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Abstract 

Purpose. To investigate the association of biomarkers correlated with clinical stages and survival of 
clear cell renal cell carcinoma (ccRCC). 
Methods. The GSE36895 dataset was downloaded and differentially expressed or methylated genes 
were analyzed. Hub genes were identified with weighted gene co-expression network analysis 
(WGCNA) and protein-protein interaction network (PPI), and validated with TCGA database and 
our own tissues. The biological processes of hub genes were further explored by functional 
enrichment analysis. Survival analyses were also performed. The underlying mechanisms for ccRCC 
development were detected with Gene set enrichment analyses. 
Results. A total of 1624 differentially expressed genes were analyzed by WGCNA and 6 
co-expressed gene modules were identified. Three hub genes (EHHADH, ACADM and AGXT2) 
were met the criterion of both WGCNA and PPI networks analysis, which showed highest negative 
association with pathological T stage (r = - 0.45, p = 0.01) and tumor grade (r = - 0.45, p = 0.01). The 
downregulation of these hub genes was validated with using both TCGA database and samples 
harvested at our institute The biological processes that hub genes involved, such as metabolic 
process (p = 9.63E - 09), oxidation-reduction process (p = 1.05E - 08) and oxidoreductase activity (p 
= 1.72E - 04), were revealed. Survival analysis showed a higher expression or lower methylation of 
these hub genes, a longer survival of ccRCC patients. ccRCC samples with higher expression of hub 
genes were enriched in gene sets correlated with signaling like biosynthesis of unsaturated fatty 
acids, butanoate metabolism, and PPAR signaling pathway.  
Conclusions. We identified three novel tumor suppressors associated with pathological T stage and 
overall survival of ccRCC. They might be potential as individualized therapeutic targets and 
diagnostic biomarkers for ccRCC. 

Key words: weighted gene co-expression network analysis (WGCNA); clear cell renal cell carcinoma (ccRCC); 
survival; prognosis; biomarkers 

Introduction 
Kidney cancer is a common malignant illness [1]. 

Around 90% pathological type of renal cancers is 
renal cell carcinoma (RCC), majority of which are 
subtyped as clear cell renal cell carcinoma (ccRCC) [2]. 
Based on the size and metastasis of tumor, the degree 

of invasion external of the kidney and the 
involvement of lymph node, ccRCC is classified into 
pathological T stages, pathological N stage, metastasis 
and clinical stage [3]. It is well known that the 
prognosis of this disease is correlated to the 
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pathological stage and the five-year survival rates 
of these four pathological stages are 95%, 88%, 59% 
and 20% for the aforementioned stages, respectively 
[4]. Indeed, localized ccRCC can be cured with radical 
nephrectomy but the prognosis is poor when the 
disease turned to be metastatic. In case of the late 
staged ccRCC, traditional chemotherapies are usually 
tolerant. In recent decades, different oncogenes 
related to ccRCC had been identified with 
high-throughput microarray technology [5-7]. 
Treatments targeted on these discovered genes have 
been proved more effective than chemotherapies, duo 
to the target specificity and low adverse effect [8]. A 
number of targeted therapies have been accepted for 
clinical use, such as anti-vascular endothelial growth 
factor (VEGF) antibodies, mammalian target of 
rapamycin (mTOR) and multi-kinase inhibitors [9]. 
Although patients' survival have been ameliorated 
with these new treatments, median overall survival 
and progression-free are virtually 2 years and most 
cases finally become surrender and resistance [8]. 
Ignorance of interconnection between genes could 
contribute to the failure of these targeted therapies, as 
carcinogenesis progression is not only the 
consequence of deregulation of some tumor 
suppressors or oncogenes but also the result of 
complex molecular mechanisms, including the strong 
interconnection between genes with similar 
expression patterns. Therefore, to achieve effective 
individualized treatments for ccRCC, more 
therapeutic targets should be identified and their 
interconnection should be determined.  

Langfelder et al. firstly used weighted gene 
co-expression network analysis (WGCNA) to explore 
a thorough association between different gene sets or 
between gene sets and clinical characteristics [10]. 
With emerging plenty of microarray or RNA 
sequencing data, WGCNA has been widely 
performed to filter modules and hub genes that are 
correlated to clinical features like grade, metastasis 
and tumor stages among various tumor types such as 
hepatocellular carcinoma [11] and papillary renal cell 
carcinoma [12]. With regarding to ccRCC, our center 
analyzed a microarray data with WGCNA and 
discovered six hub genes (CCNB2, CDC20, CEP55, 
TOP2A, KIF20A and UBE2C) that were highly 
correlated with pathologic stage of ccRCC [13]. Also 
in our center, Chen et al. identified a hub gene 
FCER1G through co-expression network analysis of 
another microarray data and demonstrated this hub 
gene had connection with progression and prognosis 
of ccRCC via influencing immune-related pathways 
[14]. In current study, we downloaded a different 
microarray dataset and tried to build a co-expression 
network with a systematical biology process of 

WGCNA. Furthermore, ccRCC and adjacent normal 
kidney tissues wer harvested to verify the 
bioinformatic analysis. We aimed to seek and validate 
other different hub genes which are associated with 
clinical stages and survival of ccRCC [15-17]. 

Materials and Methods 
Data collection  

GSE36895 microarray dataset, containing 29 
homo ccRCC tissues and 23 homo normal kidney 
tissues, was downloaded from Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm. 
nih.gov/geo/) for constructing co-expression 
networks and exploring hub genes. Patient’s clinical 
information of ccRCC tissues included age, gender, 
different grades (I -- Ⅳ), pathological T stages (I -- Ⅳ), 
pathological N stages (I -- Ⅲ), metastasis (M0 and M1) 
and clinical stages (I -- Ⅳ). We also downloaded 
RNA-sequencing dataset with detailed clinical 
information from The Cancer Genome Atlas (TCGA) 
database (https://genome-cancer.ucsc.edu/) to 
validate the gene expression based on the 
RNA-sequencing technology of IlluminaHiseq. 

Data preconditioning 
The raw data were background corrected, log2 

transformed and quantile normalized by Robust 
Multi-array Averaging (RMA). The "Affy" R package 
was used to summarize median polish probesets 
which were annotated with the files of Affymetrix 
annotation. Finally, sample clustering was applied to 
evaluate the quality of GSE36895 dataset.  

Differential expression genes (DEGs) 
screening 

DEGs between ccRCC and normal renal tissues 
were screened using R software based on "limma" R 
package at a preset threshold with |log2 fold change 
(FC)| > 1 and p value < 0.05.  

Co-expression network construction 
After verifying the qualification of DEGs' 

expression data, a co-expression network was set for 
the DEGs using R software based on the "WGCNA" R 
package. Pearson’s correlation matrices were 
conducted and a weighted adjacency matrix were 
performed by a formula amn = |cmn|β (cmn 
represents Pearson’s correlation between genes, amn 
represents adjacency between genes and the 
soft-thresholding parameter (β) was able to magnify 
the correlation between genes through enhancing 
high correlations and weakening low correlations). In 
current study, β = 6 was chosen to guarantee a 
scale-free network. Subsequently, the adjacency was 
transformed into topological overlap matrix (TOM) 
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and identified modules including similar genes by 
hierarchically clustering genes [18]. To categorize 
genes with analogous expression into gene modules, 
an average linkage hierarchical clustering was carried 
out based on TOM dissimilarity measure with a 
minimal gene size of 30 for constructing a 
dendrogram [19]. Finally, a cut-line was selected for 
module dendrogram and merged some modules after 
dissimilarity of estimated module eigengenes being 
evaluated.  

Discovering the interesting module  
Module eigengenes (MEs) were considered as 

the most principal component and all genes were 
summarized into a single characteristic expression 
profile. The interesting module was identified by 
calculating the relevance between MEs and clinical 
feature. The log10 transformation of the p value was 
defined as gene significance (GS) and the average GS 
for all genes in the module was defined as the module 
significance (MS). The module with the highest MS 
score was chosen as the one related to clinical feature. 

In order to investigate the possible mechanism of 
the association between the interesting module genes 
and correlated clinical characters, all genes in brown 
module were uploaded into the DAVID database and 
analyzed by GO functional enrichment analysis with a 
cutoff criterion of false discovery rate (FDR) < 0.01.  

Identification and validation of hub genes  
For interesting module, the hub genes were 

defined based on module connectivity (Pearson's 
correlation of module membership > 0.8) and clinical 
characteristic relation (Pearson's correlation of GS > 
0.2). Moreover, protein-protein interaction (PPI) 
network was built through putting all relevant genes 
from the module into the Search Tool for Interacting 
Genes' Retrieval (STRING). The common hub genes in 
both co-expression network and PPI network were 
regarded as “real” hub genes for further analyses. 

Efficacy evaluation and survival analysis 
TCGA data were utilized to evaluate the 

association between the expression of the most 
interesting hub genes and the different pathological 
stages of ccRCC using Gene Expression Profiling 
Interactive Analysis (GEPIA) database 
(http://www.gepia.cancer-pku.cn). The survival rate 
analysis was conducted based on the TCGA database 
for the assessment of the identified genes’ effects on 
the prognosis of ccRCC patients. Firstly, patients with 
mRNA data were classified in two different categories 
in accordance with each gene’s median expressions 
(low vs. high). Patients with methylation data were 
similarly analyzed. Secondly, analysis was conducted 
on patients with both mRNA expression and different 

ccRCC grades data. Finally, we performed 
Kaplan-Meier survival analysis and the log-rank test 
by adopting the “survival” R package. One-way 
analysis of variance (ANOVA) and paired 2-tailed 
Student’s t tests were used to analyze the statistical 
significance of differences of data. 

Gene set enrichment analysis (GSEA) 
Two categories (high vs. low) of the most 

interesting hub genes in 539 ccRCC patients were 
classified and the median value of gene expression 
was applied as the cut-off point. GSEA 
(http://software.broadinstitute.org/gsea/index.jsp) 
was carried out to investigate potential functions of 
the most interesting hub genes with a cut-off criteria 
of |Enrichment score (ES) | > 0.5 and p value < 0.05. 

Human ccRCC and adjacent normal kidney 
tissues 

ccRCC and adjacent normal kidney tissues (n = 
15) were obtained from patients undergoing 
laparoscopic nephrectomy at Zhongnan Hospital of 
Wuhan University. Two pathologists independently 
confirmed the histological diagnosis. Half of each 
specimen was immediately fixed in 4% PFA 
(paraformaldehyde) and half stored in liquid 
nitrogen. The use of these ccRCC specimens was 
approved by the Ethics Committee at Zhongnan 
Hospital of Wuhan University, and informed consent 
was obtained from all patients. 

Total RNA extraction and real-time RT-PCR 
Total RNA was isolated from the frozen tissues 

using Takara RNAiso Plus (Takara Bio. Inc., Otsu, 
Shiga, Japan) according to the manufacturer’s 
protocol. Genomic DNA (gDNA) was removed and 
cDNA was reverse-transcribed using Takara 
PrimeScriptTM RT reagent Kit with gDNA Eraser 
(Takara Bio. Inc., Otsu, Shiga, Japan) in a T100TM 
Thermal Cycler System (BioRad, USA). The 
experimental protocol utilized was first gDNA 
removal (42 °C, 2 min), followed by reverse 
transcription (37 °C 15 min, 85 °C 5 s). Subsequently, 
all samples were amplified by a 25 μl reaction volume 
in a CFX96TM Real-time PCR Detection System 
(BioRad, USA), using SYBR® Premix Ex TaqTM Ⅱ 
(Takara Bio. Inc., Otsu, Shiga, Japan). All samples 
were run in triplicate. The seven identified genes were 
investigated. The amplification program was repeated 
for 40 cycles. For relative quantification, gene 
expression was normalized to expression of GAPDH 
housekeeping gene and compared by 2−ΔΔCT method.  

Immunohistochemistry 
For immunohistochemistry, sections were 

deparaffinized in xylene, followed by graded 
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alcohols. Antigen retrieval was performed in 10 mM 
sodium citrate buffer (pH 6.0) and heated to boil. 
Sections were kept in boiled buffer for 2 min. 
Endogenous peroxidase activity was blocked by using 
3% H2O2 solution at room temperature for 10 min. 
Then sections were incubated with 15% normal goat 
serum for 15 min at room temperature to block 
non-specific binding. Primary antibody was applied 
to the sections on the slides and incubated in a 
humidified chamber at 4 ◦C overnight. Then the 
sections were stained by routine 
immunohistochemistry methods. 

Results 
Different expression of genes screened 

After quality evaluation and data preprocessing, 
the expression matrix was acquired from the 52 
samples of GSE36895 dataset (Figure 1). With the 
|log2FC| > 1and p value < 0.05, a sum of 1624 DEGs 

(886 down-regulated and 738 up-regulated) were 
selected for subsequent analyses. 

Weighted co-expression network construction 
and key modules identification 

Twenty-nine ccRCC samples with clinical 
information were included for the co-expression 
analysis with β = 6 used as the soft-thresholding to 
guarantee a free scale network (scale free R2 = 0.85) 
(Figures 2A - D). A sum of 6 different modules were 
identified (Figure 2E). The highest absolute MS score 
in the Module-feature relationship was found 
between pathological T stage and brown module (r = - 
0.45, p = 0.01; Figure 2F), which was chosen for the 
subsequent analyses. Interestingly, the brown module 
was also found to be associated with pathological 
lymph nodes stage (r = - 0.40, p = 0.03) and tumor 
grade (r = - 0.45, p = 0.01). 

 

 
Figure 1. Clustering dendrogram of the clinical traits and 29 tumor samples. The clustering is based on differential expression genes (DEGs) data in 
ccRCC tumor samples compared to non-tumor samples. The red color represents female and metastasis and the intensity of the color is proportional to higher 
tumor grade and pathological stage as well as older age. 
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Figure 2. Calculation of soft-thresholding power value in the weighted gene co-expression network analysis (WGCNA). (A) Analysis of the 
scale-free fit index for various soft-thresholding powers (β). (B) Analysis of the mean connectivity for various soft-thresholding powers. (C) Histogram of connectivity 
distribution when β = 6. (D) Checking the scale-free topology when β = 6. (E) Clustering dendrogram of the DEGs clustered. (F) Heatmap of the correlation 
between module eigengenes and clinical traits of ccRCC. 

 
A total of 565 genes associated biological 

relevance in brown module were investigated 
utilizing DAVID database for GO (Gene Ontology) 
analyses. As shown in Figure 3A, 36 enriched 
biological procedures were found to be possible 
mechanisms of how the brown module genes impact 
on pathological T stage, such as metabolic process (p 
= 9.63E - 09), oxidation-reduction process (p = 1.05E - 
08), oxidoreductase activity (p = 1.72E - 04) and fatty 
acid beta-oxidation (p = 1.45E - 06).  

GSEA of hub genes 
To explore the underlying roles of these three 

hub genes, we conducted GSEA to map into KEGG 
(Kyoto Encyclopedia of Genomes and Genes) 
pathways database. According to the cut-off criteria 

with |ES| > 0.5 and p value < 0.05, a sum of 20 
significant gene sets were found and majority of 
which focused on metabolic relevant pathways. Six 
representative pathways were “Biosynthesis of 
unsaturated fatty acids”, “Butanoate metabolism”, 
“Peroxisome”, “PPAR signaling pathway”, 
“Propanoate metabolism” and “Valine leucine and 
isoleucine degradation” (Figure 3B). 

Identification of hub gene 
In current study, 18 high connective genes in 

brown module were selected as hub genes (Table 1). 
Moreover, we conducted a PPI network for all genes 
in brown module using Cytoscape software and the 
genes associated with more than 7 nodes were 
regarded as hub node genes (Figure 3C). The three 
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common hub genes (EHHADH, ACADM and 
AGXT2), met both criterions in co-expression and PPI 
networks, were selected as "true" hub genes for 
further validation (Table 1). 

Hub gene validation 
The complete data of 539 ccRCC patients in the 

TCGA dataset were carried out to validate hub genes, 
demonstrating that all three hub genes exhibited a 
substantial negative correlation with different ccRCC 
stages, consistent with above analyses of GSE36895 
microarray dataset (Figures 4A, C, E). In addition, 
based on TCGA data, significantly longer overall 
survival times were shown in patients with higher 
expression of these three hub genes, indicating that 
EHHADH, ACADM and AGXT2 were prognostic 
biomarkers for ccRCC (Figures 4B, D, F). Furthermore, 
as shown in Figure 5, both protein and mRNA 
expression of these hub genes were significantly 
lower in ccRCC tissues compared to normal ones, 
which were provided and confirmed by The Human 
Protein Atlas and Oncomine databases. To assess the 
roles of these three hub genes in ccRCC, gene 
expression validations were performed, and all of 
three hub genes were also downregulated in the 
TCGA database (Figure 6A, C, E) and longer overall 
survival duration was also found in cases of lower 
expression at each tumor grade. (Figure 6B, D, F). 

Association of three hub genes methylation 
level with the prognosis of ccRCC 

The methylations of the three hub genes 
identified above were further analyzed with TCGA 

database. As shown in Figure 7(A, C and E), 
EHHADH and ACADM) were found 
hyper-methylated while AGXT2 hypo-methylated in 
tumor tissues. The survival curves were drawn to 
evaluate the association between three hub genes 
methylation levels and the prognosis of ccRCC, 
respectively. The two hyper-methylated genes 
(EHHADH and ACADM) were associated a shorter OS 
duration, but the hypomethylated one (AGXT2) also 
showed a shorter OS (Figure 7B, D, F). 

Expression of the identified hub gene in ccRCC 
and normal tissues obtained in our institute 

Expression of EHHADH, ACADM and AGXT2 
mRNA were determined using quantitative real time 
RT-PCR and immunohistochemistry between ccRCC 
samples and normal ones. EHHADH expression was 
most significantly downregulated at the transcription 
level (p < 0.0001) in ccRCC. Real time RT-PCR also 
showed that for the other two genes that ACADM (p = 
0.0225) and AGXT2 (p = 0.0019) the mRNA expression 
was significantly altered in the ccRCC samples 
(Figure 8A, B, C). As shown in Figure 8 (D - I), in 
normal tissue, all three genes were mainly present in 
in renal tubules and partly present in the glomeruli. In 
ccRCC, the localization is similarly with that in 
normal ones, the immune positivity is significantly 
lower than that of normal. That is to say, 
immunohistochemistry also confirms that the 
expression of the three genes EHHADH, ACADM and 
AGXT2 in ccRCC is lower than that in normal tissues. 

 

 
Figure 3. Functional enrichment and protein-protein interaction (PPI) network. The x-axis displays the amount of gene and the y-axis displays the GO 
terms. The -log10 (p value) of each term is colored following the legend. The intensity of the color in each node is proportional to gene expression compared to 
non-tumor samples (down-regulation in green and up-regulation in red). Network hub genes identified by WGCNA are represented by the nodes with bold circle. 
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Figure 4. Validation of hub genes. Panels A, C and E show the correlation of EHHADH, ACADM and AGXT2 expression with the pathological stage of ccRCC, 
respectively (based on microarray data of TCGA). Panels B, D and E show survival analyses of EHHADH, ACADM and AGXT2 genes in the TCGA data set, 
respectively. 

 

Discussion  
Current study identified three novel hub genes 

(EHHADH, ACADM and AGXT2) through analyzing 
the co-expression and PPI networks. Our data further 
demonstrated these hub genes showed a negative 
relationship with different ccRCC stages, which 
having impact on overall survival. Also, the 
methylation of these hub genes was found negatively 
corelated with survival. In addition, it was found 
these three hub genes might play important roles in 
ccRCC prognosis through metabolic related 
pathways. 

 GSE36895 data were used. There are 29 cases of 
ccRCC and 23 normal kidney tissues involved 1624 
DEGs (886 down-regulated and 738 up-regulated). 
These genes were further analyzed with WGCNA 
through constructing a gene co-expression network 
based on the expression similarity among samples. 
WGCNA have been used to discover complex disease 
related genes, biological pathways and neoplasm 
treatment targets of Alzheimer's disease, osteoporosis 
and hyperlipidemia. Also, in our center, Yuan et al. 
analyzed GSE40435 and discovered six hub gene that 
were highly correlated with pathologic stage of 
ccRCC [13]. Chen et al. identified a hub gene FCER1G 
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which might regulate immune-related pathways to 
tumorigenesis through co-expression network 
analysis of another microarray data GSE66272 [14]. In 
present study, a larger ccRCC sample size was 
analyzed with WGCNA and 18 hub genes were 
screened from brown module. Three common hub 
genes (EHHADH, ACADM and AGXT2), met both 
analyses of co-expression and PPI networks, were 
regarded as “real” hub genes and were further 
validated. Our data indicated the three hub genes had 
high connection with clinical prognosis as well as vital 
biological processes. 

In the GEPIA database, we found a trend that the 
expression of EHHADH, ACADM and AGXT2 was 
negatively correlated with the pathological stages of 
ccRCC (Figures 4A, C, E), which illustrated the critical 

role of these three hub genses in the progression of 
ccRCC. In addition, these hub genes were found 
negatively corelated with survival at tumor grade 
(Figure 6). Indeed, the Oncomine database found a 
significant lower expression of EHHADH, ACADM 
and AGXT2 in ccRCC tissues than normal kidney 
tissues (Figures 5A, C, E). In addition, 
immunohistochemistry staining in The Human 
Protein Atlas database showed that the expression of 
EHHADH, ACADM and AGXT2 proteins were also 
significantly lower in renal carcinoma compared to 
normal kidney (Figures 5B, D, F). Consistently, the 
lower expression of the 3 hub genes was determined 
both at the mRNA and protein levels with using 
tissues harvested from our institute (Figure 8). Thus, 
our study indicated a negatively role of these three 

 
Figure 5. Expression of hub genes. Panels A, C and E show the mRNA expression of EHHADH, ACADM and AGXT2 in ccRCC tissues compared to normal 
kidney tissues based on Oncomine database, respectively. Panels B, D and F show the protein expression of EHHADH, ACADM and AGXT2 in ccRcc tissues 
compared to normal kidney tissues based on The Human Protein Atlas database, respectively. 
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hub genes in clinical stages of ccRCC development. 
Moreover, we performed survival analysis to validate 
if these three hub genes were associated with patient 
prognosis (Figures 4B, D, F). According to the GEPIA 
database, we found that a lower expression of 
EHHADH, ACADM and AGXT2, a shorter overall 
survival time. Also, the hyper-methylation of these 
hub genes was found negatively associated with 
survival (Figure 7). However, the hypo-methylated 
gene AGXT2 also showed a shorter OS, which will 
need further investigation In line with previous 
report, hyper-methylated and lower expressed genes 
showed worse prognosis. Therefore, EHHADH, 
ACADM and AGXT2 could be suggested as protective 
tumor suppressors for ccRCC. 

EHHADH (3-hydroxyacyl CoA dehydrogenase 
and enoyl-CoA hydratase) encodes a bifunctional 
enzyme that is one of the four enzymes of 
peroxisomal β-oxidation pathway [20]. Suto K et al. 
and Cablé S et al. found that EHHADH was lower 
expressed in hepatocellular carcinoma and colon 
carcinoma and could be used as a potential prognostic 
marker [21, 22]. ACADM (medium-chain acyl-CoA 
dehydrogenase) could catalyze the first 
dehydrogenation in fatty acyl-CoA beta-oxidation in 
mitochondria [23] and ACADM insufficiency might 
impact on the medium-chain fatty acids which exist 
abundantly in the beta-oxidation pathway that would 
indirectly influence the triglycerides metabolism [24, 
25] and play a significant role in cell apoptosis 

 
Figure 6. Validation of expression and survival analysis of three hub genes expression combined with tumor grades in TCGA database. Panels A, 
C and E show the mRNA expression of EHHADH, ACADM and AGXT2 in ccRCC tissues compared to normal kidney tissues based on TCGA. Panels B, D and F show 
survival analyses of EHHADH, ACADM and AGXT2 genes expression combined with tumor grades in the TCGA data set, respectively. 
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through the function of light chain. AGXT2 
(alanine-glyoxylate aminotransferase 2), a 
multifunctional mitochondrial aminotransferase, has 
diverse functions in cellular physiology and its 
products and substrates are biomarkers of renal, 
cardiovascular and metabolic diseases [26]. Therefore, 
it was assumed these three hub genes played 
functional roles in suppressing cancer mainly through 
metabolic related pathways. Indeed, current study 
carried out GSEA using KEGG pathways database 
and found that majority of gene sets involved in 
metabolic related pathways. Consistently, TCGA 
Research Network illustrated that epigenetic 

reprogramming and oncogenic metabolism are the 
fundamental features of ccRCC. It is known that renal 
cancer is considered as one of the most deliberated 
and exemplary of malignancies characterized through 
metabolic reprogramming [27, 28]. And genes 
mutated in renal cancer are complicated in a quantity 
of disparate pathways regulating various aspects of 
cellular metabolism, such as iron sensing and/or 
oxygen, the tricarboxylic acid (TCA) cycle, tumor 
energetics and glutamine metabolism [20, 29, 30]. 
When translated to clinical scenarios, these three hub 
genes would have clinical values for diagnosis and 
personalized therapy for ccRCC.  

 

 
Figure 7. Methylation status and survival analysis of three hub genes. Box plot showing the methylation levels of the three genes, using data from the TCGA 
database. The x-axis shows the number of the normal samples and ccRCC samples. The y-axis shows beta value of gene methylation which were shown in Figure 7A, 
C and E. The Kaplan-Meier survival curve was plotted. It revealed that the overall rates of survival for the patients with 2 hyper-methylated genes (EHHADH and 
ACADM) and 1 hypo-methylated gene AGXT2 were significantly lower, which were shown in Figure 7B, D and F. 
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Figure 8. Expression and localization of three genes in normal kidney tissues and ccRCC tissues. (A - C). Transcriptional levels of three genes in ccRCC 
tissues and normal ones. (D and E). Immunohistochemistry of EHHADH in in ccRCC tissues and normal ones. The magnification is × 200. (F and G). 
Immunohistochemistry of ACADM in ccRCC tissues and normal ones. The magnification is × 200 (H and I). Immunofluorescence of AGXT2 in ccRCC tissues and 
normal ones. 

 
Several limitations ought to be noted. In present 

study, some risk factors like gender, age, tumor grade, 
metastasis, and pathological stages were analyzed in 
patients suffered from ccRCC. However, other major 
established risk factors for ccRCC, such as 
hypertension and cigarette smoking, were not 
displayed for analysis during data collection. 
Additionally, more high quality ccRCC samples are 
needed to confirm our findings and elucidate the deep 
possible mechanisms of the effect on pathological 

stages.  
In conclusion, our study identified and validated 

three novel hub genes including EHHADH, ACADM 
and AGXT2. Moreover, these three hub genes were 
found negatively correlated with clinical stages and 
having impact on patients’ survival. Our novel data 
suggests these abnormally expressed or methylated 
genes could be used as therapeutic targets and 
biomarkers for ccRCC patients to be precisely 
diagnosed and effectively treated. 
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Table 1. Hub genes in the module related with pathological stage. 

Gene Probe Co-expression 
analysis 
(cor.geneModule
Membership) 

Hub gene 
in PPI 
network 

DEG analysis 
logFC p-value 

EHHADH 205222_at 0.88  YES -1.14  3.06E-04 
ACADM 202502_at 0.89  YES -1.10  8.19E-07 
AGXT2 229229_at 0.86  YES -2.37  5.67E-07 
BBOX1 243018_at 0.93  NO -2.24  1.35E-03 
HAO2 220801_s_at 0.93  NO -3.15  1.82E-10 
ANK3 221751_at 0.83  NO -1.26  1.18E-05 
GOT1 1553878_at 0.87  NO -1.18  1.24E-06 
PHYH 203335_at 0.81  NO -1.28  4.37E-10 
SLC27A2 205768_s_at 0.82  NO -2.49  2.19E-05 
SERPINA5 209443_at -0.81  NO -4.00  2.12E-21 
DDC 214347_s_at 0.83  NO -2.45  5.30E-07 
HIBCH 203711_s_at 0.88  NO -1.47  6.50E-07 
FBP1 205014_at 0.84  NO -2.80  1.62E-11 
HMGCS2 240110_at 0.80  NO -1.87  1.54E-04 
DMGDH 231591_at 0.84  NO -1.51  5.66E-04 
LRP2 205710_at 0.89  NO -1.66  1.44E-03 
CUBN 206775_at 0.80  NO -1.85  9.03E-05 
ECHS1 201135_at 0.81  NO -1.45  1.34E-14 
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