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Introduction: Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) is a

multifactorial illness of unknown etiology with considerable social and economic impact.

To investigate a putative genetic predisposition to ME/CFS we conducted genome-wide

single-nucleotide polymorphism (SNP) analysis to identify possible variants.

Methods: 383 ME/CFS participants underwent DNA testing using the commercial

company 23andMe. The deidentified genetic data was then filtered to include only

non-synonymous and nonsense SNPs from exons and microRNAs, and SNPs close

to splice sites. The frequencies of each SNP were calculated within our cohort and

compared to frequencies from the Kaviar reference database. Functional annotation of

pathway sets containing SNP genes with high frequency in ME/CFSwas performed using

over-representation analysis via ConsensusPathDB. Furthermore, these SNPs were also

scored using the Combined Annotation Dependent Depletion (CADD) algorithm to gauge

their deleteriousness.

Results: 5693 SNPs were found to have at least 10% frequency in at least one

cohort (ME/CFS or reference) and at least two-fold absolute difference for ME/CFS.

Functional analysis identified the majority of SNPs as related to immune system,

hormone, metabolic, and extracellular matrix organization. CADD scoring identified 517

SNPs in these pathways that are among the 10% most deleteriousness substitutions to

the human genome.

Keywords: myalgic encephalomyelitis/chronic fatigue syndrome, genome-wide, single-nucleotide polymorphism,
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INTRODUCTION

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
(ME/CFS) is a complex illness characterized by disabling
fatigue, disturbed sleep patterns, pain, and flu-like symptoms.
Patients report a high degree of physical disability, and a
decreased quality of life with 24% being homebound (1), causing
a US economic loss ranging from of $9.1 to $51 billion (2).
Currently, there are three main sources of diagnosis criteria, the
Center for Disease Control (CDC) Empiric (3), Fukuda (4), and
Canadian Consensus (5), showing 2.54, 1.0, and 0.10% of the
population affected, respectively. This variation highlights the
lack of a concrete illness definition. Although research studies
have identified various aspects such as immune abnormalities
and exposure to toxins relevant to the pathogenesis of ME/CFS
(6), ME/CFS is still not yet fully understood. The genetic
and environmental pathogenesis of ME/CFS remains unclear.
Currently, treatment of ME/CFS is dependent on management
of symptomology and improvement on quality of life (6). An
improved understanding of the molecular mechanisms affected
and dysfunction in the regulatory systems will translate into
better diagnostic methods and more targeted approaches to
treatment. There are numerous studies suggesting that genes
and single nucleotide polymorphisms (SNPs) within those genes
might play a role in the development and progression of ME/CFS
(7–9). Results of these studies are very interesting and useful,
however, one of these studies was focused on mitochondrial
DNA (7), and the other two were limited by 80 study subjects
(8, 9). The aim of the current study is to increase the size of
the ME/CFS cohort and identify the most harmful variants
associated with ME/CFS.

MATERIALS AND METHODS

Patient Population
Individuals with ME/CFS were selected through an online
English pre-screening questionnaire via the RedCap platform.
The study was restricted to adults (18–70 years of age) that
endorsed a clinically diagnoses of chronic fatigue syndrome
(CFS), post-infection fatigue (IF), or myalgic encephalomyelitis
(ME) and endorsed criteria meeting the 1994 CDC definition
of CFS (4): four or more of the following symptoms over a
minimum of 6 consecutive months and not predating fatigue:
sore throat, tender cervical or axillary lymph nodes, muscle
pain, multiple joint pain without swelling or redness, headaches
of new type, pattern or severity, unrefreshing sleep, post-
exertional malaise, and impaired memory or concentration.
Furthermore, study subjects were excluded if they had HIV
infection, or dementia precluding full participation/consent.
Qualified prescreened participants then completed an online
consent form describing the study in detail, asking them
to accept or decline the opportunity to continue with
the study, via the RedCap online platform. Consenting
participants then securely uploaded their genotyping data
received from 23andMe into a secure database using the RedCap
online platform.

Ethics Approval and Consent to Participate

All study subjects signed an informed consent approved by
the Institutional Review Board (IRB) of Nova Southeastern
University (NSU). Ethics review and approval for data analysis
was also obtained by the IRB of NSU.

23andME Genotyping
23andME processes saliva containing DNA that was sent by
the study subjects collected with the 23andMe kits according
to the supplied instructions. The 23andMe CLIA-certified lab
extracted DNA and processed the DNA on a genotyping chip that
reads hundreds of thousands of variants in the human genome.
Samples were collected starting in July 2016 until August 2018
and processed with 23andMe chip versions 4 (∼570 k SNPs; prior
to August 2017) and version 5 (∼640 k SNPs; after August 2017).
Genotyping calls were performed by 23andMe. Personalized
reports based on well-established scientific and medical research
were returned to study subjects and subsequently uploaded to the
NSU RedCap online platform.

SNP Filtering and Analysis
All variants received from study participants were annotated
using SeattleSeq 138 (10) for Genes, Distance-To-Nearest Splice
Site, and microRNAs. Based on the annotation we focused
our analysis on only non-synonymous and non-sense SNPs
located in the gene’s coding regions, near the splice sites and in
microRNAs. The frequency of each of these SNPs was calculated
in ME/CFS cohort (study participants). We compared these
frequencies with the frequencies of the corresponding SNPs from
the reference database Kaviar [hg19 (GRCh37)] (11). Kaviar
contains over 162 million SNPs from 35 projects, including
dbSNP, 1000Genomes and other and does not include the data
from cancer genomes.

For functional analysis we selected SNPs that satisfied
following criteria: the frequency at least 10% in either reference
or ME/CFS cohort and the ratio in frequencies between the
ME/CFS cohort and the reference cohort is more than two in
either direction (Supplementary Table 1).

All variants that prevail in ME/CFS cohort were also scored
using the Combined Annotation Dependent Depletion algorithm
(CADD) (12) (Supplementary Table 2).

Functional Annotation
Functional annotation of SNPs was performed using the
ConsensusPathDB (13–15) to provide biological pathway
information. Over-representation analysis (13) incorporating
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(73.0) (16), Netpath (1.1.2015) (17), the Integrating Network
Objects with Hierarchies (INOH) (1.1.2015) (18), Biocarta
(2009_05_12) (19), Humancyc (18.5) (20), Signalink (8.1.2015)
(21), Edinburgh human metabolic network (Ehmn) (1.1.2015)
(22), Reactome (51) (23), Wikipathways (9.1.2015) (24) and
the Pathway Interaction Database (PID) (2014_02_14) (25)
pathway sets was used to interpret the functions the identified
SNPs may play. Here the significance of the observed overlap
between the gene module and the members of known pathways,
compared to random expectations, was calculated based on a
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hypergeometric distribution. A minimum overlap of two genes
between the gene module and the pathway set at a p-value cutoff
of 0.01 was required. Specifically, the p-value was calculated as
the probability of randomly finding k or more successes from
the population in N total draws. Thus, small p-values indicate
a greater over-representation than expected by chance. As
many of the identified pathways share SNP genes the relation
between functions was mapped as a network between identified
pathway nodes where edges indicate a number of shared genes.
These networks were visualized with Cytoscape version 3.3.0
(26). Pathways sharing at least 30% of SNPs were clustered
and organized via circular layout, while the remainder were
organized via a perfuse force-directed layout based on the
number of shared genes.

RESULTS AND DISCUSSION

Functional analysis of SNPs identified three main clusters of
pathways as sharing at least 30% SNP related genes (Figure 1).
The first is dominated in size via the pathway Cytokine Signaling
in Immune System and includes other immune-related pathways
such as interferon signaling, autoimmune responses, and T-cell
receptor signaling. This cluster highlights a module of immune-
related SNPs.

The second cluster is dominated in size via the Nuclear-
ReceptorsMeta-Pathway and includes hormone related pathways
such as steroid hormone, estrogen, and androgen biosynthesis,
glucuronidation, and the pregnane x receptor pathway. This
cluster highlights modules of hormone-related SNPs.

The final cluster is dominated in size by Pathways in
Cancer, however, closer inspection shows many metabolic
processes such as enzyme reactions (protein kinase
A, calcium and calmodulin signaling), and G proteins
signaling which regulate metabolic enzymes, which are
all involved in the regulation of glycogen, sugar and
lipid metabolism. This cluster highlights a module of
metabolism-related SNPs.

While there is an overlap between the metabolic and
immune modules, the hormone module remains isolated with
main connections only formed via Ovarian Steroidogenesis
and the Wnt signaling pathway. Finally, there is a group
of loosely connected pathways involved in an extracellular
matrix organization.

While this organization highlights the interplay between
immune, hormone and metabolic activity underlying ME/CFS,
overlay of the location of CADD scores illustrates where the most
deleterious effects occur (Figure 1; lower panel).

Of the 11,485 SNPs that passed prefiltering according to the
annotations (see Methods), 8,593 SNPs had frequency more
than 10% in either reference or ME/CFS cohort. Out of them,
5,693 SNPs had a two-fold difference between ME/CFS and the
reference cohorts in either direction (Supplementary Table 1).

SNPs that prevailed in ME/CFS cohort were scored using the
CADD algorithm (12). According to the CADD algorithm, C-
scores above 10 indicate that these SNPs are predicted to be
among the 10% most harmful, and C-scores above 20 indicate

the 1% most deleterious substitutions (12). Table 1 shows 50
SNPs that are the most frequent in the ME/CFS cohort and have
C-scores above 10.

Of the 50 most frequent deleterious SNPs found in our
ME/CFS cohort compared to the reference database (Table 1), 10
were found to have a frequency of 70% or more in the ME/CFS
group. This includesCYP2D6, PRRT4, and PRSS56 at a frequency
over 90%, C14orf37,ANKDD1B, at over 80%, andGPBAR1, LHB,
ADAMTS19, VARS2, and CPLX2 at over 70%.

CYP2D6 (Cytochrome P450 2D6) is primarily expressed in
the liver, but also highly expressed in areas of the central nervous
system, including the substantia nigra, and is one of the most
important enzymes involved in the metabolism of xenobiotics
in the body. A significantly higher frequency of polymorphisms
CYP2D6 was found in ME/CFS study subjects with Fibromyalgia
than in controls and could differentiate these study subjects
s from study subjects with multiple chemical sensitivity
(27). CYP2D6 was found in the xenobiotics metabolism,
androgen and estrogen biosynthesis and metabolism, tyrosine
metabolism, codeine and morphine metabolism, oxidation
by cytochrome P450, metapathway biotransformation
phase I and II, and cytochrome P450—arranged by
substrate type pathways all of which belong to the hormone
related cluster.

PRSS56 (putative serine protease 56) is a serine protease that
has been implicated in human eye development (28) and in the
regulation of cerebellum activity of mice in exercise (29). It was
not found to be a member of any of the annotated pathways.

GPBAR1 (G Protein-Coupled Bile Acid Receptor) functions
as a cell surface receptor for bile acids and participates in the
production of intracellular cAMP and activation of a MAP
kinase signaling pathway. This receptor plays a big role in the
suppression of macrophage functions and regulation of energy
homeostasis by bile acids (30). Finding of the deleterious SNP
in GPBAR1 (Table 1) is in agreement with the results of the
recent study that showed disturbances in bile acid metabolism in
ME/CFS study subjects (31). GPBAR1 was not among any of the
pathways annotated.

LHB (luteinizing hormone beta polypeptide) is expressed in
the pituitary gland and is essential for spermatogenesis and
ovulation by stimulating the testes and ovaries to synthesize
steroids (32, 33). LHB was found among the GnRH signaling
pathway and ovarian steroidogenesis pathway.

ADAMTS19 is a member of the largeADAMTS (a desintegrin-
like and metalloprotease with thrombospondin type 1 motif)
family of metalloproteases (metal binding enzymes). ADAM
proteins are responsible for the proteolytic cleavage of many
transmembrane proteins and the release of their extracellular
domain. ADAMTS19 is considered as a possible candidate for
premature ovarian failure (34). Only the O-linked glycosylation
pathway was found to contain ADAMTS19.

VARS2 (valyl-tRNA synthetase 2, mitochondrial) is important
for the mitochondrial protein synthesis. Mutations in this gene
are associated with cardiomyopathy (35), microcephaly and
epilepsy (36), deficiency of the mitochondrial respiratory chain
complex I and oxidative phosphorylation deficiency (37). VARS2
was not found among any of the annotated pathways.
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FIGURE 1 | Pathway overlap networks. Pathways identified via over-representation analysis (nodes) connected by shared genes with SNPs (edges). Upper panel

gives total number of SNPs per pathway and likelihood of annotation (p-value). Lower panel shows pathways most affected by deleterious SNPs.

Frontiers in Pediatrics | www.frontiersin.org 4 May 2019 | Volume 7 | Article 206

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Perez et al. Genetic Predisposition for ME/CFS

TABLE 1 | 50 most frequent deleterious SNPs in ME/CFS cohort compared to

reference cohort.

Gene ID ME/CFS

frequency

Kaviar

frequency

Frequency

ratio

C-score

GPBAR1 rs199986029 7.73E-01 6.00E-06 1.29E+05 36.00

HLA-C rs41560916 6.27E-01 1.30E-05 4.82E+04 15.55

BCAM rs3810141 1.02E-01 6.00E-06 1.70E+04 33.00

AAAS rs150511103 1.93E-01 1.30E-05 1.49E+04 33.00

FGA rs146387238 1.93E-01 1.30E-05 1.49E+04 33.00

SLC25A13 rs80338723 1.93E-01 1.30E-05 1.49E+04 32.00

MYBPC3 rs112738974 1.93E-01 1.90E-05 1.02E+04 34.00

PEX6 rs112298166 1.93E-01 1.90E-05 1.02E+04 26.80

CYP2D6 rs1135830 4.54E-01 9.70E-05 4.68E+03 24.30

HLA-DRB1 rs112796209 4.15E-01 1.09E-04 3.81E+03 26.10

PLA2G4D rs147516345 1.59E-01 1.03E-04 1.55E+03 25.60

CYP2A6 rs5031017 3.86E-01 2.64E-04 1.46E+03 24.20

CYP2D6 rs199535154 9.43E-01 2.31E-03 4.08E+02 22.10

DDX51 rs201101053 1.59E-01 7.08E-04 2.25E+02 49.00

LHB rs34349826 7.42E-01 6.44E-03 1.15E+02 13.18

HLA-A rs1137110 1.38E-01 2.49E-03 5.57E+01 16.35

HLA-DRB1 rs1136756 4.39E-01 1.00E-02 4.38E+01 14.71

HLA-DRB1 rs9269744 4.05E-01 1.30E-02 3.12E+01 23.80

TPTE rs1810540 3.45E-01 1.16E-02 2.97E+01 35.00

HLA-DQA1 rs1061172 1.57E-01 1.33E-02 1.18E+01 15.33

C6orf183 rs399561 6.32E-01 6.46E-02 9.78E+00 15.17

C14orf37 rs3829765 8.15E-01 9.75E-02 8.36E+00 15.58

EFCAB4B rs11062745 2.79E-01 3.39E-02 8.25E+00 21.60

PLD5 rs2810008 5.54E-01 6.71E-02 8.25E+00 16.00

MUC19 rs11564109 2.40E-01 2.95E-02 8.15E+00 24.70

ARHGAP42 rs17647207 1.44E-01 1.82E-02 7.91E+00 23.30

ADAMTS19 rs30645 7.65E-01 9.75E-02 7.85E+00 18.74

LINC01171 rs11605546 2.30E-01 2.97E-02 7.73E+00 15.31

ANKDD1B rs34358 8.33E-01 1.09E-01 7.65E+00 45.00

ZBED5 rs2232919 1.20E-01 1.61E-02 7.45E+00 24.20

CTC-441N14.4 rs9112 6.03E-01 8.44E-02 7.15E+00 21.70

SLC35B2 rs3187 1.31E-01 1.85E-02 7.07E+00 11.89

PRSS41 rs61747737 1.15E-01 1.63E-02 7.06E+00 13.70

OTOG rs12422210 2.64E-01 3.76E-02 7.01E+00 15.38

MTCH2 rs1064608 4.57E-01 6.58E-02 6.95E+00 25.00

SULF1 rs6990375 5.12E-01 7.49E-02 6.83E+00 14.77

OTOG rs11024333 2.95E-01 4.34E-02 6.80E+00 10.26

ART3 rs14773 4.33E-01 6.41E-02 6.76E+00 14.51

PPHLN1 rs12658 3.63E-01 5.45E-02 6.66E+00 15.95

PRICKLE1 rs12658 3.63E-01 5.45E-02 6.66E+00 15.95

VARS2 rs2249464 7.47E-01 1.14E-01 6.56E+00 16.14

MORN2 rs3099950 2.19E-01 3.37E-02 6.50E+00 25.50

AC007956.1 rs2270424 3.68E-01 5.99E-02 6.15E+00 33.00

AREL1 rs2270424 3.68E-01 5.99E-02 6.15E+00 33.00

PRRT4 rs359642 9.50E-01 1.55E-01 6.12E+00 10.83

HUS1 rs2307252 1.67E-01 2.76E-02 6.05E+00 12.72

PRSS56 rs1550094 9.22E-01 1.62E-01 5.68E+00 16.32

C5orf52 rs10051838 2.40E-01 4.35E-02 5.52E+00 17.68

ZNHIT1 rs17319250 4.05E-01 7.41E-02 5.46E+00 10.74

CPLX2 rs3822674 7.05E-01 1.29E-01 5.46E+00 10.05

CPLX2 gene encodes the complexin 2 protein that participates
in neurotransmitter release by directly interacting with the
neuronal SNARE complex (38). CPLX2 is known to be
overexpressed in aging and downregulated by sleep deprivation
(39), and this shows a connection of CPLX2 expression to fatigue.
CPLX2was also not found among any of the annotated pathways.

The remaining genes PRRT4, C14orf37, and ANKDD1B are
obscure without much literature to support their function
and not found among any of the annotated pathways. It was
determined that PRRT4 (proline-rich transmembrane protein
4) showed biased expression in adult ovary, lung, adrenals,
CNS and whole brain, while C14orf37 showed bias in brain,
kidney, and ovary (ncbi.nlm.nih.gov). Little information was
found for ANKDD1B (ankyrin repeat and death domain
containing 1B).

Although SNPs in MYBPC3 and HLA genes have lower
frequencies in ME/CFS cohort (0.19 for MYBPC3 and 0.13-
0.44 for various HLA isoforms, respectively), these SNPs could
be used for subgrouping of ME/CFS study subjects in larger
studies because of their possible association with ME/CFS and
fatigue. Multiple deleterious SNPs inHLA genes are in agreement
with known impairment of the immune system in ME/CFS
(40). Increased frequency of HLA-DQA1 alleles and decreased
expression of HLA-DRB1 was found to be associated with
ME/CFS (41). MYBPC3 (myosin binding protein C, cardiac)
dysfunction is also associated with hypertrophic cardiomyopathy
and corresponding fatigue (42).

These results contrast with previous SNP studies in ME/CFS
(9, 43–45) which have found statistically significant associations
in multiple loci including in neuroendocrine effector and
receptor genes (43), TRP ion channels and AChRs (44, 45), and
genes regulating the HPA axis (9, 46). This difference is most
likely due to a combination of factors such as, (i) differences in
array types used between studies, (ii) difference in the methods
of analysis, (iii) differences between cohorts and the general
heterogeneity of ME/CFS, and (iv) small-effect variants due to
the relatively small sample sizes in each of these previous studies,
compared to our relatively large cohort.

To date, this is the largest study known using SNP data
and its affected pathways in combination with study subjects’
self-reported symptoms. The results generated from our study
will enhance the current understanding of ME/CFS and will
generate new studies, all of which will lead to a better method for
diagnosis and targeted genetic therapy. Replicative larger studies
are warranted to improve the reliability of the results.

While these results are novel there are some limitations to
the current analysis that are worth noting. First, there is no
control over the chip version used by 23andMe for genotyping.
This can result in loss of precision in the determination of study
subject genotyping signature. Second, this initial pilot analysis
was only conducted on SNPs in protein coding regions, miRNA
regions, and regions close to splice junctions. SNPs in non-coding
regions may be important in the cause of the illness. Finally,
this analysis does not include rare variants. Moving forward,
future studies based on this on-going collection of study subject
information will address these limitations, will increase sample
size, and provide more detailed statistical analyses. Building on
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this dataset we also aim to correlate these findings with our on-
going research on gene expression (47), miRNA expression and
DNA methylation (48).
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