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Abstract 

Background:  Although metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease 
worldwide, the exact molecular mechanism of MAFLD progression remains unknown. In the present study, Tandem 
Mass Tag-labeled quantitative proteomic technology was used to elucidate the protein expression patterns of liver 
tissues in the progression of MAFLD, providing new potential therapeutic targets of it.

Methods:  Five 6-week-old male C57BL/6 mice were fed with high fat diet (HFD) for 22 weeks to establish the MAFLD 
mouse models. Five C57BL/6 mice of the same age were fed with normal diet (ND) and taken as controls. Mice serum 
were sampled for biochemical tests, and livers were isolated for histopathological examinations. Six mouse liver sam-
ples (three from each group) were performed for proteomic analysis. Differentially expressed proteins were defined 
using fold change of > 1.5 or < 0.67 and p value < 0.05 as thresholds. Bioinformatic analysis was used to identify the 
hub proteins. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), Gene Expression Omnibus dataset, west-
ern blotting and immunohistochemistry were used to validate the expression of identified hub proteins.

Results:  After 22 weeks on HFD diet, all mice developed MAFLD demonstrated by histopathological examination. 
Mouse body weights, liver weights, serum alanine transaminase and aspartate transaminase levels were significantly 
higher in the HFD group than ND group. Proteomics technology identified 4915 proteins in the mouse livers, among 
which 71 proteins were differentially expressed. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed 
that majority of the differentially expressed proteins were involved in the peroxisome and peroxisome proliferator-
activated receptor signaling pathway, as well as biosynthesis of unsaturated fatty acids. Protein–protein interac-
tion analysis showed that these differentially expressed proteins interacted with each other and formed a complex 
network. Ten hub proteins were identified and validated using RT-qPCR. Five of these proteins were validated in the 
Gene Expression Omnibus dataset. Finally, Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase protein was 
validated in mouse liver tissue samples using western blotting and immunohistochemistry.
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Introduction
Metabolic associated fatty liver disease (MAFLD), for-
merly named non-alcoholic fatty liver disease (NAFLD) 
[1], is a rapidly growing metabolic disease associated 
with type-2 diabetes mellitus and obesity; it is currently 
the most common chronic liver disease worldwide [2]. 
Epidemiological studies and prediction models show that 
the overall prevalence of MAFLD in the general popula-
tion is about 25–30% [2, 3]; it is projected to increase to 
33.5% by 2030 [4]. The prevalence of this disease could 
even increase to above 50% in the global diabetes popula-
tion [5]. MAFLD is a heterogeneous disease comprising 
of simple fatty liver, metabolic associated steatohepatitis 
(MASH), previously known as non-alcoholic steatohepa-
titis (NASH), and fatty liver related cirrhosis. MASH, 
the later stage of MAFLD [6] is characterized by a varied 
degree of hepatocellular ballooning, lobular inflamma-
tion and liver fibrosis, which is more likely to progress 
into liver cirrhosis, and even hepatocellular carcinoma 
[7].

The pathogenesis of MAFLD is complex, and the 
exact mechanism of MAFLD development is still largely 
unknown. The traditional ‘two-hit’ hypothesis holds that 
a ‘second-hit’ (oxidant stress, etc.) promotes the progres-
sion of MAFLD in the setting of hepatic steatosis as the 
‘first-hit’ [8]. However, in the recent years, it has been 
generally accepted that the onset and progression of 
MAFLD are a result of multiple factors, including genetic 
susceptibility, diet, insulin resistance, and intestinal 
microbiota disorders [9]. Currently, the main treatments 
for MAFLD are weight loss and physical exercise, with 
no effective drugs yet approved for treating MASH [10]. 
Therefore, a better understanding of the pathogenesis of 
MAFLD will help find novel therapies for it.

Over the recent years, high-throughput quantitative 
proteomics have been widely applied to analyze protein 
expression patterns and identify novel molecular mark-
ers for diseases. Proteomics aims to study the composi-
tion of proteins in cells, tissues, and organisms, and their 
dynamic changing laws. Potential novel protein mole-
cules associated with diseases can be identified by com-
paring the protein expression profiles between healthy 
individuals and patients; such a comparison provides 
new insights into the molecular mechanism of disease 
progression and allows for the identification of new tar-
gets for drug designing [11, 12]. An in vitro study carried 
out by Xia et  al. [13] using iTRAQ-labeled proteomics 

technology found that heat shock protein 27 (SHP27) 
plays a key role in the free fatty acid induced steatosis cell 
model in LO2 cell line; they also identified that targeting 
SHP27 exhibited a protective effect on hepatocyte injury. 
Yuan et al. [14] compared the protein expression profiles 
between individuals with metabolically healthy obesity 
and MAFLD to identify 216 differentially expressed pro-
teins (DEPs); of these, fibulin-5 and short-chain dehy-
drogenase/reductase family member 2 (DHRS2) protein 
were validated using western blotting and immunohisto-
chemistry in the study. Nevertheless, limited proteomics 
studies have been carried out on MAFLD.

In the present study, Tandem Mass Tag (TMT)-based 
quantitative proteomics technology was employed to 
identify DEPs that might be involved in MAFLD progres-
sion. The potential functions of DEPs were then analyzed, 
followed by the construction of an interaction network 
of these proteins. Finally, ten hub proteins, interact-
ing with a larger number of other proteins in a network 
and playing a key role in the development of diseases, 
were identified, which were Enoyl-CoA hydratase and 
3-hydroxyacyl CoA dehydrogenase (EHHADH), Hydrox-
ysteroid 17-beta dehydrogenase 4 (HSD17B4), Acyl-CoA 
oxidase 1 (ACOX1), Acetyl-Coenzyme A acyltransferase 
1B (ACAA1B), Carnitine O-acetyltransferase (CRAT), 
Acyl-CoA thioesterase 3 (ACOT3), Acyl-CoA thioester-
ase 4 (ACOT4), Peroxisomal biogenesis factor 11 alpha 
(PEX11A), ATP binding cassette subfamily D member 3 
(ABCD3), and cytochrome P450, family 2, subfamily b, 
polypeptide 9 (CYP2B9). These proteins were validated 
using Real-Time Quantitative Polymerase Chain Reac-
tion (RT-qPCR) and Gene Expression Omnibus (GEO) 
dataset. EHHADH protein was further validated using 
western blotting and immunohistochemistry. This study 
will provide valuable insights into the pathogenesis of 
MAFLD at the protein level and identify novel targets for 
the treatment of it.

Material and methods
Animal experiments
4-week-old male C57BL/6 mice were purchased from 
Shanghai SLAC Laboratory Animal Co. Ltd. (Shanghai, 
China) and housed in specific pathogen free conditions 
on a 12 h light/dark cycle with free access to water and 
food. Following acclimatization to the housing envi-
ronment for 2  weeks, the mice were fed with high fat 
diet (n = 5, HFD group, D12492, Research Diet, New 

Conclusion:  Our data showed that lipid metabolism-related pathways are closely associated with the development 
of MAFLD. The identified hub proteins might be novel targets for treating MAFLD.
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Brunswick, USA, containing 60% kcal fat, 20% kcal car-
bohydrate, and 20% protein) for 22  weeks to establish 
MAFLD mouse models. The control mice were fed with 
standard normal diet (n = 5, ND group) for 22  weeks. 
Body weights of mice from both groups were recorded 
every week. At the end of the study, the mice were anes-
thetized by intraperitoneally injecting 1% pentobarbital 
sodium solution at a dose of 50 mg/g. The mice were sub-
sequently euthanized by exsanguination after overnight 
fasting. Liver samples were collected and stored in liquid 
nitrogen for histological evaluation and TMT-based pro-
teomics analysis. All animal experiments were performed 
with approval from the Institutional Animal Care and 
Use Committee of Ruijin Hospital, Shanghai Jiaotong 
University School of Medicine.

Liver histological evaluation
Liver tissues were fixed in 4% neutral-buffered formalin, 
embedded in paraffin, and then subjected to hematoxy-
lin and eosin (H&E) staining for assessment of liver his-
tology. MAFLD activity score (NAS) was calculated by 
a sum of scores of steatosis, lobular inflammation and 
hepatocyte ballooning, as described previously [15]. Oil 
Red O staining was performed on the frozen sections to 
evaluate steatosis in the liver lobes using standard meth-
ods [16]. A blind evaluation of the liver histology was car-
ried out by two experienced pathologists.

Sample preparation and TMT labeling
The total proteins were extracted from perfused liver tis-
sues as described previously [17]. Briefly, the perfused 
liver tissues were grinded into cell powder using liquid 
nitrogen. The samples were sonicated in four volumes of 
lysis buffer (8 M urea, 1% Protease Inhibitor Cocktail and 
2  mM Ethylene Diamine Tetraacetic Acid) three times 
on ice using a high intensity ultrasonic processor. After 
centrifugation at 12,000g for 10  min at 4  °C, the super-
natant was collected and the protein concentrations 
were determined using a BCA kit (Beyotime Biotechnol-
ogy, Shanghai, China), according to the manufacturer`s 
instructions. 150  μg of protein samples were reduced 
using 5  mM dithiothreitol for 30  min at 56  °C and 
alkylated using 11 mM iodoacetamide for 15 min at room 
temperature followed by dilution with Tetraethylammo-
nium bromide (TEAB). The first digestion was carried 
out overnight using trypsin at a trypsin-to-protein mass 
ratio of 1:50, followed by a second digestion for 4 h at a 
trypsin-to-protein mass ratio of 1:100. Finally, the pep-
tide was desalted using the Strata X C18 SPE column 
(Phenomenex, California, USA), vacuum-dried, recon-
stituted in 0.5  M TEAB, and processed using the TMT 
kit (TMT 10 plex™ Isobaric Label Reagent Set, Thermo 

Fisher Scientific, USA), according to the manufacturer’s 
protocol.

HPLC fractionation, LC–MS/MS analysis, database search, 
and bioinformatics analysis
The tryptic peptides were separated into 60 fractions by 
high pH reverse-phase High Performance Liquid Chro-
matography (HPLC) using the 300Extend C18 column 
(5  μm particles, 4.6  mm ID, 250  mm length; Agilent, 
California, USA) with a gradient of 8–32% acetonitrile 
(pH 9.0) over 60 min, then combined into 9 fractions and 
dried by vacuum centrifuging. Afterward, the peptides 
were analyzed using LC–MS/MS on QExactive™ Plus 
(Thermo Fish Scientific) coupled to an EASY-nLC 1000 
UPLC system (Thermo Fisher Scientific). Intact peptides 
were detected at a resolution of 70,000 and then selected 
for MS/MS with an NCE setting of 28. The fragments 
were detected at a resolution of 17,500. MaxQuant search 
engine (v.1.5.2.8) was used to process the MS/MS data. 
Tandem mass spectra were searched against SWISS-
PROT database (mouse) concatenated with reverse decoy 
database. Trypsin/P was used as the cleavage enzyme 
allowing up to two missing cleavages. The mass tolerance 
for precursor ions in First search and in Main search was 
set as 20 ppm and 5 ppm, respectively, and for fragment 
ions was set as 0.02 Da. FDR was set < 1% and minimum 
score for peptides was set at > 40. Gene ontology (GO) 
annotation was performed using Uniprot-GOA database 
(https​://www.ebi.ac.uk/GOA/). DEPs were classified by 
GO annotation based on the following three categories: 
cellular component (CC), molecular function (MF), and 
biological process (BP). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database (https​://www.kegg.jp) was 
used to identify the protein pathways. WoLF PSORT, a 
subcellular localization prediction software, was used to 
predict the subcellular localization [18].

RNA extraction and RT‑qPCR
Total RNA was extracted from mouse livers using TRI-
ZOL reagent (Beyotime Biotechnology). 1  μg of total 
RNA was reverse-transcribed to cDNA using the Prime-
Script™ RT Master Mix (Takara Bio, Japan). RT-qPCR 
was performed using the QuantNova SYBR Green PCR 
kit (QIAGEN, Germany) on the Light Cycler® 96 real-
time PCR system (Roche, Switzerland). The primers 
are listed in Additional file  1. The relative expression of 
mRNA was calculated using the 2−ΔΔCt method.

Verification of proteins by western blot
About 100  mg of liver tissues were homogenized 
in 1  ml of Radio-Immunoprecipitation Assay lysis 
buffer (P0013B, Beyotime Biotechnology, China) and 
phenylmethanesulfonyl fluoride (ST506, Beyotime 

https://www.ebi.ac.uk/GOA/
https://www.kegg.jp
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Biotechnology, China) with an automatic grinder (JXF-
STPRP024, Shanghai Jingxin Industrial development 
Co., Ltd, China), and the lysates were centrifuged at 
14,000 rpm for 15 min at 4 °C. The supernatant was col-
lected. The total protein concentration in the supernatant 
was quantified using a BCA protein assay kit (Beyotime 
Biotechnology, China). The total protein (20 μg/sample) 
was separated with on 10% sodium dodecylsulfate-pol-
yacrylamide gel electrophoresis (SDS-PAGE), and then 
transferred to polyvinylidene difluoride (PVDF) mem-
branes. The membranes were blocked with 5% milk in 
PBS with 0.1% Tween-20 (PBST) for 2 h, and then incu-
bated with specific primary antibodies against EHHADH 
(sc-393123, Santa cruz Biotechnology) overnight at 4 °C, 
followed by incubation with a horseradish peroxidase-
conjugated secondary antibody for 1 h. GADPH protein 
(AF0006, Beyotime Biotechnology) was used as internal 
control. Protein bands were visualized using enhanced 
chemiluminescence (ECL) kit (Tanon Technology Co., 
Ltd, Shanghai, China).

Immunohistochemistry analysis
Formalin-fixed liver tissue samples were performed with 
immunohistochemistry analysis. Briefly, mouse liver sec-
tions were deparaffinized, repaired with 0.01  M sodium 

citrate-hydrochloric acid buffer solution, and incubated 
with rabbit anti-EHHADH primary antibody (sc-393123, 
Santa Cruz Biotechnology, 1:200 dilution) at 4  °C over-
night. The incubated liver sections were treated with per-
oxidase-conjugated secondary antibody (111-035-003, 
Jackson ImmunoResearch, USA) at room temperature, 
stained with diaminobenzidine for 3–5  min, and coun-
terstained with hematoxylin. The liver sections were then 
observed under a light microscope.

Statistical analysis
Data are expressed as mean ± standard deviation. Two-
tailed student’s t test was used to analyze the differences 
between two groups. p value less than 0.05 was consid-
ered statistically significant. Statistical analysis was per-
formed using Graph Pad Prism 8 (version 8.2.1).

Results
Histopathological evaluation of livers from mice fed 
with high fat diet or normal diet
Mice in the HFD group showed a faster body weight 
gain compared to the control group; there was a signifi-
cant difference (32.0 ± 3.1 g vs. 25.7 ± 1.5 g, p = 0.003) in 
the body weights between the two groups from the 10th 
week onwards (Fig. 1a). After 22 weeks on HFD diet, all 

Fig. 1  HFD promotes the development of MAFLD. a Body weight gain of mice fed with HFD or ND. b Mouse body weights, liver weights, liver/body 
ratios, serum liver tests, and NAS scores of the HFD and ND groups, measured in the 22th week. c Gross morphology, H&E and Oil red O staining of 
livers from HFD- or ND-fed mice. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.000
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mice developed MAFLD. The mean body weight of the 
HFD-fed mice was 47.3 ± 3.5  g, which was significantly 
higher than that of the controls (31.6 ± 2.4  g, p < 0.001). 
Moreover, HFD diet also led to a significant increase in 
liver weight. Mouse liver weights and liver/body ratios 
were significantly higher in the HFD group than the 
control group (0.9 ± 0.11 g vs. 2.1 ± 0.29 g, p < 0.001 and 
3.0 ± 0.27% vs. 4.4 ± 0.69%, p = 0.004, respectively). As 
expected, HFD also elevated the serum alanine transami-
nase and aspartate transaminase levels compared with 
ND (p < 0.001). The NAS scores of the HFD group were 
higher than those of the control group [1(0–1) vs. 3(3–4), 
p < 0.001] (Fig.  1b). H&E staining showed that the liv-
ers of mice fed with HFD, but not of control mice, were 
characterized by significant macro-vesicular steatosis of 
hepatocytes, accompanied by slight ballooning degenera-
tion and lobular inflammation. Oil red O staining con-
firmed the accumulation of fat drop in the hepatocytes in 
the HFD group (Fig. 1c).

Identification and quantification of differentially expressed 
proteins related to MAFLD
A total of 4915 proteins were identified with at least one 
unique peptide at a false discovery rate of < 1%, of which 
83.4% (4101/4915) were quantified on TMT ion channels; 
About 50% (2291/4101) of these proteins were quantified 
by more than five peptides. Detailed information about 

the identified proteins, including protein accession, pro-
tein description, Mascot score, coverage, and number of 
matched peptides, have been listed in Additional file  2. 
When the proteins with p value < 0.05 were considered 
as DEPs, a total of 666 proteins were identified, among 
which 349 proteins were up-regulated and 317 proteins 
down-regulated. Upon using fold change of > 1.5 or < 0.67 
and p value < 0.05 as thresholds to define DEPs, 71 pro-
teins were identified, among which 48 proteins were up-
regulated, while 23 proteins were down-regulated in the 
HFD-fed mice, compared to the controls (Fig.  2a). The 
protein expression values of the 71 DEPs normalized 
with z-scores have been shown in a heatmap (Fig. 2b).

Subcellular localization, GO and KEGG pathway 
enrichment analysis of differentially expressed proteins
71 DEPs with fold change of > 1.5 or < 0.67 and p value 
< 0.05 identified above were subjected to further bioin-
formatic analysis. Up-regulated proteins were mainly 
localized in the plasma membrane (27%), cytoplasm 
(23%), and mitochondria (23%), while down-regulated 
proteins were mainly localized extracellularly (31%) or 
in the endoplasmic reticulum (26%) and plasma mem-
brane (18%) (Fig. 3a, b). GO annotation analysis showed 
that most of the enriched proteins were related to per-
oxisome, microbody, and endoplasmic reticulum mem-
brane in the CC category. In the BP category, the highly 

Fig. 2  Differentially expressed proteins between HFD and ND groups. a Volcano plot showing the DEPs. Red and green dots represent up-regulated 
and down-regulated proteins, respectively, while black dots represent proteins that did not change significantly. b Heat map showing DEPs. The 
expression values of proteins were normalized with z-scores. Blue and red colors indicate low and high expression of proteins, respectively
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enriched proteins were associated with lipid metabolic 
process, cellular lipid metabolic process, fatty acid meta-
bolic process and very long-chain fatty acid metabolic 
process. In the MF category, the enriched proteins were 
involved in oxidoreductase activity, iron ion binding, 

odorant binding and pheromone binding (Fig.  4). The 
results of KEGG pathway analysis indicated that majority 
of the DEPs were involved in several lipid metabolism-
related pathways, including peroxisome, PPAR signal-
ing pathway, biosynthesis of unsaturated fatty acids, and 

Fig. 3  Subcellular localization of 71 differentially expressed proteins. a Subcellular localization of upregulated DEPs. b Subcellular localization of 
downregulated DEPs

Fig. 4  GO analysis of 71 differentially expressed proteins. DEPs are classified into biological process, cellular component and molecular function
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some other pathways (Fig.  5). We then performed GO 
and KEGG pathway analysis with 666 proteins with p 
value < 0.05. The results of GO analysis showed that lipid 
metabolism associated processes, such as lipid metabolic 
process, fatty acid metabolic process, etc., were enriched 
in the BP category. Moreover, lipid metabolism-related 
pathways, such as biosynthesis of unsaturated fatty acids, 
PPAR signaling pathway, were also enriched in KEGG 
pathway analysis. The results of GO and KEGG pathway 
analysis with 666 proteins with p value < 0.05 are shown 
in Additional file 3 in more detail.

Protein–protein interactions network analysis 
of differentially expressed proteins and identification 
of hub proteins
A PPI network was constructed using the online func-
tional protein association networks database STRING 
(version 11.0, https​://strin​g-db.org/) [19]. Active inter-
action sources including ‘Textmining’, ‘Experiments’, 
‘Databases’, ‘Co-expression’, ‘Neighborhood’ and ‘Co-
occurrence’ were selected. 71 DEPs identified above were 
performed for PPI network analysis with the minimum 
required interaction score set as 0.4. As a result, the con-
structed network included a total of 71 nodes and 168 

edges with an average node degree 4.73 and a PPI enrich-
ment p value below 0.001 (Fig.  6a). MCC algorithm of 
CytoHubba [20] plug-in in Cytoscape 3.7.2 [21] was used 
to identify hub proteins from the network. Finally, top 
10 proteins (EHHADH, HSD17B4, ACOX1, ACAA1B, 
CRAT, ACOT3, ACOT4, PEX11A, ABCD3, and 
CYP2B9) ranked in terms of the MCC algorithm were 
considered as hub proteins (Fig. 6b). We then performed 
PPI network analysis using the 666 proteins with p value 
< 0.05 and the minimum required interaction score was 
set as 0.7, the constructed network had 663 nodes and 
1818 edges with PPI enrichment p value < 1.0 × 10–16 
(Additional file 4). Further analysis using cytoscape plug-
in CytoHubba identified top 20 hub proteins, includ-
ing EHHADH, HSD17B4, ACOX1, CRAT, ACOT3 and 
ACOT4 (Additional file 5).

Validation of identified differentially expressed proteins 
using RT‑qPCR
The expression levels of identified ten hub proteins 
with fold change of > 1.5 or < 0.67 and p value < 0.05 
were validated at the transcriptional level using RT-
qPCR analysis. In the TMT-based proteomic analysis, 
all these proteins were up-regulated in the HFD group 

Fig. 5  KEGG pathway enrichment analysis of 71 differentially expressed proteins. Size of circles indicates the gene number. Color of the circles 
represents − log10(p value)

https://string-db.org/
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compared to ND. At the transcriptional level, RT-qPCR 
analysis results showed that nine of the genes encod-
ing for the hub proteins identified above were signifi-
cantly up-regulated in the HFD group as compared to 
the ND group (p < 0.05), consistent with the results of 

TMT-based proteomics results. However, one gene 
(encoding for ABCD3), found to be up-regulated in the 
HFD group in the proteomics analysis, did not show 
significant differences between the two groups when 
analyzed using RT-qPCR (Fig.  7). The gene primers 
used for the RT-qPCR analysis are listed in Additional 
file 1.

Fig. 6  Protein–protein interaction network of 71 differentially expressed proteins and hub proteins. a Protein–protein interaction network of DEPs. 
b Protein–protein interaction network of identified hub proteins. Tangerine color represents proteins ranked higher, while yellow color represents 
proteins ranked lower. Lines between two nodes represent proteins interactions

Fig. 7  Validation of identified ten hub proteins using RT-qPCR. HFD high-fat diet group, ND normal diet group. *p < 0.05, **p < 0.01, ***p < 0.001
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Validation of the hub proteins in biopsy‑proven MAFLD 
patients
The online GEO microarray expression profiling data-
set GSE89632 was used to further validate the hub pro-
teins identified in the TMT-based proteomic analysis. 
GSE89632 dataset contains data from 24 healthy controls 
and 39 biopsy-proven MAFLD patients. Seven genes 
(EHHADH, ACOX1, HSD17B4, ABCD3, CRAT​, ACOT4 
and PEX11A) were found to be included in the GSE89632 
dataset. Further analysis showed that the expression val-
ues of EHHADH, ACOX1, ABCD3 ACOT4 and PEX11A 
genes were significantly up-regulated in the MAFLD 
patients compared to the healthy control (p < 0.05), con-
sistent with the proteomics and RT-qPCR results from 
mouse models in the present study. The expression values 
of HSD17B4 and CRAT​ genes, on the other hand, were 
not significantly different between MAFLD patients and 
healthy controls (Fig. 8).

Assessment of EHHADH using western blotting 
and immunohistochemistry
Based on the bioinformatics analysis, EHHADH pro-
tein was one of the top identified hub proteins, a result 
confirmed using RT-qPCR and GEO dataset analyses. 

We decided to further validate EHHADH in the mouse 
liver samples using western blotting and immunohis-
tochemistry. Both western blotting and immunohisto-
chemistry results confirmed a significant up-regulation 
of EHHADH in HFD-fed mice at the protein level com-
pared to the controls, thus validating the results of the 
TMT-based proteomics (Fig. 9a, b).

Discussion
The present study investigated the proteomic patterns 
in liver tissues from mice with HFD-induced MAFLD 
using TMT-based quantitative proteomics technology 
to elucidate the molecular mechanism of MAFLD pro-
gression. We identified and quantified 71 liver tissue 
proteins that were differentially expressed between the 
HFD and ND groups. Further bioinformatics analysis 
revealed that these proteins were involved in many meta-
bolic processes. Ten hub proteins were identified from 
the PPI network, which were further validated using RT-
qPCR. Finally, the most promising of the hub proteins, 
EHHADH was validated using western blotting and 
immunohistochemistry.

A recent study comparing the protein expression pat-
terns between subjects with metabolic healthy obesity 

Fig. 8  Expression levels of ten hub proteins included in the GEO dataset. HC healthy control, MAFLD metabolic associated fatty liver disease. 
*p < 0.05, **p < 0.01, ***p < 0.001
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and MAFLD found that the PPAR signaling pathway 
was the top up-regulated pathway in the KEGG pathway 
analysis [14], consistent with our results. PPARs are a 
subfamily of ligand-inducible transcription factors, con-
sisting of three members: PPAR-α, PPAR-β, and PPAR-γ. 
The PPAR signaling pathway plays a critical role in the 
maintenance of metabolic homeostasis, lipid and glu-
cose metabolism, adipogenesis, and inflammation [22], 
and has been targeted in the development of drugs for 
the treatment of MAFLD, such as PPARγ agonist piogl-
itazone [23]. In a randomized control study, pioglitazone 
was found to reduce the serum aminotransferase levels, 
hepatic steatosis, and lobular inflammation [24]. A recent 
study showed that pemafibrate, a selective PPARα ago-
nist, could prevent MASH development, although no 
reduction was seen in the hepatic triglyceride content 
[25]. However, a study conducted by Francque et al. [26] 
showed that the gene expression of PPARα in NASH 
patients is negatively correlated with the severity of stea-
tosis, ballooning, and fibrosis. Such seemingly contradic-
tory results indicate that possibly PPARs play different 
roles in different stages of MAFLD, or that the results at 
the protein level were not always consistent with those at 
the transcriptional level.

In the present study, we identified four interest-
ing potential candidate proteins that might promote 
MAFLD development: EHHADH, ACOX1, ACOT4, 

and PEX11A. Of these, EHHADH was higher ranked in 
terms of the MCC algorithm, and we further validated 
it using RT-qPCR, GEO dataset, western blotting and 
immunohistochemistry. We believe that further stud-
ies should focus on the function of EHHADH in the 
progression of MAFLD. It is worth noting that all these 
proteins are closely associated to the PPAR signaling 
pathway. EHHADH protein, encoded by Ehhadh gene, 
is a bifunctional enzyme that is one of the four enzymes 
involved in the classical peroxisomal fatty acid beta-
oxidation pathway [27]. Limited studies have focused 
on the role of EHHADH protein in the progression of 
MAFLD. A previous study conducted by Banasik et al. 
[28] also identified Ehhadh as a hub gene for MAFLD 
using a bioinformatics approach. EHHADH could regu-
late the expression levels of PPARα according to a given 
metabolic condition by binding to PPARα, thus influ-
encing MAFLD progression. ACOX1, a target protein 
of PPARα, is the rate-limiting enzyme of fatty acid oxi-
dation and could be used as an indicator for mitochon-
drial oxidation activity [29]. The upregulated expression 
of Acox1 gene results in increased fatty acid oxidation 
in the mitochondria. However, previous in  vitro stud-
ies [30, 31] found the expression levels of Acox1 to 
be downregulated in palmitate-treated HepG2 cells. 
The possible reason for this could be that the expres-
sion levels of Acox1 are different at different stages of 

Fig. 9  Verification of expression of EHHADH protein expression using western blotting (a) and immunohistochemistry (b)



Page 11 of 12Li et al. Nutr Metab (Lond)           (2020) 17:97 	

MAFLD, while the in vitro cell models do not represent 
all stages of MAFLD.

In addition, we also performed GO analysis to explore 
the functions of the DEPs. As expected, several GO 
terms including lipid metabolic process, cellular lipid 
metabolic process, fatty acid metabolic process, and very 
long-chain fatty acid metabolic process were found to be 
significantly enriched. Of note, most of these DEPs were 
associated with processes of lipid metabolism, indicating 
that lipid metabolism in the hepatocytes plays a critical 
role in the process of MAFLD development. Further-
more, KEGG analysis also identified some other signal 
pathways, such as biosynthesis of unsaturated fatty acids, 
steroid hormone biosynthesis, retinol metabolism, etc. 
These pathways might also contribute to development of 
MAFLD and could be focused upon in the future studies.

In clinical practice, ultrasonography is commonly used 
to diagnose MAFLD, but liver biopsy remains the ‘gold 
standard’ for identifying the presence of NASH, as no 
specific biomarker for NASH diagnosis. Our results sug-
gest that these hub proteins may act as a panel to identify 
NASH from MAFLD patients. In addition, as there are 
no approved drugs for treating NASH currently, targeting 
the hub proteins or pathways might develop potentially 
new therapeutics for NASH.

Despite the above findings, there are still some limita-
tions in the present study. First, bioinformatics analysis 
demonstrated only an association between the identified 
proteins and the phenotype of MAFLD. Further studies 
are needed to elucidate the exact molecular mechanism 
of these proteins in the development of MAFLD. Second, 
TMT-based proteomics technology yielded only ~ 4000 
proteins in our study; In addition, only 71 DEPs were 
identified between the HFD and control groups when 
the fold-change threshold was set as > 1.5 or < 0.67. These 
numbers were found to be insufficient for proteomics 
profile analysis. Although a lower fold-change threshold 
could have yielded more DEPs, we chose fold change of 
> 1.5 or < 0.67 to enable more convincible results. Third, 
although only six mouse liver samples (three from each 
group) were included in the TMT-based proteomics 
analysis, these samples, different from human liver sam-
ples, had high homogeneity and reliability and were suf-
ficient to detect the DEPs between the two groups.

Conclusion
Our study provides a comprehensive analysis of pro-
tein expression patterns involved in the development of 
MAFLD. These results might provide new insights into 
understanding the mechanism of MAFLD progression, 
and help in the identification of potential targets for 
treatment of MAFLD.
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