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Abstract: Obesity is a global epidemic associated with significant morbidity and mortality in 

adults and ill health in children. A proven successful approach in weight management has been the 

disruption of nutrient digestion, with orlistat having been used to treat obesity for the last 10 years. 

Although orlistat-induced weight loss remains modest, it produces meaningful reductions in risk 

factors for obesity-related conditions such as diabetes and cardiovascular disease. Moreover, 

this lipase inhibitor is free of the serious side effects that have dogged appetite-suppressing 

drugs. This success had driven investigation into new generation nutraceuticals, supplements 

and pharmaceutical agents that inhibit the breakdown of complex carbohydrates and fats within 

the gut. This review focuses on agents purported to inhibit intestinal enzymes responsible for 

macronutrient digestion. Except for some synthetic products, the majority of agents reviewed 

are either botanical extracts or bacterial products. Currently, carbohydrate digestion inhibitors 

are under development to improve glycemic control and these may also induce some weight loss. 

However, colonic fermentation induced side effects, such as excess gas production, remain an 

issue for these compounds. The α-glucosidase inhibitor acarbose, and the α-amylase inhibitor 

phaseolamine, have been used in humans with some promising results relating to weight loss. 

Nonetheless, few of these agents have made it into clinical studies and without any clinical proof 

of concept or proven efficacy it is unlikely any will enter the market soon.
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Prevalence and impact of obesity
A positive energy balance resulting from a chronic disparity between the intake of 

energy and its expenditure leads to weight gain and eventually obesity. Currently, 

the global tendency to gain weight poses a major menace to world health. Adiposity 

(overweight and obesity) constitutes a key risk factor for a variety of adulthood chronic 

disorders such as dyslipidemia, high blood pressure, type II diabetes, cardiovascular 

disease, osteoarthritis and some forms of cancer.1 In the European Region, 2% to 8% 

of health costs could be attributable to obesity.2 Obesity can no longer be considered 

only a problem of developed, ‘Westernized’, high income countries. On every continent 

developing countries are experiencing similar increases in the prevalence of overweight 

and obesity within their population, particularly in urban settings.

Currently, a body mass index (BMI) of 30 kg/m2 or greater defines adult obesity, and 

between 25 and 29.9 kg/m2 is classified as overweight. However, lower cut off points 

should be used in certain populations at greater risk of obesity related diseases. In 2005, 
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the World Health Organization (WHO) reported that 1.6 billion 

adults could be categorized as overweight whilst at least 400 

million adults were considered obese.3 The WHO predicted that 

over the next ten years global rates of overweight and obesity 

would double, and by 2015 roughly 2.3 billion adults would be 

overweight and over 700 million obese. Europe has followed the 

global trend – since 1980 the prevalence of obesity has tripled, 

with levels continuing to rise at an alarming rate.

For intervention, the most common and widely advocated 

approaches remain changes in lifestyle, specifically dieting and 

exercise. Achieving significant weight loss is a difficult task and 

although some individuals manage to lose weight in the short 

term, for most people maintaining a lower body weight in the 

long term proves remarkably difficult.4,5 Drug therapy offers a 

reasonable option to overcome obesity when given as an adjunct 

to life style interventions such as dietary counseling, behavioral 

modifications and  structured exercise.6,7 Modest weight reduc-

tion (5% to 10% of total body weight) in patients with obesity-

associated medical complications produces beneficial health 

outcomes. A reduction of 5 to 10 kg of body weight in moderately 

obese patients reduces blood pressure and cholesterol levels, 

and improves glycemia along with a reduced risk of undesirable 

clinical outcomes including myocardial infarction, stroke and 

 cardiovascular-related death8 and increases longevity.9

The phenomenon of weight gain suggests that the 

homeostatic mechanisms regulating energy homeostasis 

are insufficient to cope with our current obesity promoting 

environment. However, boosting inhibitory homeostatic 

feedback could re-establish effective homeostatic control of 

energy balance and even induce weight loss. Consequently, 

the mechanisms underpinning the regulation of appetite and 

energy regulation have received particular attention, notably 

for the development of anti-obesity drugs.10,11 These include 

drugs that reduce appetite and/or enhance satiety or drugs 

that stimulate energy expenditure thereby restoring energy 

balance. Although providing a rich source of drug targets 

for weight control, this approach ignores the possibility that 

over-consumption associated with obesity results from the 

stimulatory effect of the food environment rather than any 

particular biological deficit (such as in post ingestive satiety 

from the gut or increased adiposity signals from body fat 

stores). The withdrawal of appetite-suppressing drugs that 

act on the central nervous system such as fenfluramine, 

d-fenfluramine, rimonabant and sibutramine (withdrawn in 

Europe but still available in the US), suggests that targeting 

energy regulation systems for weight control is not  without 

 problems. Even peripheral appetite targets such as gut 

 peptides implicated in the processes of satiation and satiety 

such as glucagon-like peptide-1 (GLP)-1 and peptide YY 

(PYY) are difficult to administer and may induce nausea.

Nonetheless, drugs acting in the periphery provide a 

viable alternative for weight management and other pharma-

cological approaches to the treatment of obesity have proved 

successful, specifically drugs that affect the absorption or 

partitioning of nutrients.12 A lipase inhibitor is currently the 

only prescription medicine available in Europe for obesity 

treatment. This review will focus on drugs that have, as a 

potential mechanism, the disruption of fat and carbohydrate 

absorption. Tables 1 and 2 summarize the doses and effects 

found in vitro and in vivo studies.

Dietary fat digestion and absorption
Lipids are fundamental components of all living organisms, 

and they are calorically dense thus representing an important 

constituent of human nutrition (approximately 40% of daily 

energy intake). Dietary fats are absorbed in the intestine 

and they function as an energy supply, thermal regulators, 

membrane constituents, energy storage and some play an 

important role in body function as essential fatty acids and 

fat-soluble vitamins.13 The human intestine is able to com-

pletely absorb approximately 95% of ingested fat.14 Given 

the efficient absorption of dietary fat it is not surprising that 

long term intake of a high fat diet is readily converted to 

adipose tissue particularly in those with low levels of physical 

activity.15 In such a scenario it is logical to assume that the 

modification of fat absorption could be a potential target to 

treat obesity and prevent further weight gain.

The main fat constituents (90%) of a typical Western 

diet are triacylglycerols or triglycerides (TG). TG consist 

of a single molecule of glycerol, attached by ester bonds 

to three fatty acids. TG cannot be absorbed; therefore, 

intestinal enzymes must hydrolyze the ester bonds on the 

glycerol backbone in order for the molecule to be absorbed. 

The products of this hydrolysis are mainly free fatty acids 

(FFA) and 2- monoglycerides (2-MG) which can be absorbed 

by the duodenum. In vivo TG hydrolysis is catalyzed by 

several digestive lipases. There are several human lipases 

which include the pre-duodenal (lingual and human gastric 

lipase (HGL)) and the extra-duodenal (pancreatic, hepatic, 

lipoprotein and endothelial) lipases.16

Lingual lipase is secreted by a serous gland at the back of 

the tongue and initiates fat digestion.17 HGL is secreted by the 

chief cells of the fundic mucosa of the stomach, this enzyme 

is active at a broad pH range (3 to 6) and is stable even at the 

low pH present in the stomach.18 The acinar cells of the pan-

creas synthesize and secrete several lipolytic enzymes such as 
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Table 1 effective in vitro doses and target enzymes of inhibitors

Product Dose Effect Ref

Cetilistat 54.8 nmol/L 
5.95 nmol/L 

inhibits rat pancreatic lipase 
inhibits HPL

46

Platycodin D1 saponin 0.18–0.03 mM inhibits pancreatic lipase 82

Sabiosaponin prosapogenin 1b 0.12 mg/mL inhibits pancreatic lipase 87

Acanthopanax sessiliflorus 
sessiloside and chiisanoside 

0.36 and 0.75 mg/mL, respectively inhibit pancreatic lipase 53

Acanthopanax senticosus 
triterpenoid saponins

0.22–0.29 mM inhibit pancreatic lipase 
inhibits glucose 6-phosphatase and 
lipogenic enzymes in liver

52,61

Panax japonicum 
chikusetsusaponin

125–500 μg/mL inhibits pancreatic lipase 76

Dioscorea nipponica extract 5–10 mg/mL inhibits pancreatic lipase 72

Kochia scoparia alcohol extract and saponins 0.25 mg/mL inhibit pancreatic lipase 213

Aesculus turbinata escins 20–100 μM inhibit pancreatic lipase 70

Sapindus rarak extract and saponins extract: iC50 = 614 μg/mL 
Rarasaponins i iC50 = 131 μM 
and ii 172 μM

inhibit pancreatic lipase 86

Oolong tea saponins 
(theasaponins e1 and e2) 

Km and vmax values of  
1.42 mg/mL and 476.2 nkat/L 
respectively. The Ki value of 
theasaponin is 0.25 mg/mL

inhibit pancreatic lipase 73,74

Chinese tea saponins chakasaponins i, ii, and iii iC50 of 0.091 mg/mL 
iC50 values of 0.17–0.53 mM

inhibit pancreatic lipase 71

Oolong tea catechins  
epigallocatechin 3-O-gallate(-) 
epigallocatechin-3,5-digallate

05–2 g/L 
0.34 μM 
0.09 μM

inhibit pancreatic lipase 
inhibit pancreatic lipase 
inhibit pancreatic lipase

73,203

Green tea catechins 5–30 μM inhibit adipocytes differentiation 
inhibit gastric and pancreatic lipase 
inhibit α-amylase and α-glucosidase

187–189,191,192

Cyclocarya paliurus 5 μg/mL 
9.1 μg/mL

inhibits α-glucosidase 
inhibits pancreatic lipase

180,181

Salacia reticulata polyphenol extracts 
salacinol and kotalanol 

iC50 of 264 mg/L inhibit pancreatic lipase 
inhibit α-glucosidase

210 

Apple polyphenol procyanidin fractions iC50 of 5.6 μg/mL 
iC50 of 1.4 μg/mL

inhibit pancreatic lipase 97

Grape seed extract 1 mg/mL 80% inhibition inhibits pancreatic lipase 101

Nelumbo nucifera extract iC50 of 0.46 mg/mL 
iC50 of 0.82 mg/mL

inhibits lipase 
inhibits α-amylase

199

Cassia mimosoides CT-iia extract 0.1–0.71 mg/μmL 50% inhibition porcine lipase 98

Peanut shell extract 10 mg/mL 92% inhibition of human lipase 207

Carnosic acid and carnasol iC50 of 36 μM 
iC50 of 13 and μM 

inhibit pancreatic lipase 104

Crocetin iC50 of 2.1 mg/mL inhibits pancreatic lipase 109

Lipstatin iC50 of 0.14 μM inhibits pancreatic lipase 110

Panclicins A, B, C, D e 2.9, 2.6, 0.62, 0.66, and 0.89 μM inhibit pancreatic lipase 131

vibralactone iC50 of 0.4 μg/mL inhibits pancreatic lipase 133

aethanol extract.
Abbreviations: HPL, triacylglycerol acyl hydrolase.

colipase-dependent lipase, classical  pancreatic lipase or tria-

cylglycerol acyl hydrolase (HPL), pancreatic lipase related-

protein 1 and 2 (HPLRP1, HPLRP2), carboxyl ester hydrolase 

(also known as bile salt stimulated lipase, carboxyl ester 

lipase, cholesterol esterase, cholesterol ester lipase, human 

milk lipase, monoglyceride lipase and pancreatic non-specific 

lipase) and phospholipase A2.17,19 Cholesterol esters, lipidic 

vitamin esters, monoglycerides, diglycerides, TG, and phos-

pholipids are hydrolyzed mainly by carboxyl ester hydrolase. 

The pancreas also secretes colipase, a factor that is neces-

sary to optimize pancreatic lipase activity. Colipase binds 

to bile acid micelles and  phospholipid-covered  emulsions. 
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Table 2 enzyme inhibitors: doses and in vivo effects

Product Dose Effect Ref

Cetilistat 3–100 mg/kg; DiO rats 
80–720 mg/day; humans

↓ TG plasma levels 
↑ Fat excretion 
Suppression of body weight gain 
↓ white adipose tissue 
↓ Body weight

46,48,49

Acanthopanax sessiliflorus 100–300 mg/kg; 
vO, mice 

↓ TG plasma levels 
↑ TG in intestinal lumen

66

Acanthopanax senticosus extracts 12 mg/kg; DiO mice ↓ TG in liver and serum 
↓ LDL in serum 
↑ HDL

63

Panax japonicum total chikusetsusaponins 1%–3% of diet; DiO mice Suppression of body weight gain 
↓ Parametrial adipose tissue weight 

76

Dioscorea nipponica dioscin and diosgenin 100 mg/kg; vO, mice 
5% of high fat diet, rats

↓ TG in plasma 
Suppression of body weight gain 
↓ vLDL and LDL in plasma

72

Aesculus turbinata 0.1%–0.5% of diet; DiO mice Suppression of body weight gain 
↓ Parametrial adipose tissue weight 
↓ TG in plasma

68

Cyclocarya paliurus extract 250 mg/kg; vO, mice ↓ increase in blood glucose after 
sucrose administration 
↓ TG in plasma

180,181

Salacia reticulata extract 125 mg/kg; vO, Zucker and HFD rats Suppression of body weight gain 210

Apple polyphenol and procyanidin fractions 200 mg/kg; vO, mice 
600 mg; vO, humans

↓ TG in plasma after corn oil loading 
inhibition of TG increase after TG load

97

Nelumbo nucifera 5% of diet; mice ↓ Body weight 
↓ TG in plasma 
↓ Parametrial adipose tissue weight

199

Cassia mimosoides CT-iia extract 1%–3.5% of diet; DiO rats Suppression of body weight gain 
↓ Parametrial adipose tissue weight

98

Peanut shell extract 1% of diet; DiO rats Suppression of body weight gain 207

Carnosic acid 20 mg/kg; vO, DiO mice Suppression of body weight gain 104

Crocetin and crocin 50 mg/kg; vO, mice Suppression of body weight gain 
↓ epididymal fat pad

109

Lipstatin 375–750 mg/day; humans ↑ Fat excretion 118

Green tea catechins 5–80 mg; vO, rats inhibition of α-amylase and 
α-glucosidase

191

Note: aethanol extract. 
Abbreviations: DiO, diet-induced obesity; HFD, high-fat diet; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; TG, triglycerides; vLDL, 
very-low-density lipoprotein cholesterol; vO, volume overload.

Once bound to these  surfaces, colipase facilitates the interac-

tion between pancreatic lipase and the surface of emulsified 

lipid droplets.20 Although HPLRP1 and -2 share a high degree 

of structural homology and sequence with HPL,21 their role 

in lipid digestion has not been fully clarified. It is known 

that under physiological conditions HPLRP1 does not exert 

lipolytic activity.21,22 HPLRP2 hydrolyzes galactolipids,23,24 

phospholipids and TG at a low rate,23 and retinyl ester.25 

HPLRP2 does not need colipase to be active.23

The hydrolysis of dietary TG starts in the stomach by the 

catalytic action of HGL. The secretion of HGL is induced 

by mechanical stimulation of the stomach, ingestion of food 

or sympathetic activation.17 HGL hydrolyzes 5% to 40% of 

ingested TG,26 mainly generating FFA, diglycerides, and a 

few 2-MG molecules.27 Gastric lipolysis is crucial for the 

continuation of the digestion process in the duodenum by 

HPL. Gastric lipolysis ensures: (i) lipid emulsification which 

creates the lipid–water interface needed for effective lipolysis 

in the duodenum,27–29 (ii) the generation of long-chain FFA 

which, once in the duodenum, will stimulate the release of 

cholecystokinin (CCK) and HPL secretion, slowing down 

gastric emptying,18 and (iii) the generation of diglycerides, 

which are hydrolyzed more effectively than TG.30 Therefore, 

the impact of HPL inhibition on lipid absorption is limited by 

the activity of HGL.31 The hydrolysis of TG persists in the 

duodenum by means of the combined actions of HGL (HGL 
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is responsible for further lipolysis contributing 7.5% to total 

lipolysis in the duodenum), HPL and bile salts. HPL is the 

principal pancreatic lipolytic enzyme; it hydrolyzes 40% to 

70% of TG26,28,29 yielding 2-MG and long-chain saturated and 

polyunsaturated FFA as the lipolytic products.16,31,32 For full 

activity under physiological conditions, HPL requires the 

presence of another pancreatic exocrine protein: colipase. 

Colipase is secreted as a precursor molecule, in the pres-

ence of bile salts, pro-colipase binds, without inducing any 

conformational change, to the C-terminal domain of the 

HPL molecule.33 In order to be absorbed, bile-derived mixed 

micelles convert FFA and 2-MG into soluble aggregates. 

These micelles transport these lipolytic products from the 

intestinal lumen to the intestinal walls.13,14 Once in contact 

with the enterocyte, the molecules are transported across 

the cell membrane. The enterocyte re-esterifies 2-MG and 

FFA into TG, assembles them into chylomicrons and then 

secretes these into the lymphatic system in order make them 

bioavailable.19,30,34 Lipolysis rates and consequently FFA 

supply to the body can be affected by several factors such 

as lipase levels and activity, physicochemical properties of 

dietary lipids, and the presence of inhibitors or enhancers.

Carbohydrate digestion  
and absorption
In humans, between 40% and 80% of total caloric intake 

is accounted for by carbohydrates in their various forms, 

making them the most important energy source. According 

to their chemical structure carbohydrates can be classi-

fied into absorbable (undigested), digestible, fermentable 

and non-fermentable forms.35 Absorbable carbohydrates 

(monosaccharides, comprising a single unit such as glu-

cose, galactose, fructose, xylose and ribose) by definition 

do not need to be digested in order to be transported into 

the body. However, once a carbohydrate comprises two or 

more units, it has to be enzymatically digested for it to be 

absorbed. In the human diet, the main digestible carbohy-

drates comprise disaccharides such as sucrose (sugar) and 

lactose, and larger polysaccharides such as starch which 

constitute a main source of calories in most Western diets. 

In contrast, fermentable carbohydrates cannot be digested 

as enzymes cannot readily break the inter saccharide bonds. 

However, once in the colon these carbohydrates are read-

ily metabolized by colonic bacteria through the process of 

fermentation. Similarly, if digestible carbohydrates such as 

sucrose and lactose are maldigested or malabsorbed, they 

will also be fermented in the large intestine. The main end 

products of carbohydrate fermentation are short-chain fatty 

acids (acetate, propionate, and butyrate) and gases (carbon 

dioxide, hydrogen, and methane).36 They can be absorbed 

in the large intestine (providing energy), used as a bacterial 

substrate, released as flatus, or excreted as biomass in the 

feces. Some carbohydrates (such as components of plant cell 

walls) are neither digested/absorbed nor fermented. They pass 

through the gastrointestinal (GI) tract mostly unchanged and 

are eliminated in the feces.

The digestion of carbohydrates begins in the mouth by 

the action of salivary α-amylase, which hydrolyzes the α-1,4 

bonds in starch, the products of this process are maltose, 

maltriose, and small dextrins. The starch digestion process 

continues in the small intestine by the action of pancreatic 

α-amylase. The digestion process is completed by enzymes 

in the brush border of the small intestine (maltase, sucrase, 

and lactase, also known as disaccharidases or α-glucosidases) 

which yields the absorbable monosaccharides glucose, fruc-

tose, and galactose. A small proportion of monosaccharides 

can be absorbed passively; however, a carrier protein is 

required to absorb the amount ingested in a normal diet.37

Drugs that interfere with lipid 
absorption
Although lipid metabolism is balanced to maintain homeo-

stasis, high-fat diets tend to induce overconsumption and 

as a consequence, weight gain. This is mainly due to their 

high energy content and their low potential for inducing 

satiety.38,39 It has been proposed that in the vast majority 

of cases, overweight and obesity are the consequences of 

exaggerated consumption of fat rather than carbohydrates.40 

This does not mean that obesity is not also associated with 

the consumption of refined sweet carbohydrates, but rather 

that the intake of this form of carbohydrate is invariably 

coupled with the intake of dietary fat (in sweet snack foods, 

sodas and desserts) along with the consumption of high fat 

savory food items (these often also contain considerable 

amounts of refined carbohydrates). Given the central role 

of dietary fat in weight gain, a rational strategy would be to 

reduce the proportion of calories derived from fat in the 

diet. In addition to altering dietary intake, the amount of fat 

entering the body can be reduced by targeting the enzymes 

involved in lipid digestion and absorption pathways.32 Such 

an approach would have the advantage of reducing energy 

entering the body without targeting the central nervous sys-

tem, avoiding the side effect issues that have dogged many 

appetite-suppressing agents.41

The inhibition of fat digestion and absorption is not 

without side effect issues. As detailed later, GI distress 
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and  vitamin deficiencies remain a concern with current 

 treatments. However, humans can tolerate a certain degree of 

inhibition of fat absorption, sufficient to prevent a significant 

amount of energy entering the body. Given that fat contains 

9 kcal/g, the inhibition of the absorption of 30 g/day would 

produce a daily deficit of nearly 300 kcal.42 This, in addition to 

a mildly hypocaloric, well-balanced diet, could theoretically 

produce weight loss of 0.5 kg/week. Once the excess weight 

is lost, the therapy could be modified for long-term weight 

maintenance. For the treatment of hyperlipidemia alone, 

perhaps even less limited inhibition of fat absorption could 

produce desirable results. Moreover, the benefits of reduc-

ing fat absorption are not restricted to weight loss. Specific 

reduction of lipid levels in subjects with hyperlipidemias 

would lead to health benefits beyond those expected through 

reduction in caloric intake and weight loss alone.

HPL isolated C-terminal domain
The fact that HPL activates when it forms a complex between 

its C-terminal region and colipase has brought attention to 

a relatively new strategy to reduce the activity of HPL.43 

The isolated C-terminal domain has shown potential HPL 

inhibitory activity, both in vitro44 and in rodents45 it behaves 

as a colipase lure. Studies in humans are required to test the 

effectiveness of this strategy.

Cetilistat
Cetilistat (ATL-962, Alizyme®; Takeda Pharmaceutical) was 

developed with the aim of creating a drug similar to orlistat 

(see below) but without its side effects. Although cetilistat 

has shown inhibitory activity for both rat and HPL (IC
50

 of 

54.8 nmol/L and 5.95 nmol/L respectively) it can be seen from 

the IC
50

 that this component is a much more efficient inhibi-

tor of HPL than rat lipase. Administration of cetilistat (3 to 

100 mg/kg) to diet-induced obesity (DIO) rats exposed to oral 

fat loading reduced plasmatic TG elevation with a correspon-

dent increase in fat excretion in a dose dependent manner. This 

reduced body weight gain and white adipose tissue weight.46 

A phase I study showed that cetilistat increases fecal fat 

excretion in a similar way to orlistat but with a better reported 

tolerability.47 Phase IIb studies showed that its administration 

(180 to 720 mg/day) to obese individuals with and without 

type II diabetes on a hypocaloric moderate fat diet produced 

significant weight loss when compared to subjects receiving 

placebo.48,49 The reported adverse effects were similar to those 

in the placebo group. Despite its reported efficacy and reduced 

adverse event profile, further  development of cetilistat for 

obesity treatment has been discontinued by Takeda.

Lipase inhibitors from plants
In the continuing search for novel anti-obesity agents, numer-

ous plant derived phytochemicals have been screened for 

potential lipase inhibition activity. A recent extensive study 

examined 132 extracts from 106 plant species, used either as 

foods or medicinal herbs, screening them for pancreatic lipase 

inhibition activity.50 Surprisingly, the majority of extracts, 

100 in total, exhibited some degree of inhibitory activity. All 

extracts from plants belonging to Brassicaceae, Ericaceae, 

Fabaceae, Rosaceae and Solanaceae showed inhibitory activ-

ity. Twenty-six extracts inhibited lipase activity by at least 

40%, of which 10 exhibited over 70% inhibitory activity. 

All extracts from apples exhibited more than 70% inhibi-

tory activity. The current review classifies these botanically 

derived inhibitors into the following chemical classes.

Saponins
Saponins are phytochemicals which can be found in the roots 

and rhizomes of most vegetables, beans and herbs. Saponins 

are glycosides known for their soap-like foaming ability 

when mixed with water. This foaming ability results from 

the combination of a lipophylic sapogenin and a hydrophilic 

sugar part.51 Certain saponins such as oleanane, lupine and 

dammarane-type can inhibit pancreatic lipase activity and 

therefore have potential as treatments that could prove 

effective for obesity and related disorders.52–54 However, the 

clinical potential of saponins remains difficult to judge with 

such limited clinical data available.

Acanthopanax senticosus (Rupr. Maxim) Harms
A. senticosus, also known as Siberian Ginseng or Eleuthero-

coccus senticosus, is a shrub commonly found in the northeast 

of Asia. Crude A. senticosus extracts have been used to treat 

physiological changes induced by stress,55,56 some allergic 

and inflammatory conditions,57,58 cancer,59 chronic bronchitis, 

hypertension, ischemic heart disease, and gastric ulcers.60 

So far, 26 triterpenoid saponins have been isolated from the 

leaves and fruits of A. senticosus52 among which ciwujiano-

side C
1
, tauroside H

1
, 3-O- α-L-rhamnopyranosyl-( 1→2)- 

α-L-arabinopyranosyl mesembryanthemoidigenic acid, 

acanthopanaxoside C, acanthopanaxoside E, silphioside F, 

copteroside B, hederagenin 3-O- β-D glucuronopyranoside 

6’-O-methyl ester and gypsogenin 3-O- β-D-glucuronide, 

sessiloside and chiisanoside exhibit pancreatic lipase inhibi-

tory activity in vitro with IC
50

 values ranging from 0.22 to 

0.29 mM.52,61 Studies performed in vivo have shown that 

in DIO rats62 and C57BL/6J mice, administration of an 

A. senticosus extract (12 mg/kg for 12 weeks) decreased 
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the deposition of abdominal fat and improved associated 

lipid parameters, such as increasing serum high-density 

lipoprotein (HDL) cholesterol, and decreasing serum TG, 

low-density lipoprotein (LDL) cholesterol, and hepatic TG.63 

In a placebo controlled study, administration of concentrated 

extracts of A. senticosus (1500 mg/day for 6 months) to 

postmenopausal women decreased serum LDL levels and 

LDL/HDL ratios without associated side effects.64 However, 

since A. senticosus extracts have several mechanisms of 

action including the inhibition of hepatic lipogenic enzymes 

and glucose 6-phosphatase,65 the reduction of LDL levels is 

probably the result of a combination of effects. The effects 

of A. senticosus extract on body mass and body composition 

remain to be demonstrated.

Acanthopanax sessiliflorus sessiloside  
and chiisanoside
These are lupine-type saponins found in the leaves of 

A. sessiliflorus. In vitro studies have shown that both 

sessiloside and chiisanoside inhibit HPL activity in a dose-

dependent manner, with IC
50

 values of 0.36 and 0.75 mg/mL, 

respectively.53 In mice, simultaneous administration of oil and 

chiisanoside (100 and 300 mg/kg) decreased plasma TG levels 

and increased the amount of undigested TG in the intestinal 

lumen.66 No clinical data are available on A. sessiliflorus.

Aesculus turbinata escins
A. turbinata (Japanese horse chestnut) is a medicinal plant 

widely distributed in north western China. Its dried ripe 

seeds have been employed as a carminative, stomachic, and 

analgesic for the treatment of distension and pain in the chest 

and abdomen.67 The saponins extracted from the seeds are 

called escins. Recently, escins have been reported to show 

inhibition of pancreatic lipase activity (IC
50

 of 24 mg/mL).68,69 

Administration of escins (0.1% to 0.5% of diet) to mice fed 

a high fat diet prevented body weight gain without altering 

caloric intake. An increase in the levels of undigested fat in 

the mice feces confirmed effective inhibition of fat digestion 

in vivo.70 However, to date there are no published clinical 

data on these effects in humans.

Chinese tea plant saponins
Studies performed with crude saponins extracted from the 

flower buds of the Chinese tea plant Camellia sinensis have 

shown that in mice they accelerate GI transit and also exert 

an inhibitory effect on pancreatic lipase with an IC
50

 of 

0.091 mg/mL. The main components responsible for these 

effects are the chakasaponins I, II, and III which inhibit 

pancreatic lipase with IC
50

 values of 0.17 to 0.53 mM. Such 

compounds could be valuable in the prevention of obesity, 

but studies assessing their effect in HPL are needed to assess 

their potential.71

Dioscorea nipponica
D. nipponica Makino is a herb that grows in the  mountainous 

areas of the Korean peninsula. It has long been used as a 

popular remedy for the treatment of several diseases includ-

ing asthma, rheumatoid arthritis and bronchitis.72 The extract 

of D. nipponica appears to inhibit porcine pancreatic lipase 

activity with IC
50

 values of 5 to 10 mg/mL. Dioscin and 

its aglycone diosgenin are the result of further purification 

 processes. When administered to mice, both  components have 

been shown to suppress increases of blood TG  following oral 

administration of corn oil.72 Rats fed a high fat diet contain-

ing 5% of D. nipponica had significantly lower body weight 

gain that their control counterparts. This was accompanied 

by decreases in blood TG, very-low-density lipoproteins 

(VLDL) and LDL.72 The effects of D. nipponica on body 

weight have yet to be proven in a clinical study.

Oolong tea saponins
Three types of tea, green, oolong and black are used all over 

the world as traditional healthy drinks. Green and oolong tea 

have been reported to exert anti-obesity and hypolipidemic 

actions. Black tea also contains many active ingredients;73 

however some may not survive processing. These teas contain 

several different active ingredients that may exert anti-obesity 

actions through various mechanisms. Oolong tea contains two 

saponins (theasaponins E1 and E2) that seem to competitively 

inhibit pancreatic lipase activity with Km and Vmax values 

of 1.42 mg/mL and 476.2 nkat/L respectively. The Ki value 

of tea saponin is 0.25 mg/mL.73,74 However, to date no studies 

of in vivo activity of these saponins have been reported.

Panax japonicus chikusetsusaponins
The rhizomes of P. japonicus C.A. Meyer (Japanese name; 

Chikusetsuninjin), have been used as a folk medicine 

for hypertension, arteriosclerosis and diabetes.75 In vitro 

total chikusetsusaponins as well as chikusetsusaponin III, 

28-deglucosyl-chikusetsusaponin IV and 28-deglucosyl-

chikusetsusaponin vs inhibit pancreatic lipase activity at 

concentrations of 125 to 500 μg/mL.76 One study showed that 

the administration of total chikusetsusaponins (1% to 3% in 

diet) significantly suppressed weight gain in DIO mice.76 This 

effect was independent of energy intake and correlated with 

a significant reduction in parametrial adipose tissue weight. 
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In addition, a reduction of plasma TG levels was observed.76 

Clinical studies on the effects of chikusetsusaponins on body 

composition or body mass have yet to be published.

Platycodin saponins
Platycodin saponins are the main constituents of Platycodi 

radix. Platycodi radix is the root of Platycodon grandiflorum 

A. DC (Campanulaceae), commonly known as Doraji.77 

Some Asian cultures use Platycodi radix in cooking and 

also as a traditional oriental medicine ingredient. Some 

evidence shows that Platycodi radix extracts possess some 

health benefits such as the improvement of hypercholester-

olemia and hyperlipidemia.78 The saponin-rich fraction of 

Platycodi radix has an inhibitory effect on HPL and this 

seems to correlate with anti-obesity actions.79–82 Among the 

various saponins, platycodin D possesses the strongest HPL 

inhibitory activity with a Ki of 0.18 mM.82 Nevertheless, a 

study by Zhao et al83 found that in rats, the decrease in body 

weight correlated with decrease in caloric intake, an effect 

not obviously attributable to lipase inhibition. They ascribed 

this effect to the ability of Platycodin saponins to reduce 

gastric secretion,84 which in turn would slow gastric diges-

tion, decreasing subsequent food intake. These results, taken 

together, suggest that Platycodin saponins provide a potential 

alternative treatment for both obesity and hyperlipidemia.80,81 

However, further data showing replication of these effects 

in humans are needed.

Sapindus rarak DC
S. rarak is a tree found in South and Southeast Asian coun-

tries. The pericarps have anti-pruritic actions.85 A recent 

in vitro study has shown that the methanolic extract from 

S. rarak pericarps exerts pancreatic lipase inhibitory activity 

(IC
50

 = 614 μg/mL). This extract contains several saponins 

of which rarasaponins I and II and raraoside A inhibited 

pancreatic lipase with IC
50 

of 131 μM, 172 μM and 151 μM 

respectively.86 The in vivo effects of S. rarak saponins 

remains yet to be investigated.

Scabiosaponins
Scabiosa tschiliensis Grun. (Dipsacaceae) is a perennial herb 

widely distributed in Mongolia and China. S. tschiliensis 

flowers are traditionally used as a remedy for headache, 

fever, cough, and jaundice.87 In vitro studies have reported 

that scabiosaponins E, F, G and I, hookeroside A and B, and 

prosapogenin 1b inhibit HPL. Of these, prosapogenin 1b 

reportedly possesses the greater inhibitory activity at a 

concentration of 0.12 mg/mL. This dose produced lipase 

inhibitory activity comparable to 0.005 mg/mL of orlistat 

in the same model.87 The fact that to date no studies in vivo 

have been reported could be due to the difficulties in  isolating 

these compounds. However, recently scabiosaponins E, F, 

and G have been successfully synthesized.88

Polyphenols
Polyphenols are chemical compounds characterized by the 

presence of more than one phenol unit or building block per 

molecule. Fruit skins contain high levels of polyphenols. The 

health benefits of specific polyphenols are well-documented. 

Polyphenols possess antioxidant actions and are also able to 

inhibit digestive enzymes, these two actions could lower the 

risk of cardiovascular disease and cancer.89 Naturally occur-

ring polyphenols, and in particular catechins and condensed 

tannins isolated from various plant sources, have been shown 

to inhibit digestive enzymes including lipase and α-amylase 

in vitro 90–92 and therefore have some potential in the manage-

ment of obesity.

Apple polyphenols
Apples contain several phenolic substances (ie, chlorogenic 

acid, (+)-catechin, epicatechin, phloridzin, rutin, and pro-

cyanidins (condensed tannins).93 Procyanidins in apples are 

mainly composed of various polymerized catechins. Apples 

and their polyphenol (AP) extract have several biological 

activities such as antioxidant,94 anti-allergy95 and anti-tumor 

activity.96 In a recent study performed by Sugiyama et al97 

it was found that AP inhibited pancreatic lipase activity in 

a dose-dependent manner with an IC
50

 value of 5.6 μg/mL. 

In addition, the procyanidin fractions extracted from AP also 

inhibited pancreatic lipase activity in a dose-dependent man-

ner with an IC
50

 value of 1.4 μg/mL. In mice, AP administra-

tion (200 mg/kg) significantly decreased plasma TG after corn 

oil loading. The procyanidin fraction also tended to inhibit TG 

absorption as compared with the control group. Administra-

tion of AP (600 mg) containing capsules to humans inhibited 

TG elevation after TG load when compared to subjects receiv-

ing placebo. No side effects were reported.97

Cassia mimosoides L. var nomame Makino  
(Nomame Herba)
C. mimisoides is a leguminous plant grown in Japan and 

China. Its ethanol extract, CT-II, possesses a dose dependent 

inhibitory action on porcine lipase.98 When administered 

to rats fed high fat diets, CT-II (1% to 3.5% of diet) dose 

dependently suppressed body weight gain, and lowered 

parametrial fat and liver weight when compared to control 

animals.98 The effects of CT-II on body weight in humans 

have yet to be reported.
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Grape seed extracts
Grape seeds and skins contain a variety of health-promoting 

polyphenols, also known as condensed tannins or proantho-

cyanidins.99 Currently these polyphenols are the focus of 

research to elucidate their putative beneficial effects.100 Grape 

seed extract at a concentration of 1 mg/mL inhibits 80% of 

lipase activity.101 Importantly, in vivo these extracts seem 

to lack toxicity. Further studies in animal models are needed 

to evaluate it potential as a weight loss product.102

Terpenes
Terpenes are a large class of hydrocarbons, produced by a 

broad variety of plants. Chemical modification of terpenes 

yields terpenoids. Both terpenes and terpenoids are the 

main constituents of the essential oils of many plants. These 

include carnosic acid, carnosol, crocin and crocetin.

Carnosic acid and carnosol
Carnosic acid and carnosol are compounds extracted from the 

leaves of Salvia officinalis L. (sage). Both substances exert 

inhibitory activity on pancreatic lipase with IC
50

 values of 

36 and 13 μM, respectively. Although carnosol possesses the 

stronger inhibitory activity in vitro, in vivo it seems to lack 

substantial effects. This has been attributed to its instabil-

ity in suitable solvents.103 Administration of carnosic acid 

(20 mg/kg/day, by mouth) to mice fed a high fat diet, it 

reduced body weight gain and the accumulation of epididy-

mal fat.104 To date studies in humans are lacking.

Crocin and crocetin
Gardeniae fructus is used as a Chinese traditional medicine 

mainly for its analgesic and antipyretic effects. It contains 

geniposide and crocin as main components.105 These com-

ponents exhibit antioxidant, antitumoral and neuroprotec-

tive effects.106–108 In vitro, crocin and its metabolite crocetin 

potently inhibit pancreatic lipase. The most potent inhibitor 

was crocetin, with an IC
50

 value of 2.1 mg/mL.109 In mice 

fed a high fat diet, crocetin and crocin inhibited the incre-

mental increase in body weight compared with that of the 

control group. These compounds also significantly reduced 

epididymal fat pad mass. Their potency at a dose of 50 mg/kg 

is comparable with that of orlistat at a dose of 10 mg/kg.109 

Crocin and crocetin have yet to be tested in a clinical trial.

Lipase inhibitors derived from 
microbial sources
Lipstatin
Lipstatin, a compound isolated from Streptomyces toxytri-

cini, is a very potent and selective irreversible inhibitor of 

pancreatic lipase. The IC
50

 of lipstatin for pancreatic lipase is 

0.14 μM.110 Tetrahydrolipstatin or orlistat (THL, Ro 18-0647, 

Xenical®; Hoffmann-La Roche, Basel, Switzerland) is a 

highly lipophilic hydrogenated derivative of lipstatin.111,112 

Orlistat is a potent inhibitor of most mammalian lipases. 

Therapeutic doses of orlistat generally achieve around 35% 

inhibition of lipid digestion.111,113,114 Thus as a consequence 

the undigested fat is not absorbed but excreted.115 Beyond 

its lipase inhibition activity, orlistat reportedly does not sig-

nificantly diminish the activity of other intestinal enzymes. 

Less than 1% of orlistat itself is absorbed, preventing inhi-

bition of extra intestinal lipases.116 When administered by 

intraduodenal infusion in a rat model it almost completely 

inhibited the absorption of cholesterol.117 In humans, initial 

studies showed that orlistat administration at doses between 

375 and 750 mg/day decreased fat absorption and therefore 

increased fat elimination which caused side effects related 

to the amount of fat in the diet. In both rodent and human 

participants short-term orlistat administration increases 

fecal fat loss which returns to baseline after cessation of 

dosing.116,118,119 This product has been evaluated in many 

clinical studies for obesity treatment. After 1 year  treatment, 

the combination of orlistat (120 mg taken three times daily 

just before feeding) and a hypocaloric diet produced a 

higher weight loss compared with placebo.120,121 Although 

the weight reduction from baseline was no greater than 10% 

(4% placebo subtracted),120,121 orlistat significantly decreased 

glycemia, glycated hemoglobin, insulin resistance and car-

diovascular disease risk factors such as hyperlipidemia and 

high blood pressure.122,123 It is not yet known how quickly 

weight is regained on cessation of treatment, however in 

trials in which patients were re-randomized to placebo after 

one year of treatment they regained some but not all of the 

weight lost from baseline.124 In the UK, Clinical Excellence 

guidelines currently recommend that orlistat should not be 

continuously used for more than 24 months.125 Such precau-

tions are advisable because of the limited data available on 

the effect of orlistat administration for longer than two years 

(only the XENDOS study administered the drug continuously 

for 48 months) and side effect issues. Specifically, orlistat 

has shown to slightly impair the absorption of liposoluble 

vitamins A, E, and β-carotene,116,126 however, vitamin supple-

mentation is only required in a minority of patients. Orlistat 

accelerates gastric emptying, this could lead to exaggerated 

postprandial hyperglycemia,127 and the presence of undi-

gested fat in the bowels causes side effects (such as diarrhea, 

abdominal pain, oily stools and fecal spotting) that limit use 

of orlistat.128 Additionally, chronic GI ailments like irritable 

bowel syndrome are clear contraindications for its use. These 
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issues, along with the potential for abuse of this drug as a 

purgative, have caused some concern. Nonetheless, a half 

dose of orlistat (Alli®, 60 mg rather than 120 mg 3 times 

daily) has been approved in Australasia, USA and the EU for 

over-the-counter use.128 Data from very recent studies report 

that the administration of half dose of orlistat in conjunction 

with a reduced calorie, lower-fat diet to overweight and 

obese participants significantly reduced their body weight 

(5.96 kg vs 3.91 kg) waist circumference and visceral fat 

(15.7% vs 9.4%).129,130 It is important to note that both studies 

this dose was well tolerated by participants. To summarize, 

orlistat in conjunction with behavioral modifications could 

become useful therapies for the treatment of obesity and/or 

hyperlipidemia.118

Panclicins
Panciclins A, B, C, D, and E are pancreatic lipase inhibi-

tors isolated from Streptomyces sp. NR 0619. Structurally, 

panclicins A, B, C, D, and E are analogs (but not irreversible 

inhibitors) of tetrahydrolipstatin, which contains a β-lactone 

and an N-formyl leucine ester. The IC
50

 of panclicins A, B, 

C, D, and E for porcine pancreatic lipase are 2.9, 2.6, 0.62, 

0.66, and 0.89 μM, respectively.131 To date, no studies in 

animal models have been performed.

ebelactones
Ebelactone B, which is obtained from Streptomyces aburavi-

ensis, produces potent inhibition of pancreatic lipase. When 

administered (10 mg/kg, 60 min prior to feeding) to rats 

fed a high fat diet, it inhibited fat intestinal absorption in a 

dose-dependent manner. It also decreased plasmatic levels 

of TG and cholesterol. No data on animal weight or adipos-

ity are reported.132

vibralactone
Vibralactone is a compound isolated from the culture broth 

of the polypore Boreostereum vibrans. In vitro it inhibits 

pancreatic lipase with an IC
50

 of 0.4 μg/mL.133 Studies in 

animal models are required to test vibralactone’s effective-

ness and possible undesirable effects.

Drugs that interfere  
with carbohydrate absorption
Inhibition of α-amylase and brush border disaccharidases 

would lead to decreased absorption of all the main car-

bohydrates in the diet (glucose absorption would not be 

affected). This in theory would have several benefits, as 

blocking these enzymes would decrease the absorption of 

calories thereby promoting weight loss. These compounds 

have pharmacological potential for helping with weight loss 

and then maintaining weight without a dramatic reduction in 

carbohydrate intake. In addition, since carbohydrate absorp-

tion is affected, these products would reduce the magnitude of 

postprandial glucose and insulin responses to dietary carbo-

hydrates. The modulation of this response could prove to be 

clinically useful in the management of diabetic individuals. 

α-amylase inhibition delays gastric emptying by increasing 

the amount of undigested carbohydrate in the ileum.134,135 

Therefore, amongst other effects, amylase inhibition could 

modulate GI function and gut peptide release, strengthening 

satiety and decreasing food intake by mechanisms including 

reduced gastric emptying.

Acarbose
Acarbose (Bay g 5421, Glucobay®, Precose®, Prandase®; 

Bayer) is a pseudotetrasaccharide that inhibits intestinal 

α-glucosidase reversibly at the brush border of intestinal 

mucosa. As a consequence, the transformation of disaccha-

rides to monosaccharides is prevented, the uptake of monosac-

charides is retarded and thus postprandial insulin and glucose 

levels are reduced.136,137 A study by Samulitis et al138 showed 

that in vitro, acarbose (4 μM) strongly inhibited the activities 

of α-amylase and sucrase (98 and 63%, respectively). At a 

higher concentration (200 μM) it also inhibited isomaltase 

activity (28%) with negligible effects on trehalase and lactase 

activities. Reported adverse reactions are rare with this drug. 

Gradual dose increments prevent GI side effects. Studies 

in rats have reported a dose-dependent reduction of weight 

gain.139 The administration of acarbose to weight-reduced 

women limited weight regain.140 In a one year, double-blind, 

randomized, placebo-controlled study in type 2 diabetes sub-

jects, the individuals receiving acarbose lost 0.5 kg while the 

placebo group gained 0.3 kg.141 Administration of acarbose 

(150 mg/day) to women with polycystic ovary syndrome 

significantly reduced body weight and BMI.142–144

Deoxynojirimycin (DNJ)
DNJ is a polyhydroxylated alkaloid isolated from mulberry 

trees which act as a competitive inhibitor of small-intestinal 

brush-border α-glucosidase.145 Recent reports have consid-

ered sericulture products containing DNJ to be suitable for 

use as functional foods and food additives. In diabetic rats, 

the administration of DNJ (20 mg/kg) prevents weight gain.146 

Synthetic derivatives of DNJ have been developed; they 

include competitive inhibitors BAY o 1248 (emiglitate) and 

BAY m 1099 (miglitol). In vitro, both compounds are very 
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potent α-glucosidase inhibitors. At doses ranging from 0.1 to 

5 μg/mL, they inhibit sucrase (up to 97%) and glucoamylase 

(up to 96%). BAY m 1099 also reduced lactase activity (up to 

56%). Interestingly, none of these compounds seem to inhibit 

α-amylase. In contrast to acarbose, the DNJ derivatives at 

high concentrations (20 to 200 μM) considerably inhibited 

trehalase and lactase (a β-galactosidase) activities.138 When 

administered to diabetic rats, BAY o 1248 inhibited weight 

gain in animals fed a diet high in starch while it did not have 

any effect on animals fed with glucose.147 In support of find-

ings obtained from animal experiments, BAY o 1248 (10 mg) 

and BAY m 1099 (50 mg) delayed sucrose absorption and 

prevented post prandial increases in glucose in healthy 

male volunteers.148 However, 60% of participants reported 

intestinal side effects such as flatulence and diarrhea,149 an 

undesirable effect due to increased amounts of fermentable 

(undigested) carbohydrates.

extracts of black, green,  
and mulberry teas
In vitro studies suggest that extracts of black, green, and mul-

berry teas could interfere with carbohydrate and TG absorption 

due to their ability to inhibit α-amylase,150 α-glucosidase,151 

sodium-glucose transporters,152 and pancreatic lipase.153 

Administration of a combination of green (0.1 g), black (0.1 g), 

and mulberry (1.0 g) tea leaves which contained approximately 

5 mg DNJ-type compounds, 100 mg epicatechin gallate, 

300 mg epigallocatechin gallate, and 100 mg theaflavin to 

humans reduced carbohydrate (derived from starch) absorption 

by 25%.153 To date, no in vivo studies have been carried out.

Phaseolus vulgaris L.
The purified, non-toxic (P. vulgaris contains toxic  substances) 

extract of P. vulgaris (kidney bean) contains large amounts 

of phaseolamine (Phase 2®; previously sold as Phaseolamin 

2250®, referring to 1 g of the product blocking 2250 starch 

calories, DEcarb®), a glycoprotein that inhibits α-amylase in 

a non competitive manner.154,155 In the US, several different 

preparations are commercially available for the treatment of 

obesity. In vitro studies have demonstrated that phaseolamine 

binds to α-amylase forming a 1:1 complex inhibiting the 

enzyme. In rats intragastric phaseolamine administration 

reduces post-prandial as well as basal plasma glucose 

levels.156–158 In addition, phaseolamine reduces food intake 

and consequently body weight.139,157,159,160 Apart from the 

inhibition of α-amylase, P. vulgaris extract seems to stimu-

late CCK release, and interfere with central mechanisms that 

regulate food intake and food palatability.161 Administration 

of large doses of phaseolamine impairs the growth rate of 

rats.162 Studies performed in humans have shown contradic-

tory results. For instance, three studies have failed to show 

any measurable inhibition of starch hydrolysis or significant 

weight loss in vivo,155,163–165 suggesting either the existence of 

an alternate route capable of degrading starch or insufficient 

amounts of inhibitors reaching the substrate. Subsequent 

studies showed that intraduodenal administration of the 

partially purified inhibitor significantly inhibited α-amylase 

activity during the ingestion of a starch diet.166 Additional 

studies in normoglycemic and diabetic individuals found that 

phaseolamine administration produced an earlier reduction 

of postprandial glucose levels than controls, with 57% lower 

glucose absorption.167,168 Acute administration of 1.5 g of 

phaseolamine to healthy participants blocked the absorp-

tion of 66% of carbohydrates present in a standard meal.169 

A 30-day, double-blind, placebo-controlled clinical trial for 

weight loss that compared Phase 2 versus placebo reported a 

4% loss of body weight compared with 0.47% in the placebo 

group. This was accompanied by a 10% reduction in body 

fat in the experimental group.170 In 2007, Celleno et al171 and 

Udani and Singh172 conducted randomized, double-blinded, 

placebo-controlled studies on normal and overweight male 

and female volunteers during which some participants were 

prescribed a high carbohydrate diet. After 1 month of chronic 

administration (445 to 1000 mg/day) participants receiving 

P. vulgaris extract showed a significant reduction in both total 

body mass and BMI compared to control, accompanied by 

changes in body composition. This was shown by significant 

reductions in total fat mass, fat deposition, and waist/hip/

thigh circumferences while maintaining lean body mass. 

At the moment, the long-term consequences of intraluminal 

amylase inhibition are not known. Therefore longer studies 

with a larger pool of subjects are required to investigate these 

effects and validate the above-mentioned findings.

Both anti-lipase and anti-amylase 
activity
Berry polyphenols
Berry polyphenols, such as anthocyanins and ellagitannins 

have been shown to reduce postprandial hyperglycemia.173 

Although in vitro anthocyanins can directly induce secre-

tion of insulin from pancreatic cells,174 their main effect on 

postprandial hyperglycemia seems mainly due to inhibition 

of α-glucosidase and α-amylase.175 In addition, in vitro this 

extract also exerts inhibitory activity on pancreatic lipase. 

Ellagitannin-rich extracts such as (raspberry, strawberry, 

cloudberry and arctic bramble) seem to be the most  effective 
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at inhibiting lipase.176 Some published data suggest that 

extract-induced fecal lipid excretion is associated with reduc-

tions in weight gain and changes in TG metabolism,97,177 while 

other studies report no significant correlations.178 The lack of 

effects found in some studies could be due to compensatory 

increases in lipase secretion similar to those seen in studies 

on condensed tannins in rats.90 The demonstration of lipase 

inhibition in vivo by berry components needs to be fully 

demonstrated before there can be any serious investigation 

of their weight management potential.

Cyclocarya paliurus (Batal.) iljinskaja
C. paliurus is a tree found in the highlands of southern China. 

It is used as a folk remedy for several ailments. Cyclocari-

oside A, II and III are triterpenoid saponins isolated from the 

leaves of C. paliurus. It is known that triterpenoid saponins 

exhibit an insulin-like activity in adipocytes, in vivo and 

in vitro.179 Therefore, this could be one mechanism respon-

sible for the beneficial effects of these compounds. In vitro, 

C. paliurus extract showed inhibitory activity toward pancre-

atic lipase, with an IC
50

 of 9.1 μg/mL.180 Administration of 

C. paliurus extract (250 mg/kg) to mice after a load of dietary 

fat suppressed the expected increase in plasma triacylgyc-

erol levels.180 Taken together these results suggest that the 

hypolipemic action of C. paliurus extract is probably due to 

lipase inhibition. In vitro studies have shown α-glucosidase 

inhibitory activity at the dose of 5 μg/mL. Administration 

of a C. paliurus extract (250 mg/kg) to mice suppressed the 

expected increase of blood glucose level following sucrose 

administration.181 In addition, the oscillations in blood glu-

cose levels found in genetically hyperglycemic obese KK-AY 

mice were significantly lower when C.  paliurus (2 g/day) 

extract was administered daily for 3 weeks. To date, no 

research has been conducted on the hypoglycemic effect of 

this extract in clinical settings

Green tea
In Asia, green tea is widely consumed and for centuries 

has been thought to exert significant health promoting 

effects.182 The long-term consumption of green tea and its 

extract (GTE) (commercially available as pills, patches, 

gums, mints, extracts, and ice creams) has been associated 

with weight loss mainly through a thermogenic mecha-

nism.183 Compared to other teas, green tea catechins have 

been the most extensively investigated. Because green 

tea is derived from an oxidation-free process, high levels 

of catechins are retained. In contrast, the full fermenta-

tion processes used to produce black tea significantly 

reduce catechins levels.184 The main active ingredients 

in GTE: the catechins epigallocatechin gallate (EGCG; 

Teavigo®), epigallocatechin (EGC), epicatechin gallate 

(ECG), and epicatechin (EC) are responsible for many of 

the beneficial effects of green tea.185,186 In vitro data sug-

gest that the anti-obesity effects of green tea could in part 

be mediated through the inhibition of adipocyte division 

and maturation.187–189 There is also evidence that green tea 

could reduce glucose and fat absorption by inhibiting GI 

enzymes involved in nutrient digestion.190,191 Juhel et al192 

reported that in vitro the green tea extract AR25 (Exolise®; 

standardized at 25% catechins) effectively inhibited gastric 

and pancreatic lipase activities. In addition, tea polyphenols 

have been shown to inhibit α-amylase and α-glucosidase 

in vitro.191 It has been shown that green tea catechins 

reduced α-amylase and sucrase activities in rat intestine.191 

A study performed in streptozotocin-induced diabetic rats 

showed that addition of green tea extracts to the diet (0.01% 

and 0.2% of diet) significantly reduced maltase (both doses) 

as well as saccharase and lactase (higher dose) activities.193 

Administration of green tea extract (3% of diet) to rats fed 

a high fat diet decreased body weight gain and visceral 

fat accumulation, this correlated with an increase in fecal 

lipids.194 An open study carried out in moderately obese 

patients showed that administration of AR25 for 3 months 

decreased body weight and waist circumference by 4.6% 

and 4.48% respectively.195 Again, these effects could be 

the result of the aforementioned combination of enzyme 

inhibition and increased thermogenesis.

Nelumbo nucifera extract (NNe)
N. nucifera Gaertn. is a large aquatic herb widely found in 

India and China. Its extracts seem to have anti-inflammatory,196 

antipyretic197 and antioxidant properties.198 In vitro studies 

have shown that NNE inhibits lipase and α-amylase activ-

ity with an IC
50

 value of 0.46 mg/mL and 0.82 mg/mL 

respectively. This effect was dependent upon the phenolic 

compounds present in the extract since its elimination abol-

ished NNE inhibitory activity.199 In DIO female mice, treat-

ment with NNE (5% of diet) and exercise decreased body 

weight, parametrial adipose tissue weight and liver TG levels, 

this effect was not seen in the exercise only group.199 Oral 

administration of NNE to glucose-fed hyperglycemic and 

streptozotocin-induced diabetic rats markedly reduced blood 

sugar levels when compared with control animals. In normal 

animals, NNE administration improved glucose tolerance 

and potentiated the action of exogenously injected insulin. 

To date no studies in humans have been reported.200
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Oolong tea catechins
Catechins in oolong tea are reported to prevent DIO by inhibit-

ing small intestine micelle formation,201 limiting the absorption 

of sugars by inhibiting α- glucosidase activity.202 Epigallocat-

echin 3-O-gallate (EGCG) is one of the main polyphenols in 

oolong tea. In vitro, it inhibits pancreatic lipase with an IC
50

 

of 0.349 μM. In addition, flavan-3-ol digallate esters, such as 

(-)-epigallocatechin-3,5-digallate also possess inhibitory lipase 

activity with an IC
50

 of 0.098 μM.203 In DIO mice, oolong tea 

catechins suppressed increases in body weight, parametrial 

adipose tissue weights, and adipose cell size by delaying the 

absorption of dietary fat from the intestine by inhibiting pan-

creatic lipase activity.73 In a double-blind, placebo-controlled 

study, 12 weeks daily administration of oolong tea (containing 

690 mg of catechins) to normal and overweight males (with 

daily EI set at 90%) produced a significant reduction in body 

weight (1.5%), BMI (1.5%), waist circumference (2.0%), and 

body fat mass (3.7%), compared to the placebo group.204 These 

results suggest that oolong tea catechin consumption might be 

useful as an adjuvant during weight loss programs.

Peanut and peanut shell extract (PSe)
An aqueous extract of peanut cotyledons has shown specific 

inhibitory activity towards pancreatic and human salivary 

α-amylases205 and lipases.206 The peanut shell extract also 

shows inhibitory effects on human lipase, with a dose of 

10 mg/mL inhibiting 92% of activity.207 When administered 

as 1% of a high fat diet, PSE reduced weight gain in normal 

adult rats without altering food consumption.207

Salacia reticulata
S. reticulata is a climber found in Sri Lanka and India. Its 

stems and roots are used for diabetes treatment. In Japan, 

S. reticulata extract is consumed as a food supplement that 

suppresses postprandial hyperglycemia. The main com-

pounds responsible for α-glucosidase inhibition are salaci-

nol208 and kotalanol.209 S. reticulate polyphenol extracts also 

inhibit pancreatic lipase with an IC
50

 of 264 mg/L, and among 

the constituents isolated from S. reticulata, catechins showed 

potent inhibitory activity.210 Studies performed in Zucker rats 

and high-fat diet rats have shown that the oral administration 

of a S. reticulata extract (125 mg/kg)  suppressed body weight 

gain without affecting food intake.210 To date no human stud-

ies have been carried out.

Salix matsudana
S. matsudana (Chinese willow) (one ingredient of Rev 

Hardcore® and Methyl Ripped®) is a species of willow native 

to north western China. Its leaves have been used in tradi-

tional Chinese medicine for the treatment of several ailments. 

It has recently been reported that the polyphenol extracts of 

S.  matsudana have anti-obesity actions.211,212 These studies 

showed that oral administration of polyphenol fractions to 

DIO mice reduced adiposity and body weight. In vitro analy-

sis revealed that S. matsudana extract inhibited the enzyme 

α-amylase. In addition, the polyphenol fractions also had 

an effect on lipid absorption since its presence completely 

inhibited the intestinal absorption of palmitic acid, a product 

of oil hydrolysis. The effects of S. matsudana are mainly due 

to the inhibition of carbohydrate and lipid absorption, and 

the acceleration of fat mobilization through enhancement of 

NA-induced lipolysis in adipocytes.211 Although S.  matsudana 

extracts have been shown to have anti-obesity actions in vitro 

and in rodents, research in humans, especially on the long 

term effects, is lacking.

Conclusion
Blocking the digestion and absorption of dietary lipids 

and carbohydrates provides a valuable alternative to other 

pharmacological approaches to obesity. With the recent 

withdrawal of sibutramine from the European market, the 

only globally licensed anti-obesity drug remaining is the 

lipase inhibitor orlistat. This lipase inhibitor has also now 

been licensed in many countries for over-the-counter, non-

prescription weight control. Clinical data suggest that lipase 

inhibition produces greater than anticipated reductions in dia-

betes and cardiovascular risk factors than would be expected 

to be produced by its effects on body weight alone. However, 

the effect of blocking lipase action on meal induced satiety 

signals may produce counterproductive effects on appetite. 

The clinical implications of this have yet to be determined.

Studies in obese patients suggest that lipase inhibitors may 

be particularly beneficial for those who can effectively con-

trol their food intake and adhere to diet restriction. However 

for those with more dysregulated eating behavior, appetite-

suppressing pharmacotherapy might be more efficacious. The 

role of lipase inhibition induced GI side effects in clinical 

weight loss remains to be determined. Do those who use lipase 

inhibitors learn to avoid dietary fat? Or do they learn to avoid 

taking the prescription as intended – for example regularly 

missing doses before the consumption of high fat meals? Little 

evidence exists on the effects of lipase inhibition on dietary 

compliance and claims based on this lack substantiation. 

However, if lipase inhibition does  produce beneficial changes 

in behavior through GI-related side effects, the development 

of side effect-free lipase  inhibitors will be pointless.
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For blocking of the inhibition of carbohydrate digestive 

enzymes, the so-called starch blockers have been available 

for many years. To date, none of these agents have made 

a significant contribution to the effective management of 

obesity. Nonetheless, such products appear to produce 

beneficial effects on blood glucose levels and may have 

benefits in obese diabetic populations. Like lipase inhibi-

tors, these agents will not cross the blood–brain barrier and 

produce CNS related side effects as with traditional appetite 

suppressant/anti-obesity medication, or nausea associated 

with newer incretin-based treatments for obesity and diabe-

tes. A major consequence of blocking digestion of carbohy-

drates in the proximal gut, colonic fermentation, can only 

lead to increased microbial production of gas in the bowel. 

The effects of starch blockers on appetite immediately post-

meal might weaken those processes of satiety dependent on 

rapid glucose absorption (during and immediately post-meal). 

However colonic fermentation may increase late post meal 

satiety signals mediated by the release of short-chain FFA 

such as GLP-1 and PYY, and FFA oxidation in the liver. 

Overall, it can be concluded that no single compound can be 

considered to be a proven weight control product. Although 

some of the products reviewed above show potentially prom-

ising effects for weight control, for the majority more data 

are needed to define safety, the optimal dose required, and 

the actual magnitude of effects that can be expected during 

use in practice. Moreover, many of these substances may 

also produce adverse side effects.

For the majority of compounds described here, there are 

tantalizing but still inconsistent or incomplete data relating to 

the mechanism of action and benefits for weight control. In 

the majority of cases effects have been demonstrated in vivo 

or to a lesser extent in animal models. For lipase inhibitors, 

although the majority of plant derivatives exert in vitro 

inhibitory activity, the most promising compounds seem to be 

those derived from bacterial sources such as lipstatin and its 

synthetic derivative orlistat. These compounds have proven 

to reduce body weight in humans without significant side 

effects. In terms of the inhibition of carbohydrate digestive 

enzymes, the products that have so far been used with some 

degree of success in humans for the purpose of weight reduc-

tion are acarbose and phaseolamine, the remaining products 

are still in experimental phases. Finally, some phytochemi-

cals such as green and oolong tea extracts, which inhibit both 

lipid and carbohydrate digestive enzymes, seem to have some 

beneficial effects as weight-controlling products.

Improved understanding and evidence on each of the 

reviewed and other proposed weight control ingredients will 

guide further research, as well as the selection of ingredients 

and product formats that can deliver the most attractive and 

effective benefits to consumers. Ultimately, only randomized, 

double blinded, placebo-controlled clinical trials of enzyme 

inhibitors in humans can demonstrate their true potential. 

For all ingredients purported to be useful in weight control, 

significant placebo-subtracted weight loss needs be demon-

strated at least in the medium term, ie, up to 24 weeks of use. 

Nonetheless, inhibition of the breakdown of carbohydrate and 

fat in the GI tract remains a viable means of reducing energy 

absorption and thus overall energy intake. As such they may 

prove useful agents in weight management.
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