPARE algorithm,
by correlating each of the top 10 predicted potential PKIs with the NCI-60 GI50 profiles of compounds
from the “marketed drugs” set. Table 6 shows the algorithm’s calculated correlation results for each of
the top 10 potential PKIs.

The NCI’s COMPARE method revealed that 4 of the 10 compounds analyzed have a similar
anti-proliferative profile with that of marketed PKIs. The lack of marketed PKIs drugs correlated with
the other six compounds does not mean they don’t possess the capacity to inhibit PK, but rather that
their profile is significantly different from that of all marketed anticancer drugs. These results offer an
external validation of the proposed PKIs identification method.

The top ranking compound NSC 693255 and the 4th ranking NSC 669364 are close analogs and the
results of NCI’s COMPARE methods indicate EGFR as potential target based on the antiproliferative
profile similarity with erlotinib and gefitinib. All these compounds also share a clear chemical similarity
highlighting the importance of the 4-(phenylamino)quinazoline scaffold (structure not shown).
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Table 6. Top 10 predicted potential PKIs correlated with known PKI drugs using COMPARE algorithm.

Compound Correlation Found with at Least
One Compound (Pearson>0.4)

Correlation with PKI
(with Correlation Score)

NSC 693255 Yes

erlotinib (0.76)
lapatinib (0.71)
gefitinib (0.71)
dasatinib (0.43)

NSC 686288 No -
NSC 665910 No -

NSC 669364 Yes

erlotinib (0.63)
gefitinib (0.50)
lapatinib (0.48)
dasatinib (0.41)

NSC 24112 Yes imatinib (0.44)
NSC 22323 Yes imatinib (0.44)
NSC 61805 No -

NSC 239072 No -
NSC 676469 No -
NSC 650395 No -

3. Discussion

To summarize, for each compound, the upper outlier values represent cell lines that are more
sensitive to a compound’s growth inhibitory activity than the others, meaning the respective compound
acts by interfering with (at least) an essential mechanism for the proliferation of that specific cell line.
Lower outliers, on the contrary, represent cell lines that are more resistant to a certain compound’s
mechanism of action. Our method of identifying PKI compounds based on outliers, taking into account
only the most sensitive cell lines, has the advantage of identifying potential drugs that are more
selective than those found through a simple screening method. Upper outliers, especially, proved to
be more significant in profiling a certain compound, as it is easily understandable that we are more
interested in cell lines for which the respective compound has a higher growth inhibition activity.

AODs were used as a negative control group to reduce the probability of finding general-acting
proliferation inhibitors and increase the method’s accuracy toward specifically selective inhibitors of
cell proliferation.

The main purpose of the proposed method was to readily orient a medicinal chemist about
potential structures or scaffolds to be used for PKI development, through either rational design or even
drug repurposing. The method estimates the potential of an analyzed compound to be an inhibitor of
one or more protein kinases, and should not be seen as a screening tool for PKI identification when
used alone. Rather, the analysis could be corroborated with other known methods for PKI discovery,
such as physicochemical descriptor filtering, scaffold hopping, etc. Yet, the indicated compounds
resulting from the prediction should be further looked into, as the chemical space described by the
resulting compounds appear to be larger than currently indicated by the state of the art knowledge in
the field of protein kinase inhibition. Our method encompasses a profile of PKI inhibition as general
as possible. The reasoning was that even if the signaling pathways are different, if two cell lines are
sensitive to two different drugs acting through different mechanisms, by inhibiting different kinases,
a third compound, potential PKI, to which both of the cell lines are sensitive to, may act at least through
inhibiting one of the kinases.

Replacing missing datapoints with the mean value of the other results for a given compound was
done in order for the Pearson correlation analysis and score calculations to be performed, as Pearson
analysis doesn’t take into account compound lines with missing values. The replacing average values
could represent false-negative results, as the results for some untested cells could have been upper or
lower outliers, changing the inhibition profile of a compound. However, the pursued attribute in the
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performed analysis was the specificity of the outlier identification method, not sensitivity, therefore
false-negative results would not cause an error as large as false-positives results would.

One advantage of this method would be that it does not require the exact chemical structure
of the compound for the analysis, although a brief glimpse would help a medicinal chemist to
get an idea about similar compounds, as a guide in which inhibition profiles should be compared.
The growth inhibition profiles provided by the NCI can be analyzed without knowing specifics
about the compounds—a useful trait regarding a large number of compounds that can be taken
into account for analysis. Our method is simple and easily accessible because it is not necessary for
chemical data-management software, as the calculations and statistics can be performed with only a
spreadsheet application.

Another major upside of the proposed method is the speed of computation and the wide range of
applicability, as it can be optimized for identifying ligands for different classes of targets involved in
tumoral development, such as ion channels, enzymes, receptors, etc. The method can be also extended
to other pharmacological domains, provided data related to the pharmacological activity is analyzed.
Moreover, such a prediction could be narrowed to a singular molecular target, such as an isoform of an
enzyme or a specific protein, as this would increase the probability of observing a specific pattern in the
growth inhibition profile, which could better predict some potential ligands for the targeted molecule.

The limitations of the method are mainly related to data availability for creating the prediction
set, as the accuracy of the scoring method would be higher if more PKIs were to be analyzed. Even
with over 200 known inhibitors available in the PKIDB, only a fifth could be extracted and used for
prediction, as the other PKIs lacked data, partially or even totally, in the GI50 NCI database.

We must also take into account the unpredictability of the pharmacokinetic behavior of some
compounds, as two inhibitors may elicit similar responses in cell line testing, while in vivo it is possible
for them to display different bioavailabilities at the site of action. The reverse of the medal is also
applicable, as compounds with different growth inhibition test results on a cell line could present
similar bioavailabilities, considering the multitude of reactions that a substance can undergo in situ.
Catabolism of a molecule in development plays an important role in its pharmacological activity,
especially when talking about entering tumoral cells, hence slight variations in the growth inhibition
profile of a potential drug and that of a compound from the predictive set should not discourage the
belief that the two substances may act similarly. Additionally, the static vs dynamic nature of the
in vitro and in vivo models, as well as the mono culture and multi-cellular nature of the models can
impact translational relevance.

4. Materials and Methods

4.1. Creation and Preparation of the Testing Dataset

Data regarding the growth inhibition profiles of the compounds were collected from the NCI
database, (DTP NCI Bulk Data for Download GI50 data, June 2016 Release [39]) presenting compounds
tested on the NCI-60 cell lines panel. Data were filtered for results expressed only as pGI50, calculated
only from µM concentrations.

Descriptive analysis for the resulting lines was performed in order to identify statistical outliers.
The statistical method used for outlier flagging was based on Tukey’s fences, using IQR (interquartile
range) to define normally distributed values. Based on this method, outliers represent values not
included in the following range:

[Q1 − 1.5*IQR, Q3 + 1.5 × IQR], (1)

where IQR = Q3 − Q1, and Q1 and Q3 represent first and third quartiles, respectively.
Therefore, upper outlier values were defined as a result of a cell line where the value of pGI50 is

greater than the upper fence of Q3 + 1.5*IQR for that compound line, while lower outliers represent
values lower than the lower fence of Q1 − 1.5 × IQR. Only lines of compounds presenting in the
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NCI database at least 50 results out of 60 totally possible were selected, in order to maintain a
balance between having a large enough sample for analysis and avoiding insufficient data for each of
these compounds.

4.2. Creation and Preparation of the Predictive Set

The predictive set was created similarly by selecting protein kinase inhibitors and approved
oncologic drugs also tested on the NCI-60 panel and available in the NCI database. The PKI group
was formed by interrogating the PKIDB (accessed September 2019) containing 218 known kinase
inhibitors [7]. Its compounds have been searched for in the NCI database through chemical and
numerical identifiers such as chemical structure, CAS (Chemical Abstracts Service) number, InChI
(IUPAC International Chemical Identifier) key and NSC identifier. The resulting set was also filtered
for compound lines displaying at least 50 datapoints out of 60.

The non-PKI group from the same set was created from already-approved drugs used for the
treatment of different types of cancer, known to act through various pharmacological mechanisms
except protein kinase inhibition (for example, alkylating agents, tubulin inhibitors or antimetabolites).
The approved oncology drugs set VI (AOD6) dataset containing approved drugs extracted from the
NCI database was downloaded from the NCI website [40]. Although most of them could be traced
by the NSC identifier, several compounds proved to have too many missing datapoints to be taken
into account for the study. The remaining drugs formed the AOD group (approved oncology drugs),
the negative control of the predictive set. The negative control group was formed with oncologic drugs
to make sure that growth inhibition through mechanisms unrelated to protein kinase inhibition was
ruled out, as the selected AODs are known to be able to regulate cell growth through other mechanisms.

In order for the analysis to be possible, missing datapoints of the predictive set had to be replaced,
therefore we chose to fill missing values with the average value of the other available results of that
compound line for each row. This step was done in order to minimize the false-positive results, as the
missing values would not be interpreted as outliers. However, statistical descriptors and outliers
were calculated before replacing the missing values, as the added average values would modify some
statistical parameters, such as quartile values and upper and lower fences, leading to the identification
of a different number of outliers.

4.3. Establishing a Predictive Method

4.3.1. Calculating the Weight Factor for Each Cell Line

The frequency of outliers in each group was used to calculate a weight factor for each cell line in
order to be able to predict a score of PKI inhibition ability of other compounds. For each cell line, we
calculated the frequency of upper and lower outlier appearances in the PKI set, and in the AOD set,
respectively. The weight factors for each cell line were calculated using the difference between the
frequencies in the PKI and AOD sets:

WUi = (
uPKIi
nPKI

−
uAODi
nAOD

) × 100 (2)

WLi = (
lPKIi
nPKI

−
lAODi
nAOD

) × 100 (3)

where WUi represents the upper weight factor for cell line i, WLi represents the lower weight factor for
cell line i, uPKIi and uAODi represent the number of upper outliers present in the PKI set, respectively
in the AOD set, for cell line i, and similarly for lPKIi and lAODi in regard to lower outliers. nPKI and
nAOD represent the total number of compounds forming each of the sets. The weight factor is similar
to the probability for a pGI50 value to be an outlier in the PKI set and not in the AOD set.
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The quality of being an upper outlier was coded as a binary variable (Ui), while the quality of
being a lower outlier was coded as another binary variable (Li) for each cell line of the total of 60,
as follows:

Ui =


1 if pGI50 value for cell line i represents an upper outlier value

0 if pGI50 value for cell line i is not an upper outlier value (4)

Li =


1 if pGI50 value for cell line i represents a lower outlier value

0 if pGI50 value for cell line i is not a lower outlier value (5)

These variables were multiplied by cell line weights WUi in the case of upper outliers, and WLi

for lower outliers, respectively. The sum of these two products for all 60 cell lines constituted a score
(Sc) for any given compound. Score calculation was done using the following formula:

Sc =
60∑

i=1

(WUi ×Ui + WLi × Li) (6)

where c represents the identifier number for a compound, and i represents the NCI-60 cell line number,
as presented in Table 2.

4.3.2. Results Analysis and Validation

The scoring method was verified by ROC analysis using IBM SPSS Statistics 20 software and score
results were correlated with the upper fence value (IQR + Q3) for each compound cell line to identify
the most probable PKIs. Only compounds with score values larger than 10 that also presented an
upper fence value for the compound’s results larger than 6 were chosen. The second filter was added
in order to select compounds that elicited growth inhibition responses larger than the average value,
for identifying significantly more potent inhibitors.

External validation of the results was performed using NCI’s COMPARE algorithm, by individually
entering the NSC identifiers for each of the top 10 predicted potential PKIs. The algorithm calculated
the correlation for each of the compounds with the NCI-60 GI50 profiles of other drugs (dataset chosen
for comparison was “marketed drugs” and a minimum correlation coefficient of 0.4 was selected).

5. Conclusions

In summary, we have developed a statistical method based on outlier identification which analyses
data from the growth inhibition profile tested on the NCI-60 panel in order to predict the potential of
9137 tested compounds of being a protein kinase inhibitor. The similarities and differences between
the tested compounds and the profiles of 18 already-developed PKIs and 80 approved oncological
drugs acting through non-PKI related mechanisms were appreciated using a scoring system based
on statistical outlier distribution and pGI50 values, which indicated 409 compounds to have the best
chance of being protein kinase inhibitors. Further analyses of these compounds need to be performed
in order to determine their protein kinase inhibitor properties, possibly followed by in silico studies
for confirmation. This method, while far from flawless, may appear to be a rapid and simple tool for
aiding a medicinal chemist with basic knowledge of statistical analysis in choosing potential scaffolds
or structures for further development as PKIs or other applicable targeted pharmacological classes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/8/1766/s1,
Table S1: Detailed descriptive statistics for the PKI group of the predictive set, Table S2: Summary of descriptive
statistics for the testing set compounds (n = 9137), Table S3: ROC analysis of score prediction accuracy, tested on
the predictive set (PKI vs. AOD), Table S4: Summary of descriptive statistics for the 409 potential PKI compounds.

http://www.mdpi.com/1420-3049/25/8/1766/s1
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AOD approved oncology drugs
CAS Chemical Abstracts Service registry number
CNS central nervous system
DTP Developmental Therapeutics Program
GI50 half maximal growth inhibition
IC50 half maximal inhibitory concentration
InChI IUPAC International Chemical Identifier
IQR interquartile range
LC50 half maximal lethal concentration
NCI National Cancer Institute
NSC Cancer Chemotherapy National Service Center number
NSCLC non-small cell lung cancer
PKI Protein Kinase Inhibitor
ROC receiver operating characteristic
TGI total growth inhibition
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