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Abstract

Porosomes are plasma membrane structures in secretory cells that allow

transient docking and/or partial fusion of vesicles during which they release

their content then disengage. This is referred to as “kiss and run” exocytosis.

During early pregnancy, at the time of receptivity, there is a high level of vesicle

activity in uterine epithelial cells (UECs). One of the secretory pathways for

these vesicles could be via porosomes, which have yet to be identified in UECs.

This study identified porosomes in the apical plasma membrane of UECs for the

first time. These structures were present on days 1, 5.5, and 6 of early

pregnancy, where they likely facilitate partial secretion via “kiss and run”

exocytosis. The porosomes were measured and quantified on days 1, 5.5, and 6,

which showed there are significantly more porosomes on day 5.5 (receptive)

compared to day 1 (nonreceptive) of pregnancy. This increase in porosome

numbers may reflect major morphological and molecular changes in the apical

plasma membrane at this time such as increased cholesterol and soluble NSF

attachment protein receptor proteins, as these are structural and functional

components of the porosome complex assembly. Porosomes were observed in

both resting (inactive) and dilated (active) states on days 1, 5.5, and 6 of early

pregnancy. Porosomes on day 5.5 are significantly more active than on day 1 as

demonstrated by the dilation of their base diameter. Further two‐way ANOVA

analysis of base diameter in resting and dilated states found a significant

increase in porosome activity in day 5.5 compared to day 1. This study therefore

indicates an increase in the number and activity of porosomes at the time of

uterine receptivity in the rat, revealing a mechanism by which the UECs modify

the uterine luminal environment at this time.
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1 | INTRODUCTION

Secretions from the uterine epithelium play an important role in

providing a specialized environment for fertilization, embryo devel-

opment, and implantation (Gandolfi, 1995; Nieder & Macon, 1987).

Uterine secretions come from a combination of fluid transport from

ion and water channels and the release of vesicular content via

exocytosis (Kalam et al., 2020; Lindsay & Murphy, 2006;

McManaman et al., 2006). High levels of vesicular activity are seen

in uterine epithelial cells (UECs) during uterine receptivity (Kalam

et al., 2020; Murphy, 2004; Parr, 1982) and it is likely that the

exocytosis from UECs, contribute to the changes in uterine fluid

volume and content, which influences embryo implantation and

development (De Los Santos et al., 2016; O'Neil et al., 2020; Strandell

& Lindhard, 2002).

In all eukaryotic cells, secretions are produced by exocytosis of

vesicles (Alberts et al., 2008). There are many methods of exocytosis

that cells can utilize. The most common method is full fusion

exocytosis, which involves transport of vesicles from the Golgi

apparatus to target plasma membranes where membranes of the

vesicles fuse, releasing vesicular content outside the cell (Burgess &

Kelly, 1987; Jamieson & Palade 1967a, 1967b; Schramm, 1967).

Secretion can also take place via other exocytotic routes such as

compound exocytosis, lysosomal secretion, extracellular vesicle

secretion, and “kiss and run” exocytosis (Antonyak & Cerione,

2014; Battey et al., 1999; Harata et al., 2006; Holt et al., 2006;

Pickett & Edwardson, 2006; Taguchi, 2013; Tkach & Thé Ry, 2016;

Tuma & Hubbard, 2003).

In “kiss and run” exocytosis (Figure 1) vesicles expel a portion

of their content without full fusion of the vesicular membrane with

the plasma membrane (Ceccarelli et al., 1972). Vesicles can

accomplish this fractional secretion with the involvement of a

plasma membrane ultrastructure called a “porosome”. Porosomes

(Figure 2) allow the transient docking and/or partial fusion of

vesicles, during which they release their content then disengage

(Naik et al., 2015). Porosomes are cup‐shaped supramolecular

lipoprotein structures located in the apical plasma membrane of

secreting cells. Their diameters range from 15 nm in neurons and

astrocytes to 100–180 nm in endocrine and exocrine cells

(Aravanis et al., 2003; Lee et al., 2009; Taraska et al., 2002). All

exocytotic events, including “kiss and run” via porosomes, are

regulated by a family of SNAP receptors (SNARE) (soluble NSF

attachment proteins [SNAPs]) proteins. SNARE proteins traffic

vesicles by pairing a vesicle SNARE (v‐SNARE) with a target

SNARE (t‐SNARE) that pulls the membranes together (Söllner

et al., 1993; Sutton et al., 1998).

During uterine receptivity, the UECs undergo many molecular

and morphological changes including loss of microvilli, reorganization

of the apical terminal web and an increase in apical lipid rafts and

adhesion proteins. These changes are collectively referred to as

plasma membrane transformation (Murphy, 1994, 2004). These

changes are likely to be mediated by the increase in the number of

apical vesicles on day 5, the beginning of uterine receptivity in the rat

(Parr, 1982). On day 5.5 of pregnancy, exocytosis is observed in UECs

with an increase in exocytotic SNARE protein (VAMP2 and syntaxin

3) signaling in the apical region of UECs (Kalam et al., 2020).

However, the complete plasma membrane fusion of all apical vesicles

seen on day 5 would result in a significant increase in the surface area

of the plasma membrane by day 6, but this is not observed (Poste &

Allison, 1973; Preston et al., 2006). Instead there is a decrease in

plasma membrane area seen by the loss of microvilli on day 6 (Enders

& Schlafke, 1967; Murphy, 1993; Preston et al., 2006; Tachi et al.,

1970). This implies full fusion exocytosis is not the only method of

secretion that UECs employ to secrete vesicular content to the apical

surface during uterine receptivity.

Porosomes have yet to be identified or characterized during early

pregnancy in UECs, but during uterine receptivity in early pregnancy

there is high vesicular activity in the apical area of UECs (Murphy &

Martin, 1987; Parr, 1982). These vesicles may thus be using the “kiss

and run” exocytosis model via porosomes to contribute to uterine

secretions. The present investigation thus hypothesized that poro-

somes are located in the apical plasma membrane of UECs during

uterine receptivity.

F IGURE 1 “Kiss and run” exocytosis. In “Kiss and Run”
exocytosis, a vesicle docks onto a porosome on the plasma
membrane and releases its cargo into the extracellular space without
the vesicular membrane fusing onto the plasma membrane.
Porosomes without vesicles docked are inactive and docked are
active. This vesicle then disengages from the porosome and can be
replenished for further “kiss and run” exocytosis.

F IGURE 2 Schematic diagram showing the structural
characteristics of a porosome. Porosomes are cup‐shaped
supramolecular lipoprotein structures located in the apical plasma
membrane of secreting cells, with a narrow opening neck and a
wide base.
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2 | MATERIALS AND METHODS

2.1 | Animals and mating

This study used virgin female Wistar rats aged 10–12 weeks. All

procedures were approved by the University of Sydney Animal Ethics

Committee. Rats were housed in plastic cages at 21°C under a

12h light–dark cycle and were provided with free access to food and

water. Prooestrus female rats were mated overnight with males of proven

fertility. The presence of sperm in a vaginal smear the following morning

indicated successful mating, and this was designated day 1 of pregnancy.

Uterine tissue was collected from four rats each from days 1, 5.5, and 6 of

pregnancy. In total, 12 rats were used for this study.

2.2 | Tissue collection

Rats were administered 20mg/kg of sodium pentobarbitone (Vibac

Animal Health) intraperitoneally and the uterine horns were collected

under deep anesthesia before euthanasia. Uterine horns were

removed and processed for transmission electron microscopy.

2.3 | Transmission electron microscopy (TEM)

Uteri were cut into 5mm pieces and were directly fixed in Karnovsky's

fixative (2.5% glutaraldehyde [ProSciTech], 2% paraformaldehyde

[ProSciTech] in 0.1mol l−1 Sorenson's phosphate buffer [PB, pH 7.4]) for

45min at room temperature. The tissue was then further cut into

0.5–1mm slices under a droplet of fixative and returned to fresh fixative

for another 45min. The tissue was washed in 0.1mol l−1 PB then

postfixed for an hour with 1% osmium tetroxide (OsO4) in 0.1mol l−1 PB,

containing 0.8% potassium ferricyanide to enhance the contrast of the

plasma membrane (Karnovsky, 1971). Tissue was rinsed in 0.1mol l−1 PB

and incubated in 2% OsO4 solution (in 0.1mol l−1 PB) for 10min to

remove any unreacted potassium ferricyanide (Hoshino et al., 1976).

Tissue was washed with MilliQ water and dehydrated with graded series

of ethanol, then infiltrated with Spurr's resin (SPI supplies). Uterine slices

were embedded in fresh Spurr's resin in BEEM® capsules (ProSciTech)

and polymerized at 60°C for 24h. Two blocks per animal were cut at

60–70 nm using a Leica Ultracut S ultramicrotome (Leica) and mounted

onto 400‐mesh copper grids. Sections were poststained with a saturated

solution of uranyl acetate in 50% ethanol for 45min and then by

Reynold's lead citrate for 10min. Sections were examined in a Jeol 1011

TEM (Jeol Ltd.) at 80kV and imaged with a Gatan SC200 Orius CCD

Camera (Gatan Inc.).

2.4 | Identifying and characterizing porosomes
in UECs

Porosomes were identified as a flask‐shaped membrane depression/

invagination with an apical neck, a rounded base, and an electron dense

shadow referred to as an anchoring cable/tether (Figure 2; Craciun &

Barbu‐Tudoran, 2013). These porosomes are found as part of the apical

plasma membrane of the luminal UECs. To be classified as a porosome

the base diameter had to be wider than the neck, with a maximum base

diameter of 150 nm. These porosomes were further classified as resting

or dilated, demonstrating their secretory activity status (Jena, 2004,

2009; Schneider et al., 1997). Porosomes with a base diameter below

50nm were classified as resting porosomes, while those with a base

diameter above 50 nm were classified as dilated.

2.5 | Counting and measuring porosomes

25 images were taken at ×50,000 magnification per grid. Two grids

per block were obtained from two different blocks per animal. Thus, a

total of 100 images were taken per animal for these porosome

measurements. Porosomes were identified, measured, and quantified

with Image J software (Image J; National Institutes of Health). The

apical plasma membrane of UECs from days 1, 5.5, and 6 of

pregnancy was measured by tracing the membrane surface (including

all projections and invaginations) and the numbers of porosomes

were counted along this region. The number of porosomes is

reported as number of porosomes/µm plasma membrane.

The base diameter of porosomes was also measured since it

provides information about the level of secretory activity of

porosomes on days 1, 5.5, and 6 of pregnancy and statistical analysis

was performed.

2.6 | Statistical analysis

Statistical analysis was performed to determine differences in porosome

count and activity between days 1, 5.5, and 6 with GraphPad Prism

Software (Version 7; GraphPad Software, Inc.). The difference in the

number of porosomes on days 1, 5.5, and 6 was analyzed with one‐way

analysis of variance (ANOVA). For multiple comparisons, Tukey's post

hoc test was applied (reporting multiplicity‐adjusted p‐values) to

determine which pairs of means were significantly different. The change

in porosome activity on days 1, 5.5, and 6 was analyzed with a two‐way

ANOVA. For multiple comparisons, Tukey's post hoc test was applied

(reporting multiplicity‐adjusted p‐values) to determine which pairs of

means were significantly different. Probability values of p< .05 were

considered significant. All graphs were generated using GraphPad Prism

Software and demonstrate the mean ± standard error of the mean.

3 | RESULTS

3.1 | Porosomes are present in the apical plasma
membrane of UECs

Porosomes were observed to be present as part of the apical plasma

membrane of UECs on days 1, 5.5, and 6 of pregnancy (Figure 3).
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F IGURE 3 Transmission electron microscopy of the apical plasma membrane of uterine epithelial cells from days 1, 5.5, and 6 of early
pregnancy. On day 1 of pregnancy, prosomes (arrow) are found in a resting state (a) or a dilated state (b). On day 5.5 of pregnancy prosomes
(arrow) are seen in their resting state (c) or their dilated state (d). On day 5.5 of pregnancy prosomes (arrow) are observed in their resting state (e)
or their dilated state (f). All scale bars are 200 nm.
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These porosomes were seen in resting and dilated states, indicating

differences in secretory activity on day 1 (Figure 3a,b), day 5.5

(Figure 3c,d), and day 6 (Figure 3e,f) of pregnancy (analysis below).

Traced porosomes (rest vs. active) are highlighted in Figure 4 showing

the neck and base regions.

3.2 | Total porosome numbers increase on day 5.5
of pregnancy

Porosomes were counted on each day of pregnancy and standardized

to 1 μm unit plasma membrane (Figure 5). On day 1 of the pregnancy,

there were 0.066 porosomes per 1 μm plasma membrane. On day 5.5

of pregnancy, the number of porosomes significantly increased to

0.174 porosomes per 1 μm plasma membrane compared to day 1

(one‐way ANOVA, n = 4, p = .0369). On day 6 of pregnancy,

porosome numbers were 0.130 porosomes per 1 μm plasma

membrane, which was not significantly different to other days.

3.3 | Porosome activity during early pregnancy

The activity status of each porosome was determined based on their

base diameter and the number of active vs inactive porosomes was

compared on each day of pregnancy (Figure 6). On day 1 of pregnancy

(Figure 6), 69% of porosomes were seen to be dilated (base diameter

51.0–115.6 nm) and the remaining 31% in a resting state (base

diameter 28.3–50.0 nm). On day 5.5 of pregnancy, 71% of porosomes

are dilated (base diameter 51.0–150.0 nm) with the remaining 29% in a

resting configuration (base diameter 15.7–50.0 nm). On day 6, 63% are

dilated (base diameter 51.0–150.0 nm) and 37% are in a resting state

(base diameter 15.9– 50 nm; Figure 6). These ranges were averaged

each day and presented in Table 1.

In the dilated state, there was a significant increase in the base

diameter on day 5.5 compared to day 1 (two‐way ANOVA, n = 4,

p = .0003) and on day 6 compared to day 1 (two‐way ANOVA, n = 4,

p = .0104) (Figure 7).

F IGURE 4 Transmission electron microscopy of the apical plasma membrane of uterine epithelial cells with traced porosomes at rest and
active state. Porosomes at a resting state traced with yellow to highlight the base and blue to highlight the neck on day 6 of pregnancy in uterine
epithelial cells (a). Active porosome with yellow highlighted base and neck highlighted blue as seen on day 5.5 of pregnancy (b). All scale bars are
200 nm.

F IGURE 5 Porosome count per 1 μm of apical plasma membrane
of uterine epithelial cells on days 1, 5.5, and 6 during early pregnancy.
Statistical analysis (one‐way analysis of variance) found a significant
increase in the number of porosomes per μm of apical plasma
membrane on day 5.5 compared to 1 of early pregnancy. Bars
represent the mean ± standard error of the mean, n = 4; (*p < .05).
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4 | DISCUSSION

This is the first study to identify porosomes in the apical plasma

membrane of UECs. Porosomes were present in both resting

(inactive) and dilated (active) states on days 1, 5.5, and 6 of early

pregnancy. Porosomes are part of the secretory machinery in cells

and have previously been seen in chromaffin cells of the adrenal

medulla (S. J. Cho, Wakade, et al., 2002), growth hormone secreting

cells of the pituitary gland (S. J. Cho, Wakade, et al., 2002), neurons

(W. J. Cho et al., 2004; Tojima et al., 2000), astrocytes (W. J. Cho,

Ren, et al., 2009; Lee et al., 2009), β‐cells of the endocrine pancreas,

mast cells (Jena, 2004), hair cells (Drescher et al., 2011) and

respiratory epithelium (Hou et al., 2014). Thus, the presence of

porosomes in UECs shows that partial secretion also known as “kiss

and run” secretion (Ceccarelli et al., 1972) is taking place throughout

early pregnancy in both nonreceptive and receptive UECs.

Our study further measured and counted these porosomes on

days 1, 5.5, and 6 of pregnancy and found a significant increase in the

number of porosomes on day 5.5 compared to day 1 of pregnancy.

This increase in porosome count on day 5.5 (uterus receptive for

blastocyst implantation) compared to day 1 (nonreceptive uterus)

may play a role in the dramatic morphological and molecular changes

that occur in the apical plasma membrane at this time (Murphy, 1994,

2001, 2004). There is an increase in cholesterol content and SNARE

proteins (v‐SNARE: VAMP2 and t‐SNAREs: syntaxin 3) apically in

UECs during uterine receptivity (Kalam et al., 2020; Murphy &

Dwarte, 1987; Murphy & Martin, 1985). Both plasma membrane

cholesterol and SNARE proteins are known to participate in the

integrity and structure of the porosome complex (W. J. Cho et al.,

2007; Jeremic et al., 2006, 2003).

Not only is there an increase in porosome number at the time of

receptivity, there is also an increase in porosome activity at this time.

The study found porosomes were participating in secretion, seen by

the dilation of the porosome base. The increase in porosome base

diameter, which was from resting to dilated, was within the range

(25%–45%) observed in other cells like pancreatic acinar cells, which

is a secretory epithelial cell (Schneider et al., 1997).

The porosome ring complex found in the base of the porosome

(Jeremic et al., 2003; Schneider et al., 1997), is considered to be

composed of cholesterol (Jeremic et al., 2006) and several different

proteins including calcium channels, t‐SNAREs: SNAP23/25 and

syntaxin 1 (W. J. Cho et al., 2005, 2004). Cholesterol is required as a

major component of the porosome complex for its structural integrity

and function (W. J. Cho et al., 2007; Jeremic et al., 2006). Atomic

force microscopy (AFM) studies have previously shown that deple-

tion of cholesterol in neurons resulted in dissociation of SNAP25,

syntaxin 1 and calcium channels from the neural porosome (Jeremic

et al., 2006). In regulated exocytosis, SNARE‐induced membrane

fusion requires calcium (S. J. Cho, Wakade, et al., 2002; Jeremic, Cho,

et al., 2004; Jeremic, Kelly, et al., 2004) and the loss of interaction

between SNAP25, syntaxin 1, and calcium channels at the neural

porosome complex affects the assembly and stability of the neural

porosome (W. J. Cho et al., 2007).

F IGURE 6 Percentage of porosome activity in uterine epithelial
cells during early pregnancy. Stacked graph showing the percentage
of resting versus dilated porosomes in days 1, 5.5, and 6 of early
pregnancy; n = 4. On day 1 of pregnancy, 69% of porosomes were
seen to be dilated and the remaining 31% are resting. On day 5.5,
71% of porosomes are dilated with the remaining 29% resting. On
day 6, 63% are dilated and 37% are resting.

TABLE 1 Average neck and base porosome diameter at resting
and dilated state in uterine epithelial cells on days 1, 5.5, and 6

Average porosome diameter (nm)
Resting Dilated

Days Neck Base Neck Base

1 24.355 42.653 35.514 72.813

5.5 18.425 38.568 33.140 88.841

6 13.632 36.969 24.394 83.585

F IGURE 7 Comparison of the average base diameters of
porosomes in the resting and dilated states in days 1, 5.5, and 6 of
early pregnancy. Statistical analysis (two‐way analysis of variance
[ANOVA]) showed no significant difference in base diameter in the
resting state on days 1, 5.5, and 6. Two‐way ANOVA found a
significant increase in the base diameter of porosomes on day 5.5
compared to 1 of early pregnancy; and on day 6 compared to day 1 in
the dilated state. Bars represent the mean ± standard error of the
mean, n = 4; (*p < .05; ***p < .001).
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During uterine receptivity there is an increase in cholesterol in

the apical plasma membrane of UECs (Murphy & Dwarte, 1987). This

rise in plasma membrane cholesterol could be contributing to the

assembly of porosomes on the UEC surface, resulting in the

significant expansion in porosome numbers that is observed in this

study. Plasma membrane cholesterol is known as a vesicle fusion

docking site assisting with cell secretion, since cholesterol areas are

more energy favorable for vesicles to dock (Epand, 2006). The

increase in plasma membrane cholesterol in UEC surface during

uterine receptivity (Murphy & Martin, 1987) could be aiding full

fusion exocytosis that results in complete membrane fusion and

secretion but also partial secretions via porosomes.

SNARE proteins along with cholesterol are integral parts of the

porosome ring complex found in the base of the porosome (W. J.

Cho, Shin, et al., 2009; Mohrmann et al., 2010). SNARE proteins

are involved in directing secretory vesicles to dock and fuse with

the plasma membrane‐associated porosomes and to release their

contents (S. J. Cho, Wakade, et al., 2002; Jeremic, Cho, et al.,

2004; Jeremic, Kelly, et al., 2004). Studies using AFM, electron

microscopy, and small‐angle X‐ray scattering on immune‐isolated

porosomes found SNARE proteins VAMP2, syntaxin 1 and SNAP25

in neural porosomes (Naik et al., 2016). During uterine receptivity,

particularly on day 5.5, UECs have an increase in the abundance of

both t‐SNARE (syntaxin 3) and v‐SNARE (VAMP2) proteins (Kalam

et al., 2020); indicating there is an increase in exocytotic activity

trafficked by SNARE proteins during this period. Hence, these

SNARE proteins could also be participating in trafficking vesicles to

porosomes for partial secretions. The relative activity of the

porosome can be seen by the dilation of the porosome base.

This dilation is primarily controlled by SNARE proteins (Hou

et al., 2014).

5 | CONCLUSION

This study identified for the first time the presence of porosomes as a

component of the secretory machinery in UECs during early

pregnancy. This investigation also found there was an increase in

porosome activity suggesting an increase in partial secretions via

porosomes in receptive UECs compared with non‐receptive UECs.

Thus, this study indicates that “kiss and run” secretion is one of the

modes of exocytosis that is active in UECs during early pregnancy

and that this form of secretion increases at uterine receptivity.
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