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Abstract

Genome-wide analytical tools are now allowing the discovery of the design rules that govern
regulatory networks. Two recent studies in yeast have helped reveal the relatively small number
of transcription-factor control strategies that cells employ to maximize their regulatory options
using only a small number of components.
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One of the earliest benefits of the complete genome

sequences of major model organisms was the development

of hybridization-array technology - DNA microarrays, or

chips - which has enabled the mRNA levels for every gene in

a genome to be monitored simultaneously [1]. This gives a

picture of the transcriptome, the complete set of genes being

expressed in a given cell or organism under a particular set

of conditions. It should be possible to exploit such transcrip-

tome data together with information on regulatory interac-

tions to determine how cells regulate their gene-expression

programs. But most efforts to map genome-scale transcrip-

tion regulatory networks either have produced a network rel-

evant only to one growth condition [2] or have included all

previously described regulatory interactions, thus represent-

ing the total regulatory potential of the genome [3]. These

static representations miss the importance of environmental

transitions and ignore the time-dependence of regulatory

interactions. In other words, the context-dependence that is

intrinsic to functional genomics studies [4] has been lost

or ignored.

A complete and dynamic description of gene regulation

should enable us to answer a number of fundamental ques-

tions. What is the mechanistic basis of context-dependent

regulatory interactions? How can a relatively small number

of regulators respond to a huge variety of conditions? Can we

identify ‘design principles’ in the architecture of transcrip-

tional regulatory networks? What are the main functional

differences between the underlying regulatory networks of

the endogenous (developmental) and exogenous (sensory)

gene-expression programs?

Context-dependence of regulatory interactions
Two approaches have recently been applied to mapping the

gene regulatory networks of the budding yeast Saccha-

romyces cerevisiae in different physiological contexts. In the

first, Harbison et al. [5] determined which sites on yeast

chromosomes were occupied by which transcription factors

under a number of environmental conditions. This analysis

was performed for almost all of the yeast transcription

factors and used chromatin immunoprecipitation array tech-

nology (ChIP-chip). In this method [6], living yeast cells are

treated with a chemical cross-linking agent to ‘freeze’

protein-DNA interactions; chromatin fragments bearing

specific transcription factors are then isolated by immuno-

precipitation using antibodies against those factors. The

DNA sites bound by the factors are then identified by

hybridizing the DNA to a microarray. In this way, the

genome occupancy of each transcription factor was exam-

ined in yeast grown in a rich medium; the occupancy of

many of the regulators was also analyzed in at least one of 12



other environmental conditions [5]. In the second, purely

computational, approach, Luscombe et al. [7] inferred the

active part of the yeast regulatory network under five condi-

tions by integrating gene-expression data with a static tran-

scriptional network assembled from previously described

regulatory interactions.

The first approach [5] should help us understand the specific

functions of transcriptional regulators in terms of their

binding behavior. Four general regulatory strategies

emerged. In the first, termed ‘condition invariant’, the tran-

scription factor binds the same set of promoters under dif-

ferent environmental conditions, but its activity depends on

some additional requirements, such as ligand binding [8,9].

In the second, ‘condition enabled’, the transcription factor

does not bind promoters under one set of conditions but

binds a number of them in other conditions where it is

present. In the third, ‘condition expanded’, the factor binds a

core set of promoters under one condition but binds a larger

set in a different condition where its level increases. In the

fourth, ‘condition altered’, the factor binds different sets of

promoters under different conditions. In fact, more than

40% of the transcriptional regulators investigated were

found to alter their set of target genes in an environment-

specific way. 

If such a large proportion of transcriptional regulators

display context-dependent activity, it is obviously important

to determine the mechanisms by which their specificity is

changed. This can occur both through direct modifications

to the protein, such as phosphorylation, and through inter-

actions with other regulator proteins [10]. Thus, the regula-

tion of gene expression in a context-dependent manner may

rely, to a large extent, on the combinatorial action of tran-

scriptional regulators. Combinatorial regulation is not only

an economic way to express a large number of regulatory

states using only a limited number of regulators [11], but it

also enables the transcription machinery to perform

complex logical computations on the input signals [12,13].

The generality of combinatorial regulation in yeast is high-

lighted by the results of Luscombe et al. [7]: although many

individual regulators are used in more than one condition,

only a minor proportion of pairs of regulators participate in

multiple transcriptional programs.

Design principles of gene regulatory networks
Systems biology can be regarded as the application of engi-

neering principles to the understanding of biological

‘machines’. In this context, there have been attempts to

uncover the design principles of transcriptional networks

[3,14], although it should always be remembered that these

networks are the products of evolution, rather than design.

So far, it is mainly the functions of local structures, such as

network motifs (recurring network patterns) and regulatory

cascades (a set of transcription factors that regulate each

other sequentially), that have been investigated in detail.

There appear to be significant differences between regula-

tory networks that are exogenous (that is, responsive to

external stimuli such as stress) and those that are endoge-

nous (that is, internal to the cell itself, such as the regulators

of the cell cycle or meiosis). For instance, feed-forward

loops, in which transcription factor X regulates transcription

factor Y, with X and Y together regulating gene Z [15], repre-

sent a device to provide a rapid response in one direction -

for example, ON to OFF - but a delayed response in the

opposite direction - OFF to ON - thus enabling the circuit to

be sensitive to sustained rather than transient signals. Feed-

forward loops are found to be prevalent in, but not exclusive

to, endogenous expression programs [7].

Luscombe et al. [7] report that not only does the frequency

of certain motifs differ between endogenous and exogenous

regulatory networks, but also the length of regulatory cas-

cades varies between these two contexts. It has been shown

theoretically [16] that cascades optimized for both rapid

turn-on and turn-off kinetics have a response time propor-

tional to the number of steps in the pathway, resulting in

slow responses for multi-step cascades. As expected, cas-

cades with short path lengths prevail in exogenous regula-

tory networks, presumably reflecting the need to achieve

rapid and reversible responses [16]. In contrast, endogenous

networks with long cascades regulate multi-step processes

that proceed at a slower rate and for which fast response

times may be less important. Moreover, many endogenous

programs (for example, developmental pathways) are irre-

versible and need not be optimized for fast reversible

changes [16].

Even if all transcription-factor-promoter interactions were

mapped with high precision under a large number of condi-

tions, we would still be far from having a complete model of

gene regulation. First, information on the type (positive or

negative) and kinetics of regulatory interactions is generally

lacking; thus in order to understand the dynamic behavior of

a transcriptional network it should be parameterized so as to

add this kind of information [17]. Second, the functional

activity of transcription factors is not necessarily regulated at

the transcriptional level or through interactions with other

transcription factors. Ligand binding [8,9] and post-transla-

tional modifications [10] could explain how certain regulators

change their activity or specificity in a context-dependent

manner. Third, the availability of promoters can also be regu-

lated by chromatin structure, which in turn is modulated by

proteins without sequence-specific DNA-recognition proper-

ties. Although a recent study investigated the genome-wide

occupancy of certain chromatin regulators [18], it is clear that

we need to learn more about how these are recruited to spe-

cific genomic regions with the help of transcription factors.

Finally, in most cases, the ultimate signal to start a gene-

expression program must come from the environment (in the

widest sense of the term) and not from the transcriptional
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network itself. Thus, it is essential to integrate the outputs of

signaling networks with the inputs of gene regulatory net-

works to build a more complete representation of the cell’s

information processing machinery. 
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