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Abstract: Increasingly, machine learning methods have been applied to aid in diagnosis with good
results. However, some complex models can confuse physicians because they are difficult to under-
stand, while data differences across diagnostic tasks and institutions can cause model performance
fluctuations. To address this challenge, we combined the Deep Ensemble Model (DEM) and tree-
structured Parzen Estimator (TPE) and proposed an adaptive deep ensemble learning method
(TPE-DEM) for dynamic evolving diagnostic task scenarios. Different from previous research that
focuses on achieving better performance with a fixed structure model, our proposed model uses TPE
to efficiently aggregate simple models more easily understood by physicians and require less training
data. In addition, our proposed model can choose the optimal number of layers for the model and
the type and number of basic learners to achieve the best performance in different diagnostic task
scenarios based on the data distribution and characteristics of the current diagnostic task. We tested
our model on one dataset constructed with a partner hospital and five UCI public datasets with
different characteristics and volumes based on various diagnostic tasks. Our performance evaluation
results show that our proposed model outperforms other baseline models on different datasets.
Our study provides a novel approach for simple and understandable machine learning models in
tasks with variable datasets and feature sets, and the findings have important implications for the
application of machine learning models in computer-aided diagnosis.

Keywords: adaptive deep ensemble learning; dynamic evolving diagnosis; intelligent health knowl-
edge discovery; personalized health management

1. Introduction

Many different factors are often taken into account when diagnosing a disease. The
complexity of the disease (such as the risk levels associated with multiple diseases) and the
diagnostic knowledge available to the physician [1,2] can influence the correct diagnosis
of the disease [3]. These complicated factors have raised many challenges for medical
professionals, especially those who are young and inexperienced [4]. Machine learning
is widely adopted to develop medical auxiliary diagnostic systems [5], which are also
known as Computer-Aided Diagnosis (CAD) systems. CAD systems are important tools
that provide disease diagnosis and prognosis [6,7]. They do not only help doctors make
quick decisions and save patients’ time but also reduce the uncomfortable experience
of patients by replacing invasive approaches [8]. CAD systems use a wide spectrum of
machine learning methods [9], ranging from single prediction models such as Support
Vector Machine (SVM) and Decision Tree (DT), to ensemble and deep learning models, such
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as Random Forest (RF), Extreme Gradient Boosting (XGBoost) and Deep Neural Network
(DNN).

When CAD is used to assist diagnosis, effective feature engineering can be realized
with the help of doctors, which makes it possible for some classical machine learning
methods with better understanding to achieve better performance than deep learning
models [10]. Appropriate features can be obtained through feature selection algorithms [11],
selection methods based on physician experience [10], or other methods. On the other
hand, many models based on deep neural networks may hinder the efficiency of the
interaction between doctors and the system due to the incomprehensible nature of its
decision-making process [12,13], while highly complex models are also not conducive to
the physician’s adjustment to reduce diagnostic bias [14,15]. Therefore, improving the
performance of relatively simple models with high comprehensiveness (such as accuracy
and generalization in the face of changing data) remains important for CAD [16].

Ensemble learning is a class of methods that utilize more than one machine learning
model to improve prediction results [17]. The performance of an ensemble learning model
integrating the results of individual models (i.e., base learners) is usually better than that
of the individual models [18]. For instance, Tseng [19] integrated five machine learning
classifiers to propose an ensemble model for diagnosing recurrent ovarian cancer. Ensemble
learning usually selects an optimal set of base learners and then combine them using a
specific fusion method. Thus, the decision on choosing base learners and integrating
them is critical. To ensure optimal performance, the base learners should have both good
performances and enough diversity [20]. To aggregate base learners, classifier fusion
methods are typically used. Such methods may include majority voting, support function
fusion, and stacking [21].

The optimal set of base learners and fusion method may change when an ensemble
learning model is applied to different datasets [22]. Due to the heterogeneity of datasets
and the diversity of disease types, a fixed algorithm structure is likely to limit the accuracy
of diagnosis. Prior research has proposed different strategies to make an ensemble model
generalizable to different problems. For instance, Al-Tashi [23] used wavelet transformation
and singular value decomposition to reduce feature space dimensions. This method
relies on the projection of features instead of specific features, which improves model
generalization on diagnostic performance. Yet, similar to linear models, this approach still
focuses on reducing model complexity rather than making the model adaptive to different
problems and datasets. Zhou [24] experimented with a deep forest ensemble architecture
that consists of two kinds of random forest algorithms. However, adopting a fixed number
and type of classifier will still hinder the performance of the system in the face of different
problems.

Previous studies have made good progress in adapting ensemble models for heteroge-
neous problems. However, most of them adopt a fixed structure, which can only ensure
that the performance of the model remains relatively stable, but they do not help the model
achieve optimal performance across different diagnostic tasks, changing datasets, and
diagnostic features. Specifically, in some real-world assisted diagnosis scenarios, training
datasets will have significantly different volumes and features depending on different
diagnostic tasks and different hospitals [22]. Diagnostic data are still difficult to share
as an important asset for hospitals, which means that it is difficult for small hospitals to
obtain large amounts of data sufficient to support the training of complex deep models,
so it is important that the auxiliary diagnostic models can maintain good performance
against small datasets, and the performance of the models needs to be robust in the face of
different features of different diagnostic scenarios. Therefore, designing and constructing
an adaptive deep ensemble learning method for simple base learners with high understand-
ability can further improve the accuracy, reproducibility and interpretability of the deep
ensemble learning model and promote its wider application in the field of bioinformatics
and CAD [25].
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In this study, we propose a DEM based on a Tree-Structured Parzen Estimator (TPE)
to address the above problems. DEM is a class of deep learning model based on cascade
forest structure. Different from traditional deep neural networks, each layer of DEM
is composed of base classifiers. In this study, we use TPE to optimize the number of
base classifiers per layer so that it can dynamically adjust the number of base classifiers
when applied to different datasets. The TPE method has been widely used for optimizing
hyperparameters [26]. We further use four advanced ensemble learners to form a base
classifier pool. This ensures that the base learners have good diversity, which is critical to
ensemble learning [27]. The four ensemble learners are Random Forest (RF), Extra Trees
(ET), AdaBoost, and Gradient Boosting Decision Tree (GBDT). By dynamically adjusting
the system structure based on data, the proposed algorithm can dynamically search for
optimal solutions when applied to different problems.

Overall, our model uses TPE for classifier selection and DEM for classifiers fusion.
The proposed model has three main advantages:

(1) Our proposed model is based on the integration of simple and comprehensible models.
Therefore, this model needs to learn fewer parameters than the deep neural network-
based model and therefore requires less training data while being more easily accepted
and understood by physicians in practical applications.

(2) Our proposed model can dynamically adjust its structure to maintain good perfor-
mance in tasks with different datasets and feature sets.

(3) Our proposed model can be flexibly tuned for continuous optimization, e.g., future
studies for base classifiers can enable the overall performance of the model.

To examine the performance of the TPE-DEM model compared with other benchmark
models, we conducted validation experiments on six datasets with significant differences
(the differences are reflected in the different volumes, number of features, and the pro-
portion of negative and positive data). We first use two different datasets representing
different diagnostic tasks and describe the optimal hyperparameters and performance of
the proposed model on two datasets. The first is breast cancer diagnostic data from our
partner hospitals, and the second is the coronary artery disease prediction dataset from the
UCI public datasets. Then, to further validate the performance of the proposed model on
different datasets, we used four additional UCI public datasets for evaluation experiments.
The first two datasets are oriented to medical diagnosis tasks. The last two datasets are
oriented to tasks in other scenarios, where the last dataset has a significantly higher volume
than the others. Our experimental results demonstrate that the proposed model has good
performance on small volume datasets. However, as a deep model, its performance on
datasets with large volumes is more outstanding than other benchmark models.

The remainder of the paper is organized as follows. Section 2 reviews previous studies
and their relevance to our study. Section 3 describes the proposed TPE-DEM model, and
Section 4 introduces the six datasets and metrics that we used to evaluate the model. In
Section 5, we analyze the experimental results and discuss the theoretical and practical
implications of our research. In the final section, we summarize our research and point out
limitations that still need to be addressed in the future.

2. Related Works

Ensemble learning techniques combine multiple base learners and can obtain better
prediction performance than single learners. Bagging, boosting, and stacking are the
most common ensemble approaches. Bagging combines the predictions of individual base
learners by voting. Boosting iteratively constructs new models based on the prediction
error of previous models. Stacking trains a meta learner using the predictions of individual
base learners. The meta learner determines the weights of the predictions in a supervised
fashion. The construction of an ensemble model mainly involves approaches for generating
(of a pool of classifier), selecting (categories and quantities of classifiers) and integrating
(the prediction results of each classifier to generate the final output) [28].
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Chandra [29] suggests that the most promising direction is to generate a pool of accu-
rate and diverse algorithms. Therefore, the optimal ensemble model should combine base
learners with good individual performance and enough level of diversity. The selection
stage in ensemble learning determines the type and number of base learners. The selection
strategy can be static or dynamic [30]. The static strategy combines base learners regardless
of data, while dynamic selection chooses the most appropriate base learners for a given
dataset. Existing research has extensively studied algorithms for finding an accurate and
diverse set of base learners for ensemble learning. For instance, Brun [31] proposed a dy-
namic classifier selection framework and demonstrated through experiments that training
different classifiers based on different problems and datasets can improve classification
accuracy. Junior [32] proposed a reduced minority k-nearest neighbors method based
on k-nearest neighbors, which effectively solves the problem of prediction bias caused
by unbalanced data in a credit score prediction task. Previous studies have proved that
dynamic classifier selection and the combination can improve the performance of classifiers
facing different data types and different scenarios, and our study also proves this theory.
However, differently from previous work, the model we proposed turns the classifier
selection problem into an optimization problem, making the process of classifier selection
more rapid and further improving the performance of the ensemble model by combining it
with DEM [32].

Many search algorithms have been considered for optimization, such as Genetic Al-
gorithms (GA) [33] and Evolutionary Algorithms (EA) [34]. The major limitation of these
methods is that they often use a significant amount of time to evaluate hyperparameters.
Gaussian process-expected improvement [35] and Gaussian process-predictive entropy
search [36] methods use Gaussian Process (GP) to estimate the error caused by different hy-
perparameters. These methods employ Expected Improvement (EI) and predictive entropy
search acquisition functions. Although GP is simple and flexible, its covariance matrix
processing needs a lot of computation [37]. Researchers proposed TPE, which now has been
widely used for hyperparameter optimization. Recent work has also used TPE to optimize
the hyperparameters of convolutional neural networks to improve the performance of the
model in the lung nodule recognition task [38]. In this paper, our proposed model needs
to dynamically adjust the hyperparameters for better performance in the face of different
diagnostic tasks, but the optimal computation of hyperparameters entails additional time
loss. To minimize the time loss, our model requires a faster optimization algorithm. Com-
pared with other optimization algorithms, TPE can complete the optimization task in less
time; therefore, we choose TPE as the hyperparameter selection method in this paper.

The integration strategy of the ensemble learning model often depends on the specific
situation. Each base learner can have equal or different weights, and the integration
strategy usually affects the accuracy of the final model [39]. The rule for combining base
learners could be supervised or unsupervised. Sum and majority voting are well-known
unsupervised methods. Stacking is a supervised method. The predicted results from each
base learner are merged into new features and trained using the meta learner [40]. Recently,
researchers have introduced mechanisms to combine ensemble learning methods and
various deep learning algorithms to enhance prediction performance. Zhou [24] proposed
a cascade forest ensemble based on gcForest for better representation learning. In this
model, based on the deep neural network model, the author replaced each neuron with
a tree-based classifier. In general, the performance of traditional deep forest ensemble
models based on the static integration method will be greatly affected by the change in
data. Based on the traditional deep forest ensemble scheme, we use the TPE method to
optimize the structure of the model to dynamically adjust the type and number of base
learners in the model according to different datasets. Experiments show that the method
we propose in this study has better performance than popular baselines and maintains
stable performance on different datasets. We further evaluate the new system in diseases
diagnosis.
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3. Methods
3.1. Model Design

To address the challenges in data-driven medical diagnosis, where data are complex
and heterogeneous, this study proposes a novel multiple classifier system that uses TPE for
the selection and DEM for the integration of base learners. The general framework of the
proposed algorithm is illustrated in Figure 1. The DEM component inherits the advantages
of the Cascade Forest Structure proposed by [24]. It works like a neural network model
by learning the information in the data through layers. These derived features, combined
with the original features, are then passed over. It automatically increases the depth until
the testing set accuracy is no longer improved. Majority voting is performed on each layer
until the last layer obtains the final results. As shown in Figure 1, we extend the Cascade
Forest Structure proposed by [24] by optimizing the selection of base learners using a pool
of highly diverse candidates. This paper takes the number of different base classifiers
included in the proposed model when facing different task scenarios as hyperparameters.
Our proposed model obtains the optimal hyperparameters by using the TPE method. Thus,
the user does not need to spend a lot of effort adjusting the hyperparameters to optimize
the model. The proposed method has achieved superior performance in our experiments.
Although it is a deep model, the number of parameters based on tree structure is much
smaller than that of a typical deep neural network. Thus, less training data are required.

Figure 1. Framework of our proposed methods.
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For the pool of base learners, we use Random Forest (RF), ExtraTree (ET), AdaBoost,
and Gradient Boosting Decision Tree (GBDT). All of these are powerful ensemble methods
themselves (we introduce these base learners briefly in the next section). Using a combina-
tion of these four base learners can ensure both accuracy and diversity of the pool. This is
essentially different from the Cascade Forest structure, which used only random forests.
In our proposed algorithm, each classifier mi predicts an estimated class distribution pi.
We optimize the number of base learners by minimizing a loss function given by the
average outputs of all of the classifiers. We predict the class labels based on the predicted
probabilities p for classifier and the class label ŷ via majority voting of each classifier mi.
Assuming the example as a binary classification task with class labels k∈{0,1}, it can be
expressed as follows:

ŷ = arg max
k

∑
mi∈θ

wj

∑
j=0

pkij (1)

where pkij represents the probability that the jth mi classifier predicts that the current
label is K. Note that mi in this study belongs to the pool θ of four basic ensemble learners
described above, while in other task scenarios, θ can be composed of other different base
learners in different scenarios.

Based on Equation (1), we minimize the majority voting error between the true label
and the predicted label. The number of classifier mi is denoted as wi and wi ∈ N = {0, 1, 2,
3, . . . }. When the value of wi is 0, classifier mi is not selected.

3.2. Base Learners

We use four common ensemble models with a proven excellent performance to build
the base learner pool because ensemble models generally perform better than individual
models in many machine learning tasks and are more stable in the face of unbalanced data
sets [41,42]. In addition, the decision-making process of these models based on a decision
tree is easier to be understood by doctors than those based on neural networks.

(1) ET is a tree-based ensemble learning model that strongly randomizes attributes and
split points. It simultaneously splits new nodes to maintain strong randomness
among the base decision trees [43]. Based on the integration of many base classifiers
with strong randomness, ET often has excellent performance.

(2) GBDT is a popular model proposed by Friedman [44]. This model consists of multiple
decision trees. The results of all the trees are added together to make the final
prediction. GBDT makes each base learner fit the residual of the previous learner
iteratively to reduce final prediction errors.

(3) RF trains a fixed number of weak decision trees using randomly selected training
samples and uses the results of these trees to generate final predictions by voting.
Random forest rarely overfits and is robust to noise in the data [45].

(4) AdaBoost is a classical ensemble learning algorithm. It combines several weak learners
into strong learners. It iteratively assigns more weights to the samples mispredicted
by the previous weak learners. New learners are subsequently trained on these
samples [46].

Note that since the base classifier chosen for this paper is based on a tree model, we
performed data preprocessing before the data were fed into the model. Specifically, when
a dataset contains both real and categorical values, the real values are discretized. For
example, we divide the age attributes into three categories according to (0, 30), [30, 60)
and [60, ∞), and doctors can incorporate their experience into the system by changing the
interval division in practical applications. Future research that attempts to use other types
of models as base classifiers could also use encoding methods such as one-hot to process
the data as input to the model.
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3.3. Model Optimization Based on TPE

In our study, TPE was used to determine the number of base learners by optimizing
the loss function because of its superior convergence and exploration capabilities. When
training a supervised learning algorithm, it is often necessary to find a set of hyperparame-
ters that can make the model performance reach its peak. Bayesian optimization is one of
the practical ways for hyper-parameter optimization. In its essence, Bayesian hyperparam-
eter optimization selects hyperparameters based on probability. Sequential Model-Based
Optimization (SMBO) methods [47] are a type of Bayesian optimization. This method
attempts to obtain better hyperparameters by continuously using Bayesian reasoning and
updating probabilistic models. There are five aspects of model-based hyperparameter
optimization:

1. A domain of hyperparameters over which to search.
2. An objective function that can be optimized to obtain the corresponding score by

optimizing the hyperparameters.
3. The surrogate model of the objective function.
4. A criterion, called a selection function, for evaluating which hyperparameters could

be chosen in the next step based on the surrogate model.
5. A history consisting of (score, hyperparameter) pairs used by the algorithm to update

the surrogate model.

Several different methods are derived based on SMBO, which construct proxies and
select hyperparameters using different rules. Several common choices for the surrogate
model are GP, random forest regressions, and TPE. We focus on TPE in this paper. TPE
is a nonstandard Bayesian-based optimization algorithm that models error distribution
nonparametrically [26]. TPE creates l(x) and g(x) as two hierarchical processes to generate
all domain variables. These processes model the domain variables when the objective
function is below and above a specified quantile y∗. Specifically, TPE models p(x|y) by
transforming the generative process. The benefit of using TPE is that it naturally supports
domains with specified conditional variables.

p(x|y) =
{

l(x) i f y < y∗

g(x) i f y ≥ y∗
(2)

where l(x) is the density estimated from the observations {xi} such that the corresponding
loss f (xi) is less than y∗. g(x) is the density estimated from the remaining observations.

In particular, the method that we proposed turns the classifier selection problem into
a hyperparameter optimization problem—it searches for the optimal number of classifiers.
In the process of model construction, the method iteratively minimizes a loss function by
selecting a different number of classifiers. In each iteration, the TPE will obtain the range
that is most likely to produce the best hyperparameter based on the current hyperparameter
and the current loss and then apply the best range in the next iteration. This method will
greatly reduce the number of iterations and model training time.

4. Evaluation
4.1. Datasets

In this work, we used six different datasets to examine our proposed model—the
first dataset from our collaborating hospital and the remaining five datasets from the UCI
dataset. We first present an overview of all datasets (see Table 1). In this paper, we consider
the experiments based on two datasets as two different diagnostic tasks and use them as
examples for the demonstration of the model workflow, so we describe in detail the first two
datasets and the experimental procedure based on the first two datasets. We also provide
the model’s results on the remaining four datasets compared with other models to further
validate the performance of the proposed model. The first dataset was used to predict
breast cancer and was processed by senior physicians from a collaborating grade-A3 (the
highest grade for hospitals in China) hospital in eastern China. The dataset contains 10 of
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the most common features from clinical and regular examinations identified by physicians
(see Table 2). In this dataset, patients’ conditions are divided into two categories: benign
(negative) or malignant (positive).

The second dataset was used to predict whether a patient has coronary artery disease.
This dataset is the Z-Alizadeh Sani dataset obtained from the UCI dataset [48]. The dataset
contains information about 303 patients, 216 of which suffered from coronary artery disease.
A total of 54 features were collected from each patient. These features come from different
data sources, including patients’ demographics, symptoms, physical examination results,
electrocardiography, echocardiography, and laboratory tests (see Table 3). In this dataset,
patients’ conditions are divided into two categories: negative or positive.

Table 1. Overview of the six datasets.

Dataset Name Volume Distribution Number of Features

Breast Cancer Prediction 334 170 positive and 164 negative 10
Z-Alizadeh Sani 303 216 positive and 87 negative 54

Indian Liver Patient [49] 583 416 positive and 167 negative 10
Breast Cancer Wisconsin [49] 569 212 positive and 357 negative 32

Cervical Cancer [49] 858 55 positive and 803 negative 36
Thyroid Disease [50] 7200 6644 positive and 556 negative 21

Table 2. Features of Breast Cancer Prediction.

Attribute Type Description of Attribute

Age Continuous Patient’s age
Location Discrete Location of the patient’s mass

Node Continuous Number of metastatic lymph nodes
Density Discrete Density of the patient’s mass
Clarity Discrete Clarity of the patient’s mass margin
Area Continuous Area of the patient’s mass

Regulation Discrete Regulation of the patient’s mass border
Surface Smoothness Discrete Smoothness of the patient’s mass surface

Nipple Discrete Whether a woman with breast tumor has nipple
discharge

Family_History Discrete Whether the patient has a family history of breast cancer

Table 3. Features of Z-Alizadeh Sani dataset.

Feature Type Feature Name Data Type

Demographic

Age Real number
Weight Real number

Sex Categorical
Length Real number

Body mass index Real number
Diabetes mellitus Categorical

Hypertension Categorical
Current smoker Categorical

Ex-smoker Categorical
Family history Categorical

Obesity Categorical
Chronic renal failure Categorical

Cerebrovascular accident Categorical
Airway disease Categorical
Thyroid disease Categorical

Congestive heart failure Categorical
Dyslipidemia Categorical
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Table 3. Cont.

Feature Type Feature Name Data Type

Symptom and examination
Density

Blood pressure (mm Hg) Real number
Pulse rate (ppm) Real number

Edema Categorical
Weak peripheral pulse Categorical

Lung rales Categorical
Systolic murmur Categorical
Diastolic murmur Categorical
Typical chest pain Categorical

Dyspnea Categorical
Function class Real number

Atypical Categorical
Nonanginal chest pain Categorical
Exertional chest pain Categorical

Low-threshold angina Categorical

ECG

Rhythm Categorical
Q wave Categorical

ST depression Categorical
T inversion Categorical

Left ventricular hypertrophy Categorical
Poor R-wave progression Categorical

Laboratory and echo

Fasting blood sugar (mg/dL) Real number
Creatine (mg/dL) Real number

Triglyceride (mg/dL) Real number
Low-density lipoprotein (mg/dL) Real number
High-density lipoprotein (mg/dL) Real number

Blood urea nitrogen (mg/dL) Real number
Erythrocyte sedimentation rate (mm/h) Real number

Hemoglobin (g/dL) Real number
K (mEq/lit) Real number

Na (mEq/lit) Real number
White blood cell (cells/mL) Real number

Lymphocyte (%) Real number
Neutrophil (%) Real number

Platelet (1000/mL) Real number
Ejection fraction (%) Real number
Region with RWMA Real number

Valvular heart disease Categorical

4.2. Baselines and Metrics

In order to show the effectiveness of the proposed system, we selected six baselines
for comparison, including RF, AdaBoost, ET, GBDT, TPE-Voting and DEM. Random forest,
AdaBoost, ExtraTrees, and GBDT are the current ensemble learning models with good
performance. TPE-Voting is an ensemble learning model which uses TPE method to
optimize the voting weight in the integration process. DEM is a traditional deep forest
model with a fixed structure. Using these baselines, we can compare the performance of
TPE-DEM to that of traditional ensemble learning models and deep forest models to show
the advantages of TPE-DEM model.

We measure the performance of our model using a number of metrics that are recog-
nized by a wide range of work [51]. The prediction metrics used are precision, F-measure,
accuracy and Area Under the Receiver Operating Characteristic (AUC). They are defined
as follows:

Precision =
TP

TP + FP
(3)

F−measure = 2× Precision× Recall
Precision + Recall

(4)
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Accuracy =
TP + TN

TP + FP + TN + FN
(5)

where TP, TN, FP, and FN denote the numbers of true positives (hits), true negatives, false
positives (false alarms), and false negatives (misses), respectively. The Receiver Operating
Characteristic (ROC) curve is an effective method for assessing the performance of a model
over all possible thresholds. AUC is the area under the ROC curve, and it is the most
commonly used summary measure of a ROC curve [52].

4.3. Experimental Procedure

We conducted experiments on six corresponding datasets, and a 10-fold cross-validation
approach was used to evaluate our proposed algorithm. Both datasets are randomly di-
vided into ten stratified subsamples of equal size. For each fold, nine subsamples are
used to train the model, and the rest are used for testing. Each trial is run ten times. The
results are averaged across the 100 runs. We also use paired t-test to test if models differ
significantly in performance. All of the classifiers are implemented using the Scikit-learn
Python library [53] with default parameters, except that the TPE algorithm is based on a
Python tool named hyperopt [54].

5. Results and Discussion
5.1. Performance of TPE-DEM

In the breast cancer prediction task (Breast Cancer Prediction dataset), the TPE algo-
rithm obtained the classifier value [2, 5, 5, 0], corresponding to 2 random forests, 5 Extra-
Trees, 5 AdaBoost, and 0 GBDT are the optimal hyperparameters of our proposed model in
the current task. The model performance is optimal when the optimal hyperparameters are
used, so in Table 4, we use the model performance based on the optimal hyperparameters
as the performance of TPE-DEM in the current task. In addition to the proposed TPE-DEM,
we also tested other methods, including each base ensemble classifier, TPE with majority
voting, and DEM without TPE for selection which uses all four base classifiers. TPE-DEM
performs better than the other classifiers in both accuracy and F-measure. The performance
of TPE-DEM is consistently superior to other baselines.

Table 4. Results of comparison with classification models (Breast Cancer Prediction dataset).

Precision F-Measure Accuracy AUC

Random Forest 91.83% 89.49% 89.58% 95.04%
AdaBoost 84.07% * 83.45% * 83.30% * 91.85% *
ExtraTrees 88.73% * 84.95% * 85.33% * 92.80%

GBDT 92.81% 89.69% 89.92% 95.24%
TPE-Voting 87.57% * 86.52% * 86.42% * 94.04% *

DEM 92.79% * 88.01% * 88.51% * 94.93% *
TPE-DEM 95.36% 90.91% 91.26% 96.08%

* p-values are significant at α = 0.05.

In the coronary artery disease prediction task (Z-Alizadeh Sani dataset), we initially
used XGBoost for feature selection to reduce overfitting and computational complexity.
We then selected 28 features with coefficients greater than 0.01 as the new input. The TPE
algorithm obtains the weight value [3, 3, 1, 0], corresponding to 3 RF, 3 ET, 1 AdaBoost, and
0 GBDT are the optimal hyperparameters of our proposed model in the current task. The
model performance is optimal when the optimal hyperparameters are used, so in Table 5,
we use the model performance based on the optimal hyperparameters as the performance
of TPE-DEM in the current task. Overall, TPE-DEM outperforms all other classifiers.
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Table 5. Results of comparison with classification models (Z-Alizadeh Sani dataset).

Precision F-Measure Accuracy AUC

Random Forest 88.86% 91.14% 86.95% 92.72%
AdaBoost 87.88% * 88.94% * 84.07% * 88.05% *
ExtraTrees 90.88% * 90.35% * 86.33% * 90.83% *

GBDT 90.02% 91.84% 88.05% 92.45%
TPE-Voting 90.05% * 90.51% * 86.33% * 91.55% *

DEM 89.11% * 90.12% * 85.73% * 91.84% *
TPE-DEM 91.03% 92.76% 89.43% 92.99%

* p-values are significant at α = 0.05.

To further demonstrate the performance of the proposed model, we also show the
experimental results of the model on the Indian liver patient dataset (see Table 6), Breast
Cancer Wisconsin dataset (see Table 7), Cervical Cancer dataset (see Table 8), and Thyroid
Disease dataset (see Table 9). The results demonstrate that some of the baseline models
while achieving better performance on some datasets have substantially lower perfor-
mance on specific datasets. However, our proposed model can maintain stable and good
performance in different datasets.

Table 6. Results of comparison with classification models (Indian Liver Patient dataset).

Precision F-Measure Accuracy AUC

Random Forest 87.04% * 73.84% * 90.15% 71.46% *
AdaBoost 78.30% * 72.08% * 86.65% * 71.36%
ExtraTrees 85.40% * 75.62% 89.63% 71.53%

GBDT 85.33% * 73.71% * 89.34% 69.53%
TPE-Voting 85.86% 74.03% 90.15% 73.21%

DEM 82.47% 73.16% 85.44% 73.21%
TPE-DEM 87.11% 75.48% 90.44% 75.22%

* p-values are significant at α = 0.05.

Table 7. Results of comparison with classification models (Breast Cancer Wisconsin dataset).

Precision F-Measure Accuracy AUC

Random Forest 96.18% 94.67% 96.14% 98.11%
AdaBoost 96.30% 94.77% * 96.13% * 98.12% *
ExtraTrees 97.16% 95.86% 97.01% 98.15%

GBDT 95.80% * 94.52% ** 95.96% * 98.33% *
TPE-Voting 94.34% 92.79% 94.73% 98.36%

DEM 97.59% 95.42% 97.02% 98.36%
TPE-DEM 97.63% 95.90% 97.35% 98.38%

* p-values are significant at α = 0.05. ** p-values are significant at α = 0.01.

Table 8. Results of comparison with classification models (Cervical Cancer dataset).

Precision F-Measure Accuracy AUC

Random Forest 71.45% 59.72% * 95.46% 97.00%
AdaBoost 58.95% * 50.93% ** 94.18% * 88.21% *
ExtraTrees 68.67% * 64.47% * 95.46% 95.46%

GBDT 70.50% 66.36% 95.81% 96.01%
TPE-Voting 62.17% * 59.16% * 94.87% 92.90% *

DEM 70.04% * 64.82% * 95.34% 92.90% *
TPE-DEM 76.02% 67.02% 95.58% 97.01% *

* p-values are significant at α = 0.05. ** p-values are significant at α = 0.01.
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Table 9. Results of comparison with classification models (Thyroid Disease dataset).

Precision F-Measure Accuracy AUC

Random Forest 99.83% 99.76% 99.55% 98.92%
AdaBoost 99.66% 99.74% 99.52% 98.31%
ExtraTrees 98.11% * 98.96% 98.06% * 98.80%

GBDT 99.83% 99.76% 99.55% 98.92%
TPE-Voting 96.36% * 97.94% * 96.13% * 97.80% *

DEM 98.22% 98.97% 98.09% * 97.80%
TPE-DEM 99.86% 99.81% 99.66% 98.94%

* p-values are significant at α = 0.05.

5.2. Discussion

Many machine learning or deep learning models are now being applied to assist
diagnostic tasks to help physicians make diagnostic decisions. However, in practical
applications, physicians need to give their judgments supported by sufficient evidence, so
the understandability of the models in CAD tasks is crucial. This paper proposes a novel
DEM that integrates several simple and easily understandable models and dynamically
adjusts the structure to maintain stable performance across different CAD tasks. Our
experiments on six datasets demonstrate that our proposed TPE-DEM model can further
improve the simple model’s performance and obtain good performance on datasets with
different volumes and features.

Our study also contributes to the ensemble learning literature. Ensemble models
usually have better prediction accuracy than individual base learners. However, popular
ensemble models often use a fixed model structure in terms of a number of base learners
and a number of integration layers. This potentially limits their ability to adapt to different
problem domains. Using TPE, our proposed TPE-DEM model automatically found the
optimal numbers of base learners and integration layers. Our experimental results on six
different datasets prove that the model we proposed achieves effective integration of the
base learner on different datasets, and TPE-DEM has better performance under multiple
evaluation metrics. It is worth noting that in this work, we built a pool containing four
base learners in order to select the base learners. In practical applications, more different
and advanced base learners can be included in the pool to better cope with different tasks.

Practically, TPE-DEM does not require much intervention from human experts, which
benefits medical professionals by allowing them to use a single type of model for a variety
of diagnosis tasks. This reduces the complexity of a medical information system, making it
easier to maintain and upgrade [55]. At the same time, as the models based on deep neural
networks have not been able to effectively raise the interpretation to the understanding of
the end user [56,57], too-complex models will hinder doctors’ trust in CAD systems [12,13].
In our work, the integration of relatively simple models (such as tree-based models) ensures
the system performance while taking into account doctors’ understanding of the model
decision-making process. Therefore, this study has important implications for the practical
application of CAD systems.

6. Conclusions

In this paper, we proposed a TPE-DEM model based on the traditional DEM model.
Our proposed model transforms the process of integrating different simple base learners
into an optimization problem by using a TPE optimization algorithm to obtain the optimal
hyperparameters of the model for various diagnostic tasks. Due to the integration of simple
models, our proposed model requires less training data and is more easily understood by
physicians than deep neural network-based models. When faced with different diagnostic
tasks and datasets, our proposed model can change its structure by dynamically adjusting
hyperparameters to maintain good performance in various tasks.

To evaluate the effectiveness of TPE-DEM, we validated its performance on six dif-
ferent datasets. The first and fourth datasets have good features and more balanced data
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distribution. The experimental results show that TPE-DEM and other baseline models
can effectively learn from the data and achieve good performance. However, TPE-DEM
performs on average 2% higher than other baseline models in all four metrics on the first
dataset and 1% higher than other baseline models in three metrics on average on the fourth
dataset for TPE-DEM. When the datasets are somewhat unbalanced (the second and third
datasets), the performance of all models decreases. Still, TPE-DEM outperforms the rest of
the baseline by more than 1.5% on average for all four metrics. In the experiment based on
the fifth dataset, Precision and F-measure metrics were significantly lower for all models
affected by the dataset. However, TPE-DEM outperformed the other baseline models by
more than 6% on average in these two metrics. Overall, TPE-DEM outperforms the other
baseline models on all six datasets. The advantage of TPE-DEM is more pronounced when
deficiencies in the dataset degrade the performance of all models.

However, the proposed algorithm is not without limitations. For example, the al-
gorithm specifies that the classifiers and their number must be the same in each layer of
the deep ensemble structure. Additionally, some recent studies proposed other types of
classifier selection algorithms. In our experiments, we did not implement these algorithms
for our testing datasets due to the lack of specific details. Thus, although we have directly
compared our proposed method to some very competitive baselines, we have not obtained
the results of these recent algorithms using our testbed. Future research may contribute to
this field through a comprehensive benchmarking of different classifier selection algorithms
and identify state-of-the-art. Further research may also analyze the theoretical performance
of TPE-DEM.
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