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The surgical management of diffuse low-grade gliomas (DLGGs) has undergone a

paradigm shift toward striving for maximal safe resection when feasible. While extensive

observational data supports this transition, unbiased evidence in the form of high quality

randomized-controlled trials (RCTs) is lacking. Furthermore, despite a high volume of

molecular, genetic, and imaging data, the field of neuro-oncology lacks personalized

care algorithms for individuals with DLGGs based on a robust foundation of evidence.

In this manuscript, we (1) discuss the logistical and philosophical challenges hindering

the development of surgical RCTs for DLGGs, (2) highlight the potential impact of

well-designed international prospective observational registries, (3) discuss ways in which

cutting-edge computational techniques can be harnessed to generate maximal insight

from high volumes of multi-faceted data, and (4) outline a comprehensive plan of action

that will enable a multi-disciplinary approach to future DLGG management, integrating

advances in clinical medicine, basic molecular research and large-scale data mining.

Keywords: diffuse low-grade glioma, neurosurgery, randomized controlled trials, neuro-oncology, artificial

intelligence, machine learning

INTRODUCTION

Diffuse low-grade gliomas (DLGGs,WHOGrade II gliomas), comprise 13–16% of all primary brain
tumors (1). The median age at diagnosis is 37 years, and thus individuals are most commonly
affected at the peak of their personal and professional lives. Progressive neurological decline and
an early death are unfortunately inevitable (1). As such, there is a great need to optimize the
management of these tumors in order to maximize survival while preserving quality of life.

The current DLGG management options after initial diagnosis include conservative therapy
with radiographic monitoring, radiation therapy, or surgery, with or without chemotherapy
adjuncts (2). Currently, one of the most contentious issues in the management of DLGG is the
role of surgery and the importance of extent of resection on patient-related outcomes. There is a
dearth of randomized-controlled trials (RCTs) or large prospective observational studies to support
the benefit of increased extent of resection. While the traditional holy grail of evidence-based
medicine is hypothesis-driven RCTs, there are a number of challenges in conducting an RCT for
DLGGs. Questions of clinical equipoise and surgeon/patient-related biases, the continual influx
of new adjuvant treatment discoveries, and the extended period of recruitment and monitoring
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needed to complete a trial are some of the many considerations
that must be addressed prior to designing a robust RCT. In
addition, the growth of big data and multi-centered patient
registries have enabled the collection of valuable data in large
quantities, which may offer new means to develop evidence-
based management guidelines. With advancements in statistical
methods and advanced data analytic concepts introduced by the
field of machine-learning (ML), we now have powerful tools
to develop better guidelines for the management of DLGGs
and ultimately bring us closer to the concept of personalized
medicine. The aim of this manuscript is to describe potential
strategies to obtain new evidence for the management of DLGG,
focusing on the integration of recent scientific advancements
and alternative data sources with traditional methods such as
the RCT.

CURRENT STATE OF EVIDENCE

The 2016 edition of the WHO classification of tumors has for
the first time incorporated molecular parameters to traditional
histological diagnoses of tumors (3). This is based in part on
the impact of molecular features on prognosis and response to
therapy (4–6). The genomic classification of tumors will soon
supplant histology as a more accurate diagnostic method (7–9).
Therefore, a large scale collaborative effort is necessary to better
understand the prognostic/predictive role of known molecular
markers (e.g., MGMT promoter methylation in DLGGs) (9),
identify novel signatures, and generate hypotheses for future
correlative clinical analyses.

Prior to the advent of molecular genetics in glioma profiling,
biopsy was often deferred, with patients being followed with
serial imaging even without biopsy. However, the profound
impact of genomics on management has necessitated tissue
acquisition; thus, biopsy has often been considered an essential
step in the management of gliomas. In recent years, however,
the surgical management of DLGGs has undergone a paradigm
shift from the “wait and see” approach (with or without biopsy)
to attempts at maximal safe resection (MSR) (10). The increase
in overall survival (OS) and malignant progression-free survival
(mPFS) observed in patients undergoing MSR has prompted
calls for pursuing even more aggressive surgical resections
(supratotal resections) wherein the limits of resection are defined
by intraoperative functional brain boundaries rather than tumor
margin or anatomical boundaries (11).

Although upfront MSR when feasible is endorsed by the latest
European Association of Neuro-Oncology (EANO) guidelines
(12), no Level I evidence exists to support this as standard of care
(13, 14). Meta-analyses of observational studies demonstrate the
benefit of increased extent of resection (EOR) on survival, but the
yield of these studies is only as good as the primary data (15). In a
parallel cohort analysis of outcomes for DLGG patients managed
at two institutions in Norway, Jakola et al. have provided the
strongest observational evidence to date favoring upfront surgery
(16). A long-term follow-up of this study, adjusting for molecular
markers, has reaffirmed this advantage (17). Correlation of EOR
based on tumor location and molecular pathology was not

provided. In another single-arm retrospective study of 228 adults
with supra-tentorial DLGGs, it was shown that any incremental
increase in the EOR is associated with increase in OS, regardless
of molecular subclass (18). The sample in this study was enriched
for tumors in the frontal (53.1%) and temporal (16.2%) lobes;
only 39.5% of patients had tumor in an eloquent location (18).
While these studies provide strong evidence for surgery, further
exploration is needed.

A higher proportion of midline DLGGs is constituted by
astrocytomas (19). In addition, a significantly higher proportion
of IDH-mutant tumors, which are categorically more amenable
to a complete resection, are located in the frontal lobe (7, 20).
Hence, the interaction of subtotal resection with an unfavorable
molecular/histological profile cannot be ruled out. Furthermore,
although feasible, MSR of tumors in eloquent regions has most
often been reported by specialized high-volume surgical centers
(21). Other centers and clinical teams may not be as well-versed
with the utility and interpretation of available diagnostic adjuncts
and intraoperative techniques.

With respect to diffuse gliomas, surgery is not curative (10).
While MSR may delay the need for toxic adjuvant therapy,
objective assessment of the risks and benefits of this philosophy
is needed, especially since practice-altering adjuvant therapies
such as combination chemotherapy and radiotherapy have
demonstrated a significant impact on OS in high quality RCTs
(4–6, 22). Before developing similar high-quality evidence for
surgery in DLGG, it is important to establish whether a surgical
RCT can be justified on the grounds of equipoise and ethics.

TOWARD A POSSIBLE RCT IN DLGGs

RCTs, Equipoise, and Ethics
Equipoise, both within the medical community and among
individual physicians, is an ethical necessity for RCTs (23). For
surgical interventions, the timing of a trial adds a further layer
of complexity to the preservation of equipoise. A technique
in its infancy may be prematurely deemed ineffective while a
well-established technique may reduce the chances of patient
and surgeon participation, a conundrum that is very applicable
to DLGGs (24). In a survey of 87 Canadian neurosurgical
surgeons and trainees, 94% endorsed not knowing what the
right treatment would be for DLGGs (2). As recently as 2011,
half of the 24 neurosurgical centers surveyed in Germany
implemented the “wait and see” approach routinely (25). A
recent survey of Society for Neuro-Oncology members showed
that nearly half of participants would consider an RCT to be
beneficial for determining the differing roles of biopsy, surgery,
and observation, particularly in certain patient populations (26).
Although these data are derived from selective survey studies,
the degree of uncertainty and heterogeneity in management
is suggestive of possible clinical equipoise in certain patient
populations. Experienced clinical teams are less likely to believe
in equipoise and the ethical nature of a surgical RCT for
managing DLGG patients. This poses a great challenge to
advancing the state of evidence as calls for transitioning care for
these complex patients to high-volume specialty centers increase
(12). To better objectively assess whether true equipoise exists for
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FIGURE 1 | Schematic outlining the various strategies to acquire new data in the management of DLGGs and generate hypotheses for further research, and the need

for observational or randomized trials to validate these hypotheses.

any patient populations, surveys of international neuro-oncology
societies, focus groups, and opinions of expert panels will be
necessary, as outlined in Figure 1.

Defining the Population and Intervention
The significant impact of molecular pathology on adjuvant
strategies has rendered the “wait and see” approach unjustifiable
(7, 20). Stereotactic biopsy is a technique familiar to all
neurosurgeons and a strategy applied to DLGG management at
many centers (16, 25). In some retrospective studies advocating
for MSR, patients undergoing biopsy have been excluded,
hindering comparisons with subtotal resections (13, 27). For
supratotal resections, the data are compelling but based on small
retrospective series (21, 28). Thus, there are at least two clinically
important patient cohorts for which more objective evidence can
be explored: (1) Individuals with tumors in regions traditionally
considered eloquent with low-risk preoperative features (i.e., low
Pignatti score: younger age, smaller tumor, lack of neurological
deficits, etc) (29); and (2) Individuals with tumors in regions
traditionally considered non-eloquent.

For the first patient cohort, individuals may be randomized
to stereotactic biopsies vs. a pragmatic philosophy of debulking

of any extent. Appropriate adjuvant therapy would be based
on molecular and clinical features. This cohort of patients, in
addition to those with tumors in eloquent areas, might also
include those with diffuse tumors for which radical resection
is not easily attainable. In these individuals, an RCT would be
particularly informative in objectively establishing whether any
surgical approach that ismore aggressive than stereotactic biopsy,
when radical resection cannot be attained, is superior in terms
of agreed upon endpoints. This would also provide a foundation
to explore emerging minimally invasive approaches of tumor
sampling, such as liquid biopsies aided by blood-brain barrier
disrupting technologies such as MR-guided focused ultrasound
(30, 31). Conversely, technological advancements that allow
access to deep-seated brain tumors with minimal disruption of
white matter tracts may enable more aggressive resection (32).

In the second population cohort, supratotal resection
could be compared to MSR. While the basic principle for
determining whether more aggressive surgery is superior
is similar to the first group, this would be a comparison of
two competing philosophies of functional- vs. anatomically-
guided surgery, respectively (28). This implicitly necessitates
standardization of imaging modalities and algorithms along

Frontiers in Oncology | www.frontiersin.org 3 October 2020 | Volume 10 | Article 575658

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Brar et al. Management of Diffuse Low-Grade Glioma

with operating procedures for intraoperative stimulation
mapping (ISM).

Standardization of Protocols
Standard MRI sequences have an important diagnostic
and prognostic role in DLGG diagnosis and management,
particularly with respect to identifying accurate tumor margins
for resection (33). Advanced imaging sequences and modalities
are increasingly incorporated into practice. Examples include
perfusion MRI, diffusion tensor imaging (DTI) (34), functional
MRI (resting state and task-based), MR spectroscopy (MRS) (35),
and PET imaging with amino acid tracers (36). Intraoperative
MRI has also been used to improve the extent of resection of
LGGs when compared to traditional approaches (37). These
imaging modalities have been influential in better understanding
brain physiology and pathology. However, we have yet to
consolidate these modalities into a standard multi-parametric
imaging protocol for DLGG management. This is further
compounded by the difficulty of distinguishing tumor from
peritumoral edema prior to surgery, which is an ongoing
difficulty with current imaging techniques (37). This issue will
only become more difficult with the advent of novel molecular
signatures that might reveal further heterogeneity in DLGGs.

ISM, performed systematically, is the gold-standard of
comparison for functional imaging (38). Extensive analyses of
brain connectivity, based on ISM data, have enabled creation
of probabilistic atlases of essential cortical regions (39, 40).
These are critical as seeding points in specific imaging protocols
while also serving as essential guideposts for individualizing
ISM. Depending on the lobe(s) affected, extent of tumor
infiltration, preoperative functional deficits, and vocational needs
of each particular patient, specific intraoperative cognitive and
functional tasks can be used during ISM to strike the ideal
oncological and functional balance of tumor resection (41).
This approach is also paramount for a postoperative cognitive
rehabilitation pathway (42). Data can no longer be confined
and analyzed in isolation among specialties. The ISM-based
functional mapping literature is robust and instructive, and
correlation of emerging imaging data within this literature will
generate valuable insights. Standardized algorithms can only be
developed when these insights are validated for clinical relevance
(Figure 1).

Choice of Endpoint(s)
While PFS/mPFS are used inmany oncology trials, ascertainment
is problematic owing to the possible subjective nature of
these endpoints, and in DLGGs they may not necessarily
correlate with OS (4). Although more objective, the use of
OS can be challenging in DLGG trials as the increasing life
expectancy could affect trial feasibility. In addition, subsequent
therapy following study protocol interventions may differ among
patients, thereby confounding the OS in long-survival diseases
such as DLGG. Given these confounding influences, quality of
life, and preservation of function should be critical endpoints
as well. These assessments should ideally be based on patient-
reported outcomes (PROs), which should be direct and elucidate
patient concerns and burden of treatment on patients (43, 44).

Particular attention must be given to selecting PRO instruments
validated in brain tumor patients.

Given that both OS and PROs are important to clinicians,
patients, and policymakers, an acceptable approach would be
to combine OS and PROs as a composite endpoint (CEP),
reducing the required sample size and enabling assessment of
the net benefit of an intervention (45). This, however, also
presents the potential risk of one endpoint dominating this
net benefit. Furthermore, the combination of fatal (OS) with
non-fatal endpoints (PRO), could theoretically result in an
erroneous conclusion of net benefit for a particular intervention.
For example, an aggressive surgical resection may increase
OS at the expense of function. Seeking input from patients
and the general population regarding the value of survival
and function is therefore necessary in establishing outcome
thresholds (Figure 1).

Challenges Specific to Surgical RCTs in
DLGGs
Surgeon biases toward treatment allocation is a challenge in
conducting surgical RCTs. In pathologies of high prevalence,
this may be remedied by implementing an expertise-based trial
wherein surgeons only perform the intervention proposed in
one arm of the study (e.g., only MSR rather than supratotal
resection for DLGG) and would therefore only manage patients
randomized to that particular arm. This approach becomes
challenging for conditions with low prevalence like DLGGs, as
the number of centers and surgeons providing specialty care may
be limited. Surgeon technical skill is another important factor
to consider. Ideally, surgeons would have reached the plateau
phase of the technical learning curve prior to their involvement
in a trial (46). Options for evaluating technical competency may
involve a minimum number of cases performed, a report of past
complications, or on-site assessment of technique (47). While
this approach helps increase validity, it may introduce constraints
into the protocol that limit generalizability.

In contrast to drug trials where patients can only receive a
novel drug in the setting of an RCT, standard surgical procedures
can be performed more universally outside the confines of a
clinical trial. With increasing avenues for patient data access
and growing patient autonomy over treatment decisions, the
chances of individuals seeking a particular intervention make
recruitment into an RCT challenging (48). For surgeons,
this reality is an additional disincentive for participation as
they may lose their referral source. Open discussions about
treatment options and the current state of the evidence will
therefore be essential in setting a framework for surgical trials
in DLGGs.

The extended period of enrolment and analysis required
for a surgical trial for a low-frequency and long time-to-
endpoint disease such as DLGG can add an extra layer of
complexity. During the course of the trial, the development
of better adjuvant treatments (e.g., IDH1 inhibitors) will have
a differential impact on OS for patients enrolled before and
after their widespread use (49). This is in addition to the high
probability of drop-out over many years of follow-up, although
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there is precedence for extended trial durations in DLGGs
(4, 5). Pragmatic RCTs which allow wide-ranging protocol
flexibility after randomization may address the challenges
associated with standard RCTs (50); however, consideration
must be given to potential concerns regarding blinding and
allocation concealment.

HARNESSING THE POWER OF
OBSERVATIONAL DATA

In light of the challenges in conducting RCTs for DLGGs
and the need to develop hypotheses relevant to an “everyday”
setting, international registries of prospective observational data
may offer an important tool in developing evidence based
management guidelines (51). Resources aimed at compiling
relevant clinical information on DLGGs have already been
developed (https://lggregistry.wixsite.com/study); however, these
lack a systematic approach to prospective collection and
annotation of data. The validity and yield of international multi-
center collaborative studies in DLGGs has been demonstrated
(4, 5). Furthermore, natural language processing, computational
capabilities, and healthcare information technology continue to
improve, making electronic health/medical records (EHR/EMR)
an invaluable resource. Combining these resources may enable
the compilation of prospective clinical, imaging, surgical,
functional, histopathological/ molecular, and neurocognitive
data into an international multi-center database for large scale
analysis, allowing for more efficient and economical analysis than
possible in RCTs.

Nevertheless, this approach presents its own pitfalls.
Increasing legal and privacy laws may limit the inter-institutional
flow of patient information (52). Moreover, a lack of data
standardization between EMRs poses further challenges in
efficiently combining data, and would require significant
coordination and collaboration between participating centers in
order to produce data that would be homogenous enough
to analyze as a single data set. However, patients own
the rights to their clinical information and should decide
whether this information is shared (53). In conjunction, better
connectivity between clinical and legal teams is necessary
to devise comprehensive strategies that enable the greatest
advancement of science and patient care within the confines
of the law. Healthcare professionals must continue their role
as patient advocates by participating in the improvement of
EMRs to increase fidelity. Oversight by experts in the field would
also ensure the collection of relevant data, which would help
increase efficiency.

Successful establishment of international registries would
enable the acquisition of large-scale multi-modal data. Using
propensity score matching, known confounders could then
be accounted for, enabling identification of associations and
correlations that might predict success with certain treatment
paradigms in a manner that most closely resembles RCTs (54).
However, this would require a hypothesis-driven approach, a
priori knowledge of potential confounders, and may result in
potential exclusion of putative covariates that can be influential.

Thus, alternative data-driven methods such as machine learning
be required to analyse these registries.

Machine learning and artificial intelligence algorithms in
general have seen significant uptake in healthcare research in
recent years, and these tools show great promise for use in
analyzing large datasets in LGG as well (55). The traditional
method of statistical inference from data, namely regression-
based prognostic modeling, loses stability when dealing with
large data sets in which co-linearity between multiple variables
might exist, such as in potential large-scale observational
registries (56). When this occurs, some predictor variables in the
data might be able to be linearly predicted by others, causing
inaccurate estimates about the impact of any one variable on the
outcome of interest. In addition, traditional regression models
are often unreliable with datasets that contain large feature:
sample size ratios, wherein large numbers of predictor variables
exist for a dataset with limited sample size to draw conclusions
from. Many machine-learning algorithms, on the other hand,
address these issues and thereby provide greater ability to analyse
the complex sets of data procured from large registries. A
particularly appealing application of these algorithms to the study
of DLGGs is the ability to continually “learn” and refine the
model(s) created. “Supervised” algorithms, including support
vector machines and artificial neuronal networks, use a “training”
set of data to develop a classification algorithm, and then apply
the learned algorithm to novel data sets to help identify features
in new data (57). These techniques might be harnessed in the
setting of DLGG by using large observational data sets to identify
factors in imaging/patient characteristics that might predict
response to certain modalities of treatment, and therefore inform
patient care. Furthermore, “unsupervised” learning algorithms,
such as hierarchical or k-means clustering, can be applied to
identify novel patterns in imaging andmolecular data through an
unbiased approach, without any prior “training” data (58). This
new information can then be assessed for predictive/classification
potential. In the setting of DLGG, these methods might be
valuable for identifying patterns in patient data and classifications
of tumors that might not be otherwise immediately recognizable.
It is essential to note that one algorithm or model is not
suitable in all scenarios and a combination of strategies, such as
“blending,” may be required (Figure 1). Table 1 provides a high-
level comparison of various data analysis methods that might
be of use in DLGG research, and Table 2 defines some common
terms used in statistics and machine learning.

Similar computational approaches have shown great promise
in other areas of oncology, such as breast cancer (59).
Further, international competitions to develop the most efficient
computational models for predicting cancer survival have
been successful in breast cancer, where the most effective
crowdsourced model outperformed the previously existing best-
in-class model reported in the literature when scored by blinded
assessment (59). Therefore, opening the forum to competition
to develop the best predictive models for DLGG by harnessing
large-scale observational data sets might be a unique and
useful approach.

Despite the promise of ML techniques, these algorithms
are not a solution to poor data quality; poor input results in
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TABLE 1 | Comparison of current analytical methods utilized in data-driven

research with potential for application to DLGG research.

Method Advantages Limitations

SUPERVISED LEARNING

Regression • Commonly used

• Easy to interpret

• Low variance

(high generalizability)

• Multi co-linearity

• Large feature: sample size ratio

• High bias (training error)

Decision trees • Applicable to both

classification and

regression

• Intuitive design and

presentation

• Applicable to various

data types

• Over-fitting

• Mutually exclusive classes needed

• Order of decision node selection

impacts results

Random

forest

• Addresses issue of

over-fitting in

Decision Trees

• Less interpretable than

Decision Trees

K-nearest

neighbors

• Applicable to both

classification and

regression

• Works well with

missing data

• Predictions based on similarities

rather than creating models

• Assumption of equal relevance for

features

• Forced classification of features

based on similarities

Support

vector

machines

• Over-fitting less likely

• Robust with large

features: sample size

ratio

• Reduced

computational complexity

• More complex than Decision Trees

• Hard to interpret

Naïve bayes • Based on commonly

known statistical

principles

• Higher classification

speed

• Easy to interpret

• Assumption of independence

• Assumption of normal data

distribution

• Frequency of observations affect

accuracy of model

Neural

networks

• Applicable to both

classification and

regression

• Versatility of methods

(statistical and

Boolean operations)

• Selection of type and combination

of layers challenging

• Difficult to interpret

UNSUPERVISED LEARNING

Self-

organizing

feature maps

• Dimensionality reduction

along with clustering

• Easy to interpret

• Affected by missing data

• High computational cost

Hierarchical

clustering

• Does not require

pre-specification of

number of clusters

• Visually easier

to interpret

• Framework for selecting metrics

such as linkage type and measure

of dissimilarity difficult to establish

K-means

clustering

• Computational efficiency • Requires pre-specification of

number of clusters

• Affected by outlier data

poor output. Similarly, internal and external validity must be
demonstrated on an independent test dataset; this is particularly
relevant to ML algorithms as small sample sizes or highly
constrained models can result in over-fitting of training data
(58). This issue is particularly important for LGG as they

TABLE 2 | Common terms and definitions used in machine learning research.

Term Definition

Artificial

intelligence

• The development of computer algorithms and/or systems that

are capable of performing tasks which traditionally require

human intelligence, including visual perception, speech

recognition, decision-making, and categorization

Data

mining

• A multifactorial approach to identifying patterns and correlations

within large datasets using statistics, machine learning, and

database management software

Machine

learning

• A subset of AI; computer algorithms that use a set of “training”

data to identify patterns, enabling prediction of future data

trends and classification of previously unseen data. ML

algorithms are continually able to adjust and learn from new

data to improve predictive or decision-making performance.

Natural

language

processing

• A subfield of AI and linguistics that uses machine learning

techniques to analyse language data, including speech

recognition and generation.

Deep

learning

• A branch of machine learning that is based on algorithms

known as artificial neural networks

Neural

networks

• Computational algorithms used in machine learning that are

inspired by biological neural networks; these algorithms are

capable of learning to perform complex tasks by using training

data to inform actions taken on new data, without specific rules

needing to be hard-coded for each task

Supervised

learning

• An approach to machine learning that uses labeled training data

to train an algorithm to predict a desired and known output

variable from new input data. The characteristics of the training

data are known to the researcher.

Unsupervised

learning

• An approach to machine learning that does not use any specific

training data, and instead trains an algorithm on an entire set of

input data. The goal is to uncover associations and structure

within the data, without a known and pre-specified

output variable.

are a low-frequency set of diseases, making it difficult to
procure large enough datasets to train and validate clinically
relevant and robust ML models. Despite this problem, past
work in developing ML models to predict glioma grading and
molecular characterization based on imaging has been quite
successful. For example, Akkus et al. developed an algorithm
to predict deletion of chromosome arms 1p/19q from T1/T2
imaging using a cohort of 159 LGGs, with sensitivity of 93.3%
and specificity of 82.2%, showing promise in using ML to
inform glioma management (60, 61). These existing works are
promising and showcase the immense potential for ML in future
glioma research.

Ideally, any ML-based algorithms used in informing clinical
decision making or evaluated in clinical trials will be declared
and registered a priori, as is expected for clinical trials. When
feasible, the data source should be made public along with the
algorithms used for analysis. Consideration should be given to
the development of quality checklists, such as the CONSORT
statement for clinical trials, in studies reporting ML-based
findings. These efforts are already underway by the CONSORT
AI and SPIRIT AI steering groups, using the EQUATOR
guideline development framework to develop extensions to
the CONSORT and SPIRIT statements for AI-based studies
(62). Once particular predictive/classification models are better
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established, association with outcomes and perhaps causality can
be assessed through clinical trials.

CONCLUSION

In this critical review, we have provided an overview of the
current state of evidence pertaining to DLGG management,
highlighted some of the gaps in knowledge, and outlined
possible strategies for the acquisition of better evidence. As
part of this endeavor, we have first discussed the nuances
and challenges associated with conducting the gold standard
approach, an RCT. Recognizing the difficulty in overcoming
some of these challenges, we have outlined more pragmatic
approaches, including more effective collection of data through
large-scale registries and ML-based statistical analysis of this
“real-world” observational data. As shown in Figure 1, we have
outlined a strategy for utilizing modern data analysis strategies
and various data sources to develop more compelling data
for informing DLGG care, and have outlined a pathway for
refining this strategy using feedback from the neuro-oncology
community. Moving forward, it is critical for the neuro-oncology
community to evaluate the necessity and specific eligibility

criteria for an RCT, work to develop more effective prospective
observational registries, and integrate various data sources using
data-driven computational analysis, in order to develop higher
quality evidence for DLGG management and ultimately improve
patient care for this group of tumors.
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