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Universality of slip avalanches in flowing granular
matter
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The search for scale-bridging relations in the deformation of amorphous materials presents a

current challenge with tremendous applications in material science, engineering and geology.

While generic features in the flow and microscopic dynamics support the idea of a universal

scaling theory of deformation, direct microscopic evidence remains poor. Here, we provide

the first measurement of internal scaling relations in the deformation of granular matter.

By combining macroscopic force fluctuation measurements with internal strain imaging, we

demonstrate the existence of robust scaling relations from particle-scale to macroscopic flow.

We identify consistent power-law relations truncated by systematic pressure-dependent

cutoff, in agreement with recent mean-field theory of slip avalanches in elasto-plastic

materials, revealing the existence of a mechanical critical point. These results experimentally

establish scale-bridging relations in the flow of matter, paving the way to a new universal

theory of deformation.
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U
nifying scaling relations in the deformation of solids have
been a long-standing challenge of material science and
engineering. Such universal scaling relations are very

attractive, as they provide a naturally scale-bridging framework
connecting macroscopic stress–strain response to microscopic
single-particle fluctuations in a single theory of deformation.
Recent work on amorphous materials highlights generic
features of the flow, mechanics and microscopic dynamics of a
broad range of materials from metallic glasses to soft glasses1–5

to granular6–8 and crystalline9–11 matter, lending credence to
the idea of a universal theory of deformation12. While scaling
approaches13 that describe the scale-free flow of materials
have been developed recently, direct experimental proof of
an underlying internal scaling of strain over the full-length-scale
range remains elusive. This would require linking the macro-
scopic applied force and its fluctuations to the microscopic
internal fluctuations of plasticity on length scales from system size
down to particle scale, a highly challenging task prohibitively
difficult in conventional atomic solids.

Granular and soft materials offer the advantage that the
internal flow field can be imaged conveniently with optical
techniques, providing access to important microscopic quantities
such as internal displacements and strain fields, which are hardly
accessible in molecular systems. In particular, granular matter
with particle sizes of the order of millimetres allows the motion of
individual particles to be tracked accurately using bulk imaging
techniques14–16. At the same time, macroscopic stress–strain
measurements allow the applied force and its fluctuations to be
monitored with exquisite time resolution. The combination of
both offers a unique experimental opportunity to bridge length
scales from single particle to macroscopic scale, making granular
materials prime candidates to elucidate generic, scale-bridging
aspects of flow.

A recent mean-field model13 provides a universal description of
material flow in terms of slip avalanches coupled by their induced
internal elastic field: the material slips locally at weak spots, which
are elastically coupled to other weak spots throughout the material
resulting in highly correlated slip avalanches. The resulting scale-
bridging model offers a promising generic framework to bridge
particle-scale dynamics to macroscopic stress–strain response.
Recent highly sensitive force measurements on crystalline
nanopillars17 and amorphous metals7 have indeed detected
signatures of these scaling relations in the applied force
fluctuations; however, the crucial internal scaling relations
bridging down to microscopic displacements remain
experimentally elusive, and the validity of this generic concept
remains unclear. Furthermore, the universality of this approach,
that is, its generality and applicability to a wide range of materials
including soft and granular matter remains an open issue.

Here, we provide the first direct experimental measurement of
just these scale-bridging relations in the flow of granular matter.
By combining macroscopic force measurements with direct
imaging of the internal strain distribution, we unveil surprisingly
consistent scaling relations from macroscopic force response
down to microscopic fluctuations. We demonstrate that at all
scales, fluctuations exhibit consistent power-law distributions and
correlations, truncated by systematic cutoff that grows with the
applied confining pressure. These measurements give strong
experimental evidence of the proximity of a mechanical critical
point. We show that these scaling relations agree with predictions
of the universal mean-field theory of slip avalanches in
elasto-plastic materials13. These results for the first time
demonstrate experimentally the existence of robust internal
scaling relations in granular flow, bridging from microscopic
strain to macroscopic stress and accounted for by a universal
mean-field theory. Hence, these measurements lay the ground

for a generic description of material flow within a universal,
scale-bridging framework.

Results
Force fluctuations. To combine both macroscopic and
microscopic measurements, we use a shear-cell set-up that links
force measurements by built-in pressure sensors with
simultaneous particle-scale internal imaging by laser sheets
(Fig. 1a). This allows us to track fluctuations of the applied force,
while imaging the internal strain distribution over the full-gran-
ulate volume (Methods section). We do this as a function of
applied load that exerts a well-defined confining pressure on the
top layer of the granulate. By tilting the side walls, we shear the
granulate uniformly at constant (low) rate up to a maximum
strain of 0.2, starting from a well-defined initial state. To increase
statistics, we average over 10 shear cycles.

Using this set-up, we can detect pronounced force fluctuations
as shown in Fig. 1b: sharp force drops follow continuous force
increases, revealing internal relaxations of the granulate that
release some of the applied force. We define a single relaxation
event from a monotonic force drop with amplitude 410� 2 N
and short duration o10� 1 s. Using this definition, we
detect B104 relaxation events in a total sequence of 10 shear
experiments. We define their size s from the magnitude DF of a
sharp force drop (see Fig. 1b inset). Plotting the relative
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Figure 1 | Measurement of force fluctuations and internal imaging.

(a) Schematic of the shear cell set-up with laser sheet imaging. Two lasers

with cylindrical lenses aligned opposite of each other illuminate thin sections

of the sheared suspension for imaging of the individual particles. Force

sensors in the corners of the shearing walls record the applied shear force.

Loads added on top exert a constant confining pressure. (b) Measured force

as a function of applied strain shows pronounced fluctuations. The maximum

detected fluctuation is B3 N, while the noise level of the fluctuations is

B10� 2 N, leading to a total range of observable fluctuations of around 2.5

orders of magnitude. Inset: 10-time magnification of these force data shows

several small and large stress releases.
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frequency, D(s), as a function of size s reveals power-law
distributions D(s)Bs� t truncated by systematic strain-rate
dependent cutoff as shown in Fig. 2a. This cutoff moves to
smaller size as the shear rate increases, suggesting that
fluctuations may overlap and a relaxation event cannot complete
before a new one starts, leading to truncation of large relaxations
according to smax � _g� m (ref. 18). Indeed, we can collapse all
data by rescaling avalanche sizes by _gm, with m¼ 0.5, as shown in
Fig. 2a, inset. Furthermore, all curves exhibit a robust scaling
exponent of tB1.5, as is demonstrated by the collapse in the
inset. The scaling collapse applied here and below allows
extrapolation of critical behaviour away from the critical point;
this is particularly useful in finite-size systems, where correlation
lengths close to the critical point would exceed the system
size17,19.

Our measurements probe the initial loading of the granulate,
where the applied force increases steadily with strain. This allows
us to investigate how the fluctuations depend on the applied force
magnitude. We sort fluctuations by the increasing force
magnitude and plot separate distributions in Fig. 2b. Clearly, all
distributions exhibit consistent power-law decay with a cutoff
that grows with the applied force magnitude. To evaluate this
growth of fluctuations, we compute average avalanche sizes os4
that are less affected by the poor statistics at large s. These
grow monotonically with the applied force magnitude as
shown in Fig. 2b, inset. We find a power-law dependence with
exponent � 1 on approaching the critical force FcB56±3 N, as
shown by the double-logarithmic representation of os4 as a
function of F� Fc. This critical force is consistent with the
apparent saturation value of the force at large strain as shown in

Fig. 1b. Using this value of Fc we can indeed collapse the
force-dependent data shown in Fig. 2b by rescaling the avalanche
sizes by (1�oF4/Fc)1/s, with sE0.6 as shown in Fig. 2c.
This scaling collapse, which extrapolates the critical behaviour
close to the critical point, indicates that the granular flow
develops truly critical behaviour on approaching Fc.

To explore this critical behaviour in more detail, we vary the
rigidity of the granulate by changing the applied load. By
releasing some of the confining pressure, we lower the rigidity of
the granulate20–23, and we expect smaller stress build-up and
hence smaller force fluctuations to occur22,24. This is indeed what
we find as shown in Fig. 2d: as the confining pressure decreases,
the cutoff of the power-law shifts to smaller sizes, indicating
smaller fluctuations, similar to the applied shear force
dependence in Fig. 2b. We can collapse all curves using the
rescaling sP� mP with mP¼ 0.4 (Fig. 2d, inset). A similar exponent
is observed when we collapse the avalanche sizes (Fig. 2b) with
respect to the growing applied force, where we obtain mFB0.5
suggesting that the dependence on both shear force magnitude
and confining pressure can be accounted for by similar scaling
relation. This consistent critical scaling suggests a simple scaling
model to account for the observed force fluctuations.

We apply recent mean-field theory of a stick-slip model of
deformation8, where critical behaviour arises from the interplay
of local slip and long-range elastic interactions. The model
assumes that the material has weak spots where it slips when the
stress exceeds a local failure stress. Because all weak spots are
elastically coupled, a slipping weak spot can trigger other weak
spots to also fail, resulting in a slip avalanche13. In the quasistatic
limit, where the material is sheared slowly enough so that every
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Figure 2 | Scaling of force fluctuations. (a) Probability distribution, D(s), as a function of force fluctuation size, s, for different shear rates (see legend) at

constant confining pressure P¼9.6 kPa. These data suggests truncated power laws DðsÞ � s� texpð� s=x_gÞ with x_g � _gm. Inset shows these data collapse

for t¼ 1.5 and m¼0.5. (b) Force dependence of the size distribution (see legend) at constant confining pressure P¼ 9.6 kPa and shear rate

_g ¼ 1:82�10� 3 s� 1. Inset: mean avalanche size as a function of force difference Fc� F. The double-logarithmic plot indicates divergence hsip(Fc� F)a with

a¼ � 1.02 on approaching Fc¼ 56 N. (c) Data collapse of the force-dependent avalanche size distribution shown in b, DðsÞst � s 1�oF4
Fc

� �1=s
, with t¼ 1.5,

Fc¼ 56 and sB0.6. (d) Size distribution D(s) for different confining pressures (see legend) at constant shear rate _g ¼ 9:08�10�4 s� 1. Inset shows data

collapse DðsÞst � sP�mP , with t¼ 1.5 and mP¼0.4.
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avalanche has time to complete, the model predicts that the
probability density distribution D(s, F) of slip sizes s occurring at
an applied force F follows a power-law with a force-dependent
maximum size cutoff smaxp(Fc� F)� 1/s, hence,

D s; Fð Þ / s� texp � s Fc� Fð Þ1=s
h i

; ð1Þ

where, Fc is a critical force, above which the material cannot
sustain any load. The exponents t¼ 3/2 and s¼ 1/2 are detail-
independent ‘universal’ scaling exponents. At finite shear rate,
avalanche overlap leads to truncation of large avalanches
according to smax / _g�m with m¼ 2 for steady-state flow. The
predicted exponents t¼ 3/2 and s¼ 0.5 are indeed in good
agreement with our observations (Fig. 2), while the value m¼ 2
predicted for steady-state deviates substantially from the
measured value m¼ 0.5; such deviations are, however, expected
when the experiments are not in steady state, as is the case here
and in ref. 7. Yet, the increasing applied force magnitude allows
us to test the predicted force dependence of slip sizes. To do so,
we use D(s, F) from equation (1) to compute average slip
sizes os4¼

R
s D(s, F)ds, obtaining os(F)4p(Fc� F)(t� 2)/s

(ref. 7). The model thus predicts a power-law dependence with
exponent (t� 2)/(s)¼ � 1. The slope of the data in Fig. 2b
(inset) is aB� 1.02, in excellent agreement with this prediction.
The critical force Fc¼ 56±3N is also very reasonable, given that
the applied force in our measurements Fo55N. Thus, overall the
agreement with this simple model is remarkable.

Internal strain imaging. The advantage of using granular matter
to elucidate scale-bridging relations is that we can directly image
the internal strain distribution. Using laser sheets, we visualize
individual particles in the bulk of the granulate and track their
motion over the entire strain cycle. We then determine, for each
particle, the local strain from the displacement of the particle
relative to its nearest neighbours (Methods section). A
two-dimensional rendering of the most relevant strain
component Exy is shown in Fig. 3a, where colour indicates the
magnitude and sign of Exy , see colour bar. High shear strain
concentrates in connected clusters that span the imaged volume,
indicating correlated slip events accumulated over time. However,
the deformation remains overall homogeneous and no shear
banding occurs, as dictated by the rigid tilting walls, see Fig. 1a.
We focus on the top 20% highest strain particles and follow them

as a function of strain using fixed strain intervals of 4% to capture
always the incremental strain. Plotting the average cluster size
oscl4 of high-strain regions as a function of applied strain
(Fig. 3b) clearly reveals that the clusters grow with the applied
strain. When we plot oscl4 as a function of the applied force, we
find indeed a power-law divergence on approaching the critical
force FcB56 N, similar to the average avalanche size in Fig. 2b
inset, as shown by the double-logarithmic representation of
oscl4 versus F� Fc in Fig. 3c. This behaviour is robust within
reasonable limits of the threshold strain used to define the
high-strain particles. This direct correspondence to the avalanche
size with the same value of the critical force gives independent
microscopic evidence of the increasingly critical state on
approaching Fc. We further investigate the structure of these
highly active clusters. We compute, for each cluster, the radius of
gyration R2

g ¼ 1
2s2

cl

P
ij ri� rj
� �2

from relative particle positions

ri� rj in the cluster, and determine the scaling of Rg as a
function of cluster size scl. We find that the gyration radius scales

with cluster size as Rg � s1=df

cl , with the fractal dimension
df¼ 2.5±0.1, which again remains robust on varying the
threshold strain and considering up to the top 2% high-strain
particles. This value lies very close to the value 2.53 of three-
dimensional (3D) percolation, suggesting that the accumulated
avalanches span the entire system.

To get full insight into the microscopic avalanche
evolution, we measure directly the internal scaling relations
of strain using the spatial correlation function CExy ðDrÞ ¼
ExyðrþDrÞ� Exy

� �� �
ExyðrÞ� Exy

� �� �� �
=w2 that correlates strains

at locations separated by Dr. Here, angular brackets denote
averaging over all particles and w2 ¼ Exy � Exy

� �� �2
D E

, the s.d.
The resulting correlation functions are anisotropic, exhibiting the
longest correlation length along the shear direction, as shown in
the inset of Fig. 3a. This correlation function visualizes directly
the correlations between slip events that underlie the collective
avalanches. Along the shear direction, the correlations decay
closely to a power-law with cutoff that grows with the applied
strain, see Fig. 4a. This behaviour is analogous to that of the force
fluctuations, where the avalanche size grows with force magnitude
(Fig. 2b).

The increase of the correlation length is even more pronounced
with growing confined pressure—at the largest pressure, the
correlation length grows up to the full-system size, see Fig. 4b.
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Such increase of power-law cutoff is in qualitative agreement with
the growth of force fluctuations in Fig. 2d. To test this
quantitatively, we determine the full-correlation volume. We
observe that in the other two spatial directions, correlation
lengths hardly change; consequently, the growth shown in Fig. 4b
reflects directly the bulk growth of the avalanches. Hence, if it is
indeed the growth of these internal correlations that underlies the
growth of macroscopic force fluctuations, we expect the same
scaling collapse to apply to both. This is precisely what we find

when we rescale Dr/d in the shear direction by P� mS (inset of
Fig. 4b): excellent collapse is obtained for mS¼ 0.4, the same
exponent as for the macroscopic force fluctuations, demon-
strating their common origin. We hence identify experimentally
the underlying mechanism behind the scaling of force
fluctuations: in the highly constrained granular material,
microscopic strain fluctuations are strongly correlated, leading
to power-law correlations from particle scale to system size for
the largest confining pressure. The slope of this power-law
correlation, lB0.8, is indeed reasonably close to the mean field
value l¼ 1 along the direction of greatest slip25. It is also close to
the numerical value obtained in simulations on Lenard-Jones
systems in quasistatic shear5 that report l¼ 1.18 along the
direction of greatest displacement. These results demonstrate
the robust internal scaling of microscopic strain underlying the
macroscopic fluctuations, consistent with the mean-field model.

Surprisingly, we observe also strong time correlation of the
microscopic deformation, in addition to its spatial correlation. To
investigate this in detail, we determine the typical persistence time
of the strain activity of a particle. We correlate, for each particle,
its instantaneous strain with that at a later time to compute
CExy ðDgÞ ¼ hðExyðgþDgÞ� hExyigÞ � ðExyðgÞ� hExyigÞig=w2 with
w2 ¼ hðExy �hExyigÞ

2ig. The resulting time correlation function
(Fig. 4c) approaches a power-law decay, again truncated by a
pressure-dependent cutoff. Remarkably, the activity of a particle
is correlated over half of the straining cycle, indicating strong
memory. Such memory can arise from local shear-induced
dilation26 that facilitates successive shear events. We investigate
this shear-dilation coupling by using the full-strain tensor to
compute the local dilation from the normal strains according to
DV ¼ Exx þ Eyy þ Ezz . The resulting normalized correlation
coefficient between shear and dilation shows indeed significant
coupling (Fig. 4c, inset), indicating that shear-dilation coupling
plays an important role in the observed internal time coherence.

Discussion
In conclusion, our scale-bridging measurements provide the first
direct experimental evidence of critical internal scaling relations
behind the critical scaling of force fluctuations in flowing
particulate matter. These scaling relations have the form of those
known from the physics of critical phenomena: the correlation
length grows with increasing applied force to diverge at the
critical force Fc, where the material yields. Hence, macroscopic
critical fluctuations originate from a hierarchical internal strain
distribution with diverging correlation length. While the granular
system allows us to conveniently image and measure these scaling
relations, they should be generic to the deformation of solid
matter including both amorphous7 and crystalline materials27, as
the model is generic, based only on elasticity and local failure. The
excellent agreement of the model predictions with our scale-
bridging measurements lays the ground for a new understanding
of yielding and flow central to fields from engineering to material
science to geology, delineating a new universal theory of plastic
deformation.

Methods
Experiments. As granular system, we use polymethyl methacrylate spheres with
diameter of d¼ 1.5 mm and polydispersity of B5%. We fill the particles into a
shear device with transparent, tiltable side walls with built-in pressure sensors
(Fig. 1a). The shear cell has dimensions of 10� 10� 10 cm3, containing about
3� 105 particles. A top plate charged with additional weights is used to confine
the granulate vertically, exerting a constant normal force between 10 and 100 N on
the top layer of the granulate. After a fixed pre-shear protocol generating a
reproducible initial packing, the granulate is sheared at a constant rate between
_g ¼ 3:6�10� 4 and _g ¼ 1:8�10� 2 s� 1 to a total strain of g¼ 20%. We measure the
applied force at a frequency of 500 Hz with an accuracy of ±10� 2 N, and a
maximum force on each sensor of 55 N. To visualize the motion of the individual
granular particles we use particles with a diameter of 4 mm, and add an index-
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correlations. These data suggests CExy
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xP � PmS . Inset shows data collapse obtained for l¼0.8 and mS¼0.4.

(c) Autocorrelation of particle strain activity as a function of applied strain.

Colour and symbols correspond to the confining pressures in b. These data

suggests CExy
� ðDgÞ� n with nE0.9. Inset shows correlation between the

shear strain component Exy and dilatation, averaged over all particles.
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matching solution of water, NaI and fluorescein that makes the particles appear as
dark spots on a bright background14. Individual particles are imaged in a 100 mm
by 70 mm by 85 mm volume using laser sheets (Fig. 1a). 3D image stacks consisting
of 180 sections with a separation of 0.389 mm are acquired every 70 s during the
entire shear cycle.

Analysis. To reconstruct particle positions and trajectories from 3D image stacks
we use algorithms based on28 to track particle centres with an accuracy of
±0.01 mm in the x- and y-, and ±0.03 mm in the z direction14. To determine the
local strain, we follow individual particle trajectories and identify the nearest
neighbours of each particle as those that are in a range corresponding to the first
minimum of the pair correlation function. This range corresponds to 1.5 particle
diameters. We then compare the nearest neighbor vectors dn¼ rn� r0, at applied
strains of g and gþDg. Here, the vector r0 indicates the position of the central
particle and the index n refers to the nearest-neighbour particles. We then find the
best affine deformation tensor ẑ that transforms the nearest-neighbour vectors over
the strain interval Dg by minimizing the mean square difference D2

min g;Dgð Þ ¼P
nðdnðgÞ� ẑdn g�Dgð ÞÞ2 (ref. 29), where D2

min represents the local non-affine

deformation. The symmetric part of ẑ corresponds to the strain tensor Ê of the
central particle. We concentrate our analysis on the shear direction—shear
gradient (x� y) plane, taking into account the tensor component Exy , on
which we base our correlation function analysis, see Fig. 4c. To correlate shear and
dilation components, we take Exy and the sum of the three normal strains,
DV ¼ Exx þ Eyy þ Ezz as measure of local dilation. We then compute correlations
according to CExy$DV ¼ Exy � Exy

� �� �
� DV � DVh ið Þ

� �
=yExyyDV , where yExy and

yDV denote s.d.’s of Exy and DV, and angular brackets denote averaging over all
particles.

To determine force fluctuations from the measured force data, we identify
changes with respect to the monotonically increasing force, see Fig. 1. Stress
relaxation events correspond to sharp force drops; we thus take into account only
monotonic events with negative force derivative and short duration o10� 1 s. We
take the magnitude of these abrupt force changes to be the size s of a relaxation
event. The size probability distribution then follows a power-law D(s)Bs� t, as
shown in Fig. 2a. To demonstrate the universality of the distributions, we collapse
them onto master curves by scaling the abscissa with s � _gm and the ordinate axis
with D(s) � st, see insets of Fig. 2a.
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