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Web malware spread modelling and 
optimal control strategies
Wanping Liu1,2 & Shouming Zhong1

The popularity of the Web improves the growth of web threats. Formulating mathematical models 
for accurate prediction of malicious propagation over networks is of great importance. The aim of 
this paper is to understand the propagation mechanisms of web malware and the impact of human 
intervention on the spread of malicious hyperlinks. Considering the characteristics of web malware, a 
new differential epidemic model which extends the traditional SIR model by adding another delitescent 
compartment is proposed to address the spreading behavior of malicious links over networks. The 
spreading threshold of the model system is calculated, and the dynamics of the model is theoretically 
analyzed. Moreover, the optimal control theory is employed to study malware immunization strategies, 
aiming to keep the total economic loss of security investment and infection loss as low as possible. 
The existence and uniqueness of the results concerning the optimality system are confirmed. Finally, 
numerical simulations show that the spread of malware links can be controlled effectively with proper 
control strategy of specific parameter choice.

Secure networks are known to be crucial to cyber business and online payment. However, real computer systems 
always suffer from malware programs that perform malicious or unwanted operations. With the rapid develop-
ment of information technologies, the diversity of malicious software evolves largely in the past decades, from 
traditional computer viruses to current families of mobile viruses, Internet worms, Trojans, Adware, Spyware and 
so on1. Essentially, they can range from being simple annoyances (pop-up advertising) to causing serious mali-
cious invasion, e.g., stealing passwords and valuable data or controlling compromised devices over networks2.

Nowadays, the World Wide Web (WWW) is widely and consistently used in business activities, online banking,  
and e-commerce as well as everyday lives of human beings worldwide. There are over 1 billion websites world-
wide, and the number of global Internet users has exceeded 3 billions, according to the online statistical estimates 
by an International website3. But, it is relatively unprotected, and the number of web threats significantly grows 
as a result of the popularity of the Web. Especially, the appeal of Web 2.0 applications will bring users benefits of 
greater interactivity and more dynamic websites, but it also further increases the vulnerability of the Web, e.g., 
suffering greater security risks inherent in browser client processing.

Most of cyber-criminals are now financially motivated to develop new types of malware. Recently, web-based 
malware has seen tremendous growth due to the widespread adoption of mobile devices. Unlike Internet worms4–6  
that can automatically replicate themselves, web malware usually attack hosts by taking advantage of the vul-
nerabilities of web pages, and proliferate by means of social engineering. So, user intervention characterizes the 
spreading process of this kind of malware (e.g., bundled viruses). Hosts infected by web malware can suffer from 
modifications of browser settings (e.g., default homepage, search bars, toolbars), cause user registry modifica-
tion, display intermittent advertising pop-ups or even transmit information about your web-browsing habits to 
advertisers or other third party interests without your awareness. Nowadays, web-based viruses have become 
an increasingly attractive option for cyber-criminals to attack users without searching for new vulnerabilities in 
network services. They can spread in the form of hyperlinks (i.e., the addresses of corresponding harmful websites 
purporting to proliferate malware) which may exist in short messages or spam emails that lure victims to click 
on the malicious URLs and then redirect to a false web page which is able to inject malware into their devices. In 
the past few years, the number of browser-based infections has grown exponentially, and malicious links have 
become a major threat. Thus, there is a need to carefully characterize the spread of web viruses and develop effi-
cient strategies for web malware containment.

Attackers often use social networks to distribute malware7,8. Researchers of BitDefender claimed that malware 
originating from harmful links on Facebook was the top attack vector for mobile devices. Spam links on social 

1School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, 
China. 2College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, 
China. Correspondence and requests for materials should be addressed to W.L. (email: lwphe@163.com)

received: 11 October 2016

accepted: 08 January 2017

Published: 10 February 2017

OPEN

mailto:lwphe@163.com


www.nature.com/scientificreports/

2Scientific Reports | 7:42308 | DOI: 10.1038/srep42308

networks are infecting mobile devices easily since they are often platform-independent. Moreover, financial pur-
poses enormously motivate cyber-attackers to use websites to conduct phishing attacks that attempt to acquire 
personal or financial information such as usernames, passwords, and credit card details. For instance, some 
spoofed websites or links are intentionally designed to seem official, or even these sites are legitimate, but have 
been compromised by malware, SQL injection or other malicious techniques. Typically, phishing is carried out by 
the way that the user views a phishing message, in spoofing emails or instant messages, and is tricked into clicking 
a link that leads to a malicious website9. Consequently, it is important to make a trial on better understanding of 
the diffusion of malicious URLs for improving the safety and reliability of devices and networks.

In the past decades, a variety of epidemic models were developed to address the diffusion of disease  
infections10–12 and population dynamics13–16. Especially, spatial effects on herbivore populations are recently 
studied in structured populations in ecosystems17–19. Inspired by the research of biological epidemics20, malware 
epidemiology similarly aims to study the dynamics of malware spread over time and analyze the factors affecting 
its propagation process21,22. Much effort has also been done in the area of developing mathematical models for 
malware spread23, and most existing models for malicious code are based on deterministic epidemic models24,25. 
For instance, some earlier mathematical models were obtained by the compartmental approach, such as epidemic 
SIS, SIR and SIRS models26,27, which differ by considering whether the acquired immunity is permanent or not. 
Modification of theses models generated guides for infection prevention by using the concept of epidemiological 
threshold28,29. Some dynamical models were further proposed to give estimations for temporal evolutions of 
infected nodes depending on network parameters considering topological aspects of the network. But, in most of 
previous works, susceptible computers were assumed to be instantaneously infective as soon as they were infected 
and later recovered with a permanent or temporary acquired immunity. In fact, however, a device receiving 
malware messages will not immediately become infective until the user activates it by clicking on the hyperlink 
address and successfully accessing the malware websites. On the other hand, in spite of much work having been 
devoted in the past decades to understanding the spreading behavior of malware30,31, those models were actually 
limited to model the propagation of computer viruses and Internet worms. As far as we are concerned, few work 
focuses on addressing the characteristics of web malware and their propagation dynamics. Besides, empirical 
results indicate that human dynamics have effects on web malware diffusion. However, little is known about how 
human behaviors have influences on web malware outbreak and propagation when user’s security awareness is 
considered. Therefore, this paper aims to establish an elementary dynamical model (relatively simple in the form 
of ordinary differential equations) to address how web malware spread with the impact of users’ security aware-
ness, and develop proper prevention strategies with human interventions by the optimal control theory.

Results
A compartment-based model.  Web malware and propagation mechanisms.  Generally speaking, web 
malware is a specific kind of malicious programs that use web pages to implement destructions. They usually 
employ the vulnerabilities of browsers to achieve viral implants by using some malicious codes written in Script. 
There are different variants of web malware that infect websites, such as iframe viruses. Most of them use iframe 
HTML code to cause damage by injecting iframe tags into the website32. Web threats are able to cause a broad 
range of risks, such as financial damages, damage of company reputation, and loss of consumer confidence in 
e-commerce and online banking33. Furthermore, multiple types of web malware benefit cybercriminals by steal-
ing confidential information for subsequent sale and help absorb infected devices into botnets.

Attackers exploit the vulnerabilities of browsers or webpages to design and proliferate malicious viruses. 
Distribution of malicious programs has been largely expanded beyond traditional channels like email viruses 
to harder-to-avoid approaches like automated “drive-by downloads” launched by infected webpages (see Fig. 1). 
There are mainly the following several ways for the spread of web threats over networks.

Taking fraudulent methods.  In this way, phishing and spam are taken to lure users to malicious (often spoofed) 
websites which can collect information by injecting malware. Network attackers use phishing, DNS poisoning or 
other means to make them appear to originate from a trusted source34.

Using social engineering.  One fundamental method is to write and forward tempting messages or emails con-
taining the addresses of infected websites. More specifically, malware developers employ social engineering such 
as enticing subject lines that reference popular personalities, sports, pornography, world events and other hot 
topics to design malicious links. Once users receive these types of deceptive information and are enticed to click 
on the hyperlinks which direct to the malicious websites, web viruses will be automatically downloaded and acti-
vated, resulting in personal information leak, such as accounts and passwords.

Infecting legitimate websites.  By this way, legitimate websites infected by web malware will unknowingly transmit  
malware threats to visitors or alter search results to take users to malicious websites. Upon loading the page, the 
user’s browser passively runs a malware downloader in a hidden HTML frame without any user interaction.

Compartments and parameters.  In this section, we aim to develop a new compartmental model to characterize  
the propagation of web-based malware. For convenience, the devices through which malware propagates are 
also called as nodes in the sequel. In our model, a host under consideration is assumed to be in one of four 
states: susceptible(S), delitescent(D) (not yet infective), infected(I), or recovered(R). The state of a node is actually 
changing over time, i.e., switching among the above four states, because of the proliferation of malware links and 
the defense of antiviruses. A susceptible node first goes through a delitescent period before being infectious, and 
a typical pathway of malicious link infection is S →​ D →​ I →​ R →​ S (see Fig. 2). Next, several assumptions and 
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parameters are introduced. If a user successfully visits the malware website by clicking on the hyperlink within 
deceptive messages or spam emails, the host will get infected. In the following, an infected host is assumed to be 
able to forward the malicious messages through users’ contact lists. Susceptible nodes are assumed to immedi-
ately become delitescent as soon as they receive messages containing malicious URLs. Note that user behaviors 
will play a significant role in affecting the proliferation of malicious hyperlinks. Obviously, vigilant users have a 
high probability to identity and eliminate malware messages, and update recent security patches to fix bugs for 
system immunization. Based on this consideration, a parameter η is introduced to depict the probability of a 
D-node leaving for the recovered compartment. On the other hand, users without enough security awareness are 
probably enticed to click on the malicious links and get infected by the malware automatically downloaded from 
the insecure websites. Hence, a parameter ε is introduced to describe the probability of that a D-node leaves the 
delitescent compartment for the infected compartment. There is also another case that the states of some D-nodes 
may keep unchanged, because users may neglect the received malware links and do not take any measures to deal 
with them.

Infected devices by malware intrusion may exhibit certain symptoms, such as strange disruptions, battery 
draining and performance clogging. Once abnormal behavior is found, users will take security measures to detect 
and immune their systems. Thus, we introduce a parameter γ to describe the probability that an I-node gets 
immunization and turns to be recovered.

Immunity is observed when anti-malicious software is run after a node gets affected by malware. However, 
this kind of immunity is usually temporary. Specifically, when a node is recovered from the infected class, it 
recovers temporarily, acquiring temporary immunity with certain probability. Because of malware evolution or 
secure update failure, R-nodes will become back susceptible to malicious infections again. Considering this, a 

Figure 1.  Diagram of web malware spread mechanism. The clients or terminals will get infected once they 
visit the compromised webpages on the web server which has been intruded.

Figure 2.  Transition diagram for the SDIRS model. The green (respectively, blue, red, yellow) circle 
represents susceptible (respectively, delitescent, infected, recovered) nodes (marked by S, D, I, R, respectively).
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parameter ζ is introduced to depict the probability of a R-node leaving for the susceptible compartment owning 
to immunity failure.

Infective devices will send malicious link copies to their neighboring nodes. For different kinds of malware, 
the rate of infecting susceptible nodes may be distinguished. This is an important concern for establishing an 
effective model. Here, the infection rate λ is defined as the probability that an S-node receives the malicious link 
sent by a neighboring I-node within a unit time.

Model formulation and analysis.  As a matter of fact, the number of nodes in each compartment is dynamically 
changing over time. Thus, four variables S(t), D(t), I(t) and R(t) are introduced to describe the numbers of sus-
ceptible, delitescent, infected and recovered nodes at time t, respectively. The network size at time t is denoted by 
N(t), i.e., N(t): =​ S(t) +​ D(t) +​ I(t) +​ R(t).

For simplicity, we assume that all newly-connected nodes are susceptible. The parameter b denotes the rate 
of nodes that are newly connected to the network within per unit time, and the parameter d is the disconnection 
probability that a node leaves the network per unit time. By applying the mean-field technique to the above 
assumptions, a compartmental model can be formulated as
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where the parameters ε, η, γ, b, d, ζ are nonnegative, and ε +​ η <​ 1.
Adding the equations of system (1) leads to N′​(t) =​ b −​ dN(t), which can be explicitly solved as 

N(t) =​ b/d +​ (N(0) −​ b/d)e−dt, where N(0) represents the initial number of nodes over the network. It can be easily 
observed that N(t) is varying over time if N(0) ≠​ b/d. This corresponds to the fact that real networks are always 
evolving, owing to certain nodes dynamically connected to or disconnected from the network. While for the 
special case N(0) =​ b/d, the size of the network will keep constant due to a balance of newly-connected and 
disconnected nodes. The explicit solution also indicates that for the case N(0) <​ b/d the total network size N(t) 
will strictly increase to the final saturation number of b/d. Actually, the numbers of terminal devices over real 
networks will also reach saturation by some technological constraints, such as IP addresses, network bandwidth, 
and communication channel congestions.

Remark 1: Note that if b =​ d =​ 0 then system (1) reduces to model web malware propagation over a static 
network. And, for the case ζ =​ 0 model (1) looks similar to the classical SEIR model with demographics in  
epidemiology35, however, we mainly consider it for the characteristics of web malware propagation and incor-
porate the impact of human intervention into the model by introducing the appropriate parameter η​. Thus, the 
above SDIRS model is essentially a newly-formulated model for web malware propagation with varying network 
size.

Propagation threshold.  The propagation threshold of model (1) (usually also called as basic reproduction number 
in epidemic models which can be explained as the average number of secondary infections produced by a single 
infected node during its infection time) is calculated as (see Methods A for detailed calculations)
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0

Note that all the parameters in system (1) except for ζ have impact on the propagation threshold R0. This can 
be explained by that the parameter ζ which describes the probability of a R-node losing temporary immunity does 
not reflect the infective ability of current propagating web malware. By viewing the parameters in (2) as variables, 
then it obviously follows by the expression of (2) that R0 is strictly decreasing with respect to the parameters γ, η, 
d, respectively, while R0 is strictly increasing with respect to another two parameters b and λ, respectively. For the 
parameter ε, straightforward calculations yield
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Thus, the threshold R0 is monotonically increasing with respect to ε. The parameters ε, γ and η are important 
since they reflect human intervention on malware infection process. Figure 3(a,b) show values of R0 as a function 
of two varying parameters ε and γ (respectively, ε and η) with other parameters specifically given.

The propagation threshold R0 plays a significant role in determining the dynamics of system (1). It follows by 
calculations that system (1) always possesses a malware-free equilibrium point  = b d( / , 0, 0, 0)0  and has a 
unique malware equilibrium  =⁎ ⁎ ⁎ ⁎ ⁎S D I R( , , , ) while R0 >​ 1, where
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Stability analysis.  We intend to address the stability of the equilibria of system (1). Firstly, we define the global 
stability of an equilibrium for system (1) with respect to Ω ⊆ Ω = +0

4 . Let   . . ⁎(e g , or )0  be an equilibrium 
of system (1), then it is said to be globally asymptotically stable with respect to Ω0 if it is Lyapunov stable and for 
each initial value x(0) ∈​ Ω0, then − =→∞ txlim ( ) 0t , where x(t) =​ (S(t), D(t), I(t), R(t)).

Then, we theoretically prove the global stability of the malware-free equilibrium 0 of system (1) with respect 
to Ω if R0 <​ 1 (see Methods B). This means that under the model (1) once the threshold R0 <​ 1 (under the compre-
hensive effect of all parameters), then the web malware (for any initial state within Ω) is bound to eventually 
disappear from the network. In this case, the web malware itself may have low diffusion ability, e.g., the malicious 
links can be easily recognized, so users will neither click on them nor forward them to other friends. Besides, high 
security awareness of users also benefits the reduction of R0 even if the web malware has strong infective ability. 
Figure 4 numerically illustrates the analytical results. The parameters used for numerical simulations are chosen 

Figure 3.  Fixing the parameters b = 100, λ = 0.00005, d = 0.01. (a) Values of R0 as a function of varying ε and 
γ with fixed η =​ 0.5. (b) Values of R0 as a function of varying ε and η (ε +​ η <​ 1) with constant γ =​ 0.1.

Figure 4.  Taking that 100 nodes are connected to the network per unit time, i.e., the connection rate 
b = 100, and nodes are disconnected from the network with the probability d = 0.01, and the remaining 
parameters are chosen as λ = 0.00005, ζ = 0.1, η = 0.5, ε = 0.2, γ = 0.2. (a) Solutions of system (1) with 
specific initial values S0 =​ 1000, D0 =​ 1000, I0 =​ 3000, R0 =​ 2000. (b) Phase diagram of D(t), I(t) and R(t) with 
different sets of initial values.
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such that the conditions of the global stability of 0 are satisfied. For the set of parameter values given in Fig. 4, 
the value of R0 is obtained as 0.8190. Thus, it is apparent from Fig. 4(a) that components of D(t), I(t), R(t) eventu-
ally converge to zero, and the component S(t) is finally approaching to the saturation number of 

= =N b d/ 10000max . To illustrate the global stability of 0, we have plotted the solution trajectories in D–I–R 
space starting from different initials in Fig. 4(b), in which all trajectories are eventually approaching to the point 
(0, 0, 0).

For the case R0 <​ 1, the global dynamics of (1) in Ω has been completely determined. Its epidemiological 
implication is that the number of infected nodes over the network vanishes in time so web malware finally disap-
pears from the network. While for R0 >​ 1, the web malware will persist. The web malware is said to be endemic if 
the infected nodes over the network persist above a certain positive level for sufficiently long time. It can be well 
captured and analyzed through the notion of uniform persistence. System (1) is said to be uniformly persistent 
(see refs 36 and 37) if there exists a constant 0 <​ c <​ 1 such that any solution (S(t), D(t), I(t), R(t)) with (S(0), D(0), 
I(0), R(0)) ∈​ Ω°  (the interior of Ω) satisfies

≥ .
→∞ →∞ →∞ →∞{ }S t D t I t R t cmin lim inf ( ), lim inf ( ), lim inf ( ), lim inf ( )

t t t t

Thus, the web malware is endemic if system (1) is uniformly persistent. And, we can easily prove that system 
(1) is uniformly persistent by using Theorem 4.3 in ref. 38 (refer to the proof of Proposition 3.3 in ref. 39). In this 
case, both the numbers of infected and delitescent nodes persist above a certain positive level.

For the infected equilibrium ⁎ of system (1), we theoretically prove its asymptotical stability if R0 >​ 1 and 
further discuss the global stability of the special case ζ =​ 0 under certain assumptions (see Methods C). This means 
that under the effects of parameters in model (1), once the threshold R0 >​ 1, then the number of nodes infected by 
web malware will finally keep a steady level. This case reflects the kind of web malware which may evolve or have 
strong infectivity, and thus there exists a game between web malware and antivirus software. Figure 5 numerically 
illustrate the stability of ⁎. For the set of parameter values specifically given in Fig. 5, the value of R0 is computed 
as 1.1582 >​ 1, and the corresponding infected equilibrium is  ≈⁎ (7455, 309, 294, 1941). Figure 5(a) shows the 
evolutions of system (1) with a specific set of initial values, from which it can be seen that all the components of 
system (1) eventually converge to corresponding infected equilibrium states, respectively. In order to explore how 
the solutions evolve with different starting points, Fig. 5(b) shows the plot of solution trajectories in D–I–R space 
starting from different initials. It can be observed that all the trajectories are eventually approaching to the point 
(D∗, I∗, R∗) =​ (309, 294, 1941).

Parameter analysis.  For the case R0 >​ 1, let Ψ = ε ζ
ζ γ ε γ η ε

+
+ + + + + +

b d
d d d d

( )
[ ( ) ( ) ( ) ]

, then = Ψ −⁎I R(1 1/ )0
2 . In 

Fig. 6(a), it is obviously shown that greater infection rate λ benefits the propagation of web malware, resulting in 
keeping a final higher number of infected devices. It can be also seen in Fig. 6(a) that the infected component of 
malware equilibrium possesses significant difference when λ ∈​ [0.00005, 0.001], while I∗ has inconspicuous 
increase while λ belongs to the interval (0.001, 0.01). By taking several different sets of parameters, the evolutions 
of I(t) are also shown in Fig. 6(b), which indicates that some web malware (characterized by choosing appropriate 
parameters) is possible to intrude the whole network.

By viewing the parameter ζ as a variable, straightforward calculations yield

Figure 5.  Taking that 100 nodes are connected to the network per unit time, i.e., connection rate b = 100, 
and nodes are disconnected from the network with the probability d = 0.01, and the other parameters are 
chosen as λ = 0.0001, ζ = 0.1, η = 0.5, ε = 0.2, γ = 0.2. (a) Components of system (1) with the specific starting 
point (1000,1000,3000,2000). (b) Phase diagram of D, I, R of system (1) with different starting initial points 
(green stars) within Ω° .
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Thus, Ψ​ is strictly increasing with respect to ζ. Besides, ζ is not incorporated in R0, and ε has positive effect 
on both Ψ​ and R0. Therefore, I∗ is strictly increasing with respect to ζ and ε, respectively. Figure 7(a,b) show how 
the parameters ζ and ε contribute web malware spread, respectively. The number of infected nodes undergoes 
a drastic change in the early time, and then would finally keep a balance. Higher values of ζ and ε will result a 
greater eventual level of malware-infected nodes, however, when both parameters ζ and ε reach great enough, the 
infected component of the malware equilibrium possesses less obvious increase.

In contrast, the parameter γ has obvious negative effect on Ψ​, and both γ, η have negative effects on R0. 
Furthermore, note that Ψ​ does not incorporate η, thus I∗ is strictly decreasing with respect to γ and η, respectively. 
Figure 8(a,b) show how the parameters γ and η inhibit the propagation of web malware, respectively. As γ and η 
increase, the level of infected nodes possesses less reduction, which indicates that the security investment is not 
proportional to the effectiveness of malware prevention. In other words, when the amount of security investment 
achieves a certain extent, user’s security awareness and the effects of anti-malware measures grow slowly.

Optimal control and strategies.  In system (1), there are four state variables S(t), D(t), I(t) and R(t). All the 
parameters in system (1) are constant, however, the real parameters should be time-varying. Thus, in this section, 
some of these parameters are considered to be controllable, and how to control the dynamic systems is worth 
studying40,41. We will use the control theory to obtain proper strategies for preventing malware spread over net-
works. First, we assume that the parameter η is controllable, and the variable function η(t) is introduced to reflect 
the probability that a D-node turns to be a R-node with the influence of user awareness at time t. Let 
 η η= ≤ ≤ Λ ∈t t t T{ ( )is measurable, 0 ( ) , [0, ]} indicate an admissible control set.

Figure 6.  Evolutions of the infected component of system (1) with b = 100, d = 0.01 and initial vector  
(1000, 1000, 3000, 2000). (a) Taking ζ =​ 0.1, η =​ 0.35, ε =​ 0.25, γ =​ 0.2 and the infection rate λ is varying.  
(b) Evolutions of I(t) with several different sets of parameters.

Figure 7.  Consider system (1) with parameters b = 100, d = 0.01, λ = 0.0002, η = 0.3, γ = 0.3 and initial 
vector (1000, 1000, 3000, 2000). (a) Evolutions of the infected component of the case ζ =​ 0.1 with varying ε.  
(b) Evolutions of the infected component of the case ε =​ 0.25 with varying ζ.
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The economic impact of malware attacks worldwide is dramatically increasing. As we all know, malware would 
cause massive direct damages and costs, such as labor costs, costs of repairing and cleansing infected systems, 
loss of user productivity, loss of revenue due to loss or degraded performance of system, and other costs directly 
incurred as the result of a malware attack. In order to effectively avoid malware attacks, updated anti-malware or 
firewall are widely deployed at both the organizational level and the individual level to defend against malware 
threats. But, these preventive measures also cost much security investment. Next, we aim to minimize the total 
cost of direct loss and security investment.

The optimal problem.  The more nodes are infected by malware, the greater economic loss is. Thus, the financial 
loss caused by malware can be considered to be relevant to the number of infected nodes. We introduce a function 
Floss(I(t)) to describe the economic loss caused by the malware-infected nodes over the network. For simplicity, 
we suppose that the average loss caused by a single infected node per unit time is a suitable constant φ. Then, the 
whole loss caused by all the infected nodes within a unit time is φI(t) which is proportional to the infected node 
number. Then, we can compute the loss function across the time interval [0, T] as follows

∫ φ= .F I t I t dt( ( )) ( )loss
T

0

In addition, we also suppose that the level of user security awareness grows with the increasing of security 
investment. So, inversely, the cost investment function, denoted by Fcost(η(t)), is also monotonically increasing 
with the value of η(t) which reflects the level of user security awareness. Here, we define

∫η ϕη=F t t dt( ( ))
2

( ) ,cost
T

0

2

where ϕ is an appropriate coefficient. The greater ϕ is, the more security investment costs for same improving of 
user security awareness. The square of the control variable reflects the severity of the size effects of control.

In the sequel, we propose an optimal control problem to minimize the following objective functional

∫η φ ϕη=






+






J t I t t dt( ( )) ( )
2

( ) ,
(3)

T

0

2

subject to

λ ζ

λ η ε

ε γ

η γ ζ











= − + −

= − − −

= − −

= + − −

dS t
dt

b S t I t R t dS t

dD t
dt

S t I t t D t D t dD t

dI t
dt

D t I t dI t

dR t
dt

t D t I t R t dR t

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ),
(4)

where J(η) is the sum of direct loss and preventive security investment.
For the sake of deriving an optimal solution pair, we need to define the Lagrangian and Hamiltonian for the 

optimal control problem (3) and (4). In fact, the Lagrangian of the optimal problem is given by

Figure 8.  Consider system (1) with parameters b = 100, d = 0.01, λ = 0.0002, ζ = 0.1, η = 0.35, ε = 0.25, 
and initial vector (1000, 1000, 3000, 2000). (a) Evolutions of the infected component of the case η =​ 0.35 with 
varying γ. (b) Evolutions of the infected component of the case γ =​ 0.3 with varying η.
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η φ ϕη= + .L I I t t( , ) ( )
2

( )2

Next, we need to seek a suitable η(t) such that the integral of the above Lagrangian arrives the minimum. To 
do this, we define the Hamiltonian H for the control problem as follows

η λ λ λ λ

η λ λ λ λ= +






+ + +






H S D I R t

L I t dS t
dt

t dD t
dt

t dI t
dt

t dR t
dt

( , , , , , , , , , )

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
(5)

1 2 3 4

1 2 3 4

where λ1(t), λ2(t), λ3(t) and λ4(t) are the adjoint functions to be determined suitably.

Theorem 1. Consider system (4) with the objective functional (3), then there exists an optimal control η ∈⁎ t( )  
such that η η= η ∈

⁎J t J t( ( )) min ( ( ))t( ) .
Proof. Note that the control variable and the state variables in system (4) are nonnegative. Besides, the coeffi-

cients involved in system (4) are bounded and each state variable of system (4) is bounded on the finite time inter-
val, so we can employ the result in ref. 42 (pp. 182) to confirm the existence of an optimal control to system (4).

First, the set of control and corresponding state variables is nonempty. All the right parts of the equations of 
system (4) are continuous, bounded and can be written as a linear function of η with coefficients depending on 
time and states. In this minimizing problem, the necessary convexity of the objective functional in η(t) is satisfied. 
The control space  η η= | ≤ ≤ Λ ∈t t t T{ ( ) is measurable 0 ( ) , [0, ]} is apparently convex and closed. Besides, 
the optimal system is bounded which determines the compactness needed for the existence of the optimal con-
trol. Additionally, the integrand of the objective function (3), i.e., I(t) +​ ϕη2(t)/2, is convex on the control η(t). 
And, it is easy to confirm that there exists a constant ρ >​ 1 and positive numbers v1 and v2 such that 
J(η(t)) ≥​ v1|η|ρ/2 +​ v2. Thus, we conclude that there exists an optimal control.

To find the optimal solution, the Pontryagin’s maximum principle is applied to show the existence of an optimal  
control.

Theorem 2. Let S∗(t), D∗(t), I∗(t) and R∗(t) be optimal state solutions associated with the optimal control variable 
η∗(t) for the optimal control problem. Then, there exist adjoint variables λ1(t), λ2(t), λ3(t) and λ4(t) that satisfy

λ
λ λ λ λ λ

λ
ε λ η λ ελ η λ

λ
φ λ λ λ λ γ λ γλ

λ
ζλ ζ λ

= + −

= + + − −

= − + − + + −

= − + +

⁎ ⁎

⁎ ⁎

⁎ ⁎

d t
dt

I t t d t I t t

d t
dt

d t t t t t t

d t
dt

S t t S t t d t t

d t
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t d t

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),
(6)

1
1 1 2

2
2 2 3 4

3
1 2 3 4

4
1 4

with transversality conditions

λ λ λ λ= = = = .T T T T( ) ( ) ( ) ( ) 0 (7)1 2 3 4

Furthermore, the optimal control η∗(t) is given by

η
λ λ

=










− 



Λ




.⁎ ⁎t t t

c
D t( ) min max 0, ( ) ( ) ( ) ,2 4

Proof. First, we use the Hamiltonian (5) to determine the adjoint equations and the transversality condi-
tions. By setting S(t) =​ S∗(t), D(t) =​ D∗(t), I(t) =​ I∗(t) and R(t) =​ R∗(t), and differentiating the Hamiltonian (5) with 
respect to the state variables S, D, I and R, we obtain

λ
λ λ λ λ λ

λ
ε λ η λ ελ η λ

λ
φ λ λ λ λ γ λ γλ

λ
ζλ ζ λ

= −
∂
∂
= + −

= −
∂
∂
= + + − −

= −
∂
∂
= − + − + + −

= −
∂
∂
= − + + .

⁎ ⁎
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d t
dt

H
S
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d t
dt

H
D
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d t
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H
I

S t t S t t d t t

d t
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H
R

t d t

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )
(8)
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2
2 2 3 4

3
1 2 3 4

4
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By the optimality conditions, we have

η
ϕη λ λ

∂
∂

= − + = .
η

⁎ ⁎ ⁎

⁎

H
t

t D t t D t t
( )

( ) ( ) ( ) ( ) ( ) 0
t( )

2 4
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It follows by the above identity that

η
λ λ

ϕ
=

−
.⁎ ⁎t t t D t( ) ( ) ( ) ( )2 4

Considering the property of the control set , we obtain

η
λ λ

ϕ

η
λ λ

ϕ
λ λ

ϕ

η
λ λ

ϕ




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



=
−
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t t t D t t t D t
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( ) 0, if ( ) ( ) ( ) 0,
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2 4
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So we have the optimal control η∗(t) which can be written in the following compact notation

η
λ λ

ϕ
=











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
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




.⁎ ⁎t t t D t( ) min max 0, ( ) ( ) ( ) ,

(9)
2 4

Here, the formula (9) for η∗ is called as the characterization of the optimal control. The optimal control and 
states can be found by solving the optimality system consisting of the state system (4) with boundary conditions, 
the adjoint system (6) and (7), and the characterization of the optimal control (9). To solve the optimality system, 
we use the initial and transversality conditions together with the characterization of the optimal control η∗ given 
by (9).

By substituting the values of η∗(t) into the control system (4), we get the following system

λ ζ

λ
λ λ

ϕ
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ε γ
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ϕ
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
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(10)

2 4
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To find out the optimal control and the state system, we need to numerically solve the above system (10).

Numerical algorithm.  In this section, we apply an iterative approach called Gauss-Seidel-like implicit 
finite-difference method to solve the optimality system. First, we discretize the time interval [0, T] into n 
sub-intervals at the points tk =​ kδ, k =​ 0, 1, …​, n(nδ =​ T), where δ is the time step. It is well known that the deriv-
ative of a differentiable function x(t) is defined by

=
+ ∆ −
∆

.
∆ →

dx t
dt

x t t x t
t

( ) lim ( ) ( )
t 0

Thus, the time derivative of the state variable can be approximated by its first-order forward-difference when 
the time step δ is small enough, e.g.,

δ
δ

=
+ −

.
dS t

dt
S t S t( ) ( ) ( )k k k

In the sequel, we denote Sk =​ S(tk), Dk =​ D(tk), Ik =​ I(tk), Rk =​ R(tk) and λ λ δ= − =− n k j(( ) ), 1, 2, 3, 4j
n k

j . 
By the Gauss-Seidel-like implicit finite-difference method developed by Gumel et al.43, we can get
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Then, the above state values can be used to solve the adjoint equations by approximating the time derivative of 
the adjoint variables using their first-order backward-differences because of the transversality conditions. Thus, 
we derive

λ λ
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Next, we can formulate an algorithm to solve the optimality system and get the optimal control by certain 
calculations. It follows by (11) and (12) that
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Then, by some calculations, it follows by (9) that the value of the optimal control at time tk + 1 is formulated as
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Numerical simulations.  In this section, we aim to do some numerical simulations for the optimality system by 
using the above iterative method. In order to compare the numerical results of system (1) and the control sys-
tem, we consider the same parameters, i.e., b =​ 100, d =​ 0.01, λ =​ 0.00005, ζ =​ 0.1, η =​ 0.5, ε =​ 0.2, γ =​ 0.2, and 
φ =​ 0.001, ϕ =​ 30. Through certain calculations, we plot Fig. 9(a) that shows the evolutions of the numbers of 
nodes in each compartment with the optimal control shown in Fig. 9(b). We can see in Fig. 9(b) that the optimal 
control η(t) increases in the early time and finally tends to a constant. This means that we should enlarge the 
security investment in the process of control. Figure 9(c) illustrates the evolution of infected nodes with optimal 
control, compared to the number of infected nodes without control.

In order to explore the influence of parameter ϕ, we design a numerical experiment with ϕ as a variable. 
Consider other parameters given above, Fig. 10 shows the dynamics of system (3) and (4) with five different val-
ues of ϕ. It is shown in Fig. 10(b) that the control variable decreases and approaches the equilibrium earlier with 
the increase of ϕ, while Fig. 10(a) shows that the number of infected nodes increases for greater value of ϕ. This 
indicates that security investment should be properly cut down when the cost arrives high enough.

Discussion
In this study, we introduce several parameters to describe the spread processes of web malware based on their 
mechanism analysis, and develop a new compartmental SDIRS model with varying network size to model the 
spread of web malware over networks. We compute the propagation threshold of the model and carry out its 
sensitivity analysis. The properties of the elementary model system are also carefully analyzed. If the threshold is 
below unity, the global stability of the malware-free equilibrium is theoretically proved. The malware equilibrium 
is proved to be locally stable if the threshold exceeds unity. Although we study the long behavior of this model, it 
can be only used to describe web malware spread within a short time interval since the parameters in the SDIRS 
model are assumed to be constant.
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Practical parameters are actually varying with time. So, based on the newly established SDIRS model, we 
consider the parameter η to be varying and controllable. Aiming to keep the total economic loss of security 
investment and infection loss as low as possible, we propose an objective functional and study the optimal con-
trol strategy towards the η parameter. Through theoretical analysis and the Pontryagin’s maximum principle, 
the expression of the optimal control is explicitly given. Numerical simulations show the effectiveness of taking 
the control strategy on inhibiting the spread of web malware over networks. Also, we suggest that users should 
enhance their awareness levels of network security, such as being able to discriminate malicious links and not 
to click on strange hyperlinks, installing updated anti-virus software on devices, keeping browsers updated and 
installing patches immediately.

Figure 9.  Plots of the control system (3) and (4) with parameters given above and with specific initial 
values S0 = 1000, D0 = 1000, I0 = 3000, R0 = 2000. (a) Optimal solutions of the state variables. (b) Plot of 
the optimal control η(t). (c) Comparison of infected nodes I(t) with control and without control. (d) Plot of 
the threshold R0(t) with varying η(t). (e) Plot of integrands in loss and cost functions. f) Plot of the objective 
function and the loss and cost functions.
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We develop the model (1) based on a homogeneously mixed assumption of the propagation network. It can be 
applied to model the proliferation of web malware over complete or regular networks. But, most real-world net-
works, such as the WWW and Internet, have been empirically found to be highly structured rather than simply 
homogeneously, e.g., each device may have heterogeneous malicious hyperlinks. The compartment-based models 
suffer from a common defect of not making full use of the knowledge concerning the structure of the propagation 
network. As a result, it is worth understanding the impact of network topology on the web malware prevalence. In 
recent years, network(node)-based models have already been considered and developed to model infectious dis-
ease diffusion over complex networks44,45, such as spatial epidemics46 and waterborne diseases47. Thus, our future 
work is to formulate further novel network-based models by incorporating the influence of network topology on 
web malware spread.

Methods
Calculation of the threshold.  Van den Driessche and Watmough48 developed a standard approach for 
calculating the spread threshold of compartmental models. For convenience, we first introduce it here.

We consider an n–dimensional deterministic system for modeling virus propagation, where the first m varia-
bles correspond to all infected compartments which are numbered as compartment 1 through m, and the left 
n −​ m compartments which are numbered as compartment m +​ 1 through n correspond to uninfected nodes. 
Denote a variable vector x =​ (x1, x2, …​, xn), where xi denote the number (or proportion) of nodes in the i-th com-
partment. Let  x( )i  be the rate of appearance of new infections into compartment i, + x( )i  be the rate of transfer 
of nodes into compartment i by all other means, and − x( )i  be the rate of transfer of nodes out of compartment i. 
Then the considered model can be shown as follows

= = − = …
dx
dt

f i nx x x( ) ( ) ( ), 1, 2, , ,i
i i iF V

where   = −− +x x x( ) ( ) ( )i i i . Let = … = …f fF x f x( ) ( , , ) , ( ) ( , , )n
T

n
T

1 1  , and  = …V x( ) ( , , )n
T

1 . For 
the functions in the above system, five assumptions (A1)–(A5) are described below.

(A1)  If x ≥​ 0, then F V V ≥− +, , 0i i i  for i =​ 1, 2, …​, n.
(A2) � If xi =​ 0, then  =− 0i . In particular, if x ∈​ Xs: =​ {x ≥​ 0|xi =​ 0, i =​ 1, …​, m}, which is defined as the set of all 

infection-free states, then =−V 0i  for i =​ 1, …​, m.
(A3)  =x( ) 0i  if i >​ m.
(A4)  If x ∈​ Xs, then  =x( ) 0i  and  =+ x( ) 0i  for i =​ 1, …​, m.
(A5)  I�f = …F x( ) ( , , )n

T
1   is set to zero, then all eigenvalues of Df(x0) have negative real parts, where Df(x0) 

is the derivative [∂​fi/∂​xi](i.e., Jacobian matrix) evaluated at x0 which is a (locally asymptotically) stable 
equilibrium.

Then, van den Driessche and Watmough proved a useful lemma (see Lemma 1 in the ref. 48). That is, if the 
above assumptions (A1)–(A5) are satisfied, then the derivatives DF(x0) and DV(x0) are partitioned as

= =






( )D F D V

J JF x V x( ) 0
0 0

, ( ) 0 ,0 0
3 4

where F and V are the m ×​ m matrices defined by

Figure 10.  The impact of ϕ on dynamics of optimal control system (3) and (4). (a) Evolutions of infected 
numbers with respect to varying ϕ. (b) Trajectories of optimal control of η(t) with respect to five different values 
of ϕ.
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F V

Further, F is non-negative, V is a non-singular matrix and all eigenvalues of J4 have positive real part. Then, 
the threshold can be defined as

ρ= −R FV( ),0
1

where ρ(A) denotes the spectral radius of a matrix A (refer to the ref. 48).
Next, in order to compute the threshold of the compartmental model, we denote

= = .t x t x t x t x t D t I t S t R tx( ) ( ( ), ( ), ( ), ( )) ( ( ), ( ), ( ), ( ))T T
1 2 3 4

Then the SDIRS model can be rewritten as follows

= = −
d
dt

x f x F x V x( ) ( ) ( ),

where F F F F V V V V= − = =− + − − − − −V x V x V x F V( ) ( ) ( ), ( , , , ) , ( , , , ) ,T T
1 2 3 4 1 2 3 4  =+ + + + +V ( , , , )T1 2 3 4    , 

and

λ
ε

η ε
γ
λ
ζ

ζ
η γ

=













=







+ +
+
+

+







=






+
+







.− +

x x
x

d x
d x

x x dx
d x

b x
x x

F x V x V x( )
0
0

, ( )

( )
( )

( )

, ( )

0
0

2 3

1

1

2

2 3 3

4

4

1 2

It is easy to verify that the functions satisfy assumptions (A1)–(A5).

(A1)  If x ≥​ 0, then F V V ≥− +, , 0i i i  for i =​ 1, 2, 3, 4.
(A2)  If xi =​ 0, then =− 0i . In particular, if x ∈​ Xs, then  =− 0i  for i =​ 1, 2.
(A3)  = 0i  if i >​ 2.
(A4)  If x ∈​ Xs, then  = 0i  and =+ 0i  for i =​ 1, 2.
(A5)  If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts.

Then, it follows by the above result (see also Lemma 1 in the ref. 48) that λ
ε

= ( )F b d0 /
0

, 

η ε
γ

=




+ +

+






V d
d

0
0

. Then, the threshold is the spectral radius of the matrix FV−1, i.e.,

ρ ελ
γ η ε

= =
+ + +

.−R FV b
d d d

( )
( )( )0

1

Proof of the global stability of malware-free equilibrium E0.  Theorem 3. The malware-free equilib-
rium point 0 of model system (1) is globally asymptotically stable with respect to Ω if R0 <​ 1.

Proof. We proceed by use of the Lyapunov direct method with undetermined coefficients. Denote  = .b d/  
Consider the following candidate function

ω ω ω= − + + +S t D t I t R t S t D t I t R t( ( ), ( ), ( ), ( )) 1
2

( ( ) ) ( ) ( ) ( ),2
1 2 3V C

where ω1, ω2, ω3 are positive constants to be determined. Clearly, it follows by D(t) ≥​ 0, I(t) ≥​ 0 and R(t) ≥​ 0 that 
 ≥ 0. Furthermore, we have = 0  if and only if =S t D t I t R t( ( ), ( ), ( ), ( )) 0 with respect to Ω. That is,   is 
positive definite.

The time derivative of   along an orbit of system (1) is

ω ω ω

λ ζ ω λ η ε ω ω
λ ζ λ ω λ λ

η ε ω ε γ ω η γ ζ

λ ω λ ω η ε ω ε
ω η ω λ ω γ ω γ ω ζ ζ

= − ′ + ′ + ′ + ′

= − − + − + − + + + ′ + ′
= − − + − + − + − +
− + + + − + + + − +

= − + − + − − + − + + +
+ + − + + − + − − .

d
dt

S S D I R

S b SI R dS SI d D I R
S I d S R I I S I

d D D d I D I d R
I d S I S d

D d I d S R

( )

( )[ ] [ ( ) ]
( )[ ( )( ) ] [ ( )

( ) ] [ ( ) ] [ ( ) ]
( )( ) ( ) ( ) [ ( )

] [ ( ) ] [ ( ) ( )]

(1)
1 2 3

1 2 3

1

2 3
2

1 1 2

3 1 2 3 3

V C

C
C C C C C

C C C
C C

Let ω =1 , then we need to find appropriate ω2 such that the following two inequalities are satisfied
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
ω η ε ω ε ω η
ω λ ω γ ω γ
− + + + + <

− + + < .
d

d
( ) 0,

( ) 0 (13)
1 2 3

1 2 3

Define = ω λ ω γ
γ
+
+

L :
d1

1 3  and = η ε ω η
ε

+ + −L : d
2

( ) 3 . Obviously, L2 is positive provided ω η ε η< + + d( )/3 .
It follows by (13) that L1 <​ ω2 <​ L2. Thus, L2 >​ L1 is necessary for the existence of ω2. Note that

η ε ω η
ε

λ ω γ
γ

η ε γ ω η γ λε ω γε
ε γ

λε ω η γ γε
ε γ

− =
+ + −

−
+
+

=
+ + + − + − −

+

=
− − + +

+
.

L L d
d

d d d
d

R d
d

( )

( )( ) ( )
( )

(1/ 1) ( ( ) )
( )

2 1
3

2
3

3
2

3

2
0
2

3

 

 



It follows by R0 <​ 1 that L2 −​ L1 >​ 0 provided

ω
λε
η γ γε

η ε
η

< Ξ =






−
+ +

+ + 




.

R
d

d: min (1/ 1)
( )

, ( )
3

2
0
2 

We know that N(t) =​ b/d +​ ce−dt, which is monotone and = .→∞N t b dlim ( ) /t  N(0) =​ b/d +​ c represents the 
initial size of the network. Next, we proceed by considering two cases.

Case 1: c <​ 0. In this case, N(0) <​ b/d and N(t) is strictly increasing. That is, the network size keeps growing to the 
maximum limit of b/d. Thus, we have ≤ ≤S t N t( ) ( ) , which implies that ω ζ ζ+ − − >d S( ) ( ) 03   
p r o v i d e d  ω 3  i s  p o s i t i v e .  T h u s ,    i s  n e g a t i v e  d e f i n i t e  i n s i d e  t h e  r e g i o n  o f 

Ω = ∈ + + + ≤+x x x x x x x x b d{( , , , ) / }1 1 2 3 4
4

1 2 3 4  provided ω =1 , ω2 ∈​ (L1, L2) and ω3 <​ Ξ​. Therefore, 0 
is globally asymptotically stable with respect to Ω1.

Case 2: c >​ 0. In this case, N(0) >​ b/d and N(t) is strictly decreasing. That is, the network size keeps reducing to the 
minimum limit of b/d. Thus, we have ≥N t( )  and S(t) ≤​ N(t) ≤​ N(0).

Let ω > −ζ
ζ +

N( (0) )
d3  , then

  ω ζ ζ ζ ζ ζ+ − − > − − − = − ≥ .d S N S N S( ) ( ) ( (0) ) ( ) ( (0) ) 03

Since N(t) is strictly decreasing with = .→∞N t b dlim ( ) /t  Without loss of generality, we assume that

 ζ
ζ

ζ
ζ+

− < Ξ ⇔ < Ξ
+

+ .
d

N N d( (0) ) (0)

Let ω =1 , ω2 ∈​ (L1, L2) and ω ζ ζ∈ − + ΞN d( ( (0) )/( ), ),3   then


≤ .

d
dt

0
(1)

Furthermore, it is easily verified that = 0  if and only if =S t D t I t R t( ( ), ( ), ( ), ( )) 0 with respect to 
 ζ ζΩ = ∈ ≤ + + + < Ξ + ++x x x x b d x x x x d{( , , , ) / ( )/ }2 1 2 3 4

4
1 2 3 4 . That is,   is negative definite. 

Therefore, 0 is globally asymptotically stable with respect to Ω2.
The proof completes by following the above two cases.

Proof of the stability of malware equilibrium ⁎.  Theorem 4. The malware equilibrium ⁎ of system 
(1) is asymptotically stable if R0 >​ 1.

Proof. Here, we use the method of first approximation to show the asymptotic stability of ⁎. By certain calcu-
lations, the Jacobian matrix of (1) at a point  = ∈ ΩS D I R( , , , )  can be derived as



λ λ ζ
λ η ε λ

ε γ
η γ ζ

=







− − −
− − −

− −
− −







.J

I d S
I d S

d
d

( )

0
0

0 0
0

Thus, the Jacobian matrix of (1) at the malware equilibrium ⁎ is
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

λ λ ζ
λ η ε λ

ε γ
η γ ζ

=







− − −
− − −

− −
− −







.⁎

⁎ ⁎

⁎ ⁎
J

I d S
I d S

d
d

( )

0
0

0 0
0

Next, we only need to confirm the matrix ⁎J ( ) is stable, namely, the real parts of all its eigenvalues are nega-
tive. This is usually done by checking the Routh-Hurwitz conditions, but here verification of the inequalities in the 
Routh-Hurwitz conditions for ⁎J ( ) is technically rather complicated. So, we use another criteria for the stability 
of matrices. That is, for an m ×​ m matrix A with real entries to be stable, it is necessary and sufficient that: (1) the 
second compound matrix (See Methods D) A[2] is stable; (2) − >A( 1) det( ) 0m . This result was developed by Li  
et al.39 by using the spectral properties of the second compound matrices (also see Lemma 5.1 in ref. 39).

Thus, it remains to show that ⁎J ( ) satisfies the above conditions (1) and (2). The second compound matrix 
⁎J ( )[2]  of the Jacobian matrix ⁎J ( ) is

λ η ε λ λ ζ
ε λ γ ζ
η γ λ ζ λ

λ η ε γ
λ γ η ε ζ λ

η ε γ ζ







− − − − −
− − − −

− − − −
− − − −

− − − −
− − − −







.

⁎ ⁎ ⁎

⁎

⁎ ⁎

⁎

⁎ ⁎

I d S S
I d

I d S
I d

I d S
d

2 0 0
2 0 0 0

2 0 0
0 0 2 0 0
0 0 2
0 0 0 2

For the diagonal matrix P =​ diag (I∗, (γ +​ d)/(ε)I∗, t1I∗, S∗, t2S∗, t3S∗), where t1, t2, t3 are positive real constants 
to be determined, then the matrix ⁎J ( )[2]  is similar to  −⁎PJ P( )[2] 1

λ η ε λ ε
γ

λ ζ

γ λ γ ζ γ
ε

η γ
ε
γ

λ ζ λ

λ ε
γ

η ε γ

λ γ η ε ζ λ

η ε γ ζ







− − − −
+

−

+ − − − −
+

+
− − − −

+
− − − −

− − − −

− − − −







.

⁎ ⁎ ⁎
⁎

⁎

⁎
⁎

⁎

⁎
⁎

⁎

⁎ ⁎

I d S
d

I I
t S

d I d d I
t S

t t
d

I d t I
t

d
S d

t
t

S t d S t
t

t t
t

d

2 0 0

2 0 0 0 ( )

2 0 0

0 0 2 0 0

0 0 2

0 0 0 2

3

3

1
1 1

3

2

1
2

2

3

3
3

2

The matrix ⁎J ( )[2]  is stable if and only if  −⁎PJ P( )[2] 1 is stable, for similarity preserves the eigenvalues. Since 
the diagonal elements of the matrix  −⁎PJ P( )[2] 1 are negative, an easy argument applying Geršgorin discs shows 
that it is stable if it is diagonally dominant in rows. Denote ψ = h h h h h hmax { , , , , , }1 2 3 4 5 6 , where

λ ε
γ

η ε
ζ

λ ζ
γ
ε

η γ
ε
γ

λ ζ λ

λ
ε

γ
η ε γ

λ γ λ η ε ζ

ε η γ ζ

=
+

− − − −

= − − −
+

<

= +
+

− − − −

=
+

− − − −

= + + − − − −

= − − − − .

⁎
⁎

⁎

⁎
⁎

⁎

⁎
⁎

⁎

⁎ ⁎

h S
d

d I
t S

h I d d I
t S

h t t
d

I d t I
t

h
d

S d

h t
t

S t S t
t

d

h t
t

t d

2 ,

( ) 0,

2 ,

2 ,

2 ,

2

1
3

2
3

3 1
1 1

3

4

5
2

1
2

2

3

6
3

2
3

It follows by the expression of the threshold R0 and =⁎S b
dR0

2
 that

γ η ε
ελ

=
+ + +

.⁎S d d( )( )
(14)

Substituting (14) into h1 and h4 yields h1 =​ −​d −​ (ζI∗)/(t3S∗) <​ 0 and h4 =​ −​γ −​ d <​ 0.
By choosing t1 =​ (γ +​ d)(ζ +​ 2d)/(η(γ +​ d) +​ εγ), then we have
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λ λ= − − < .⁎
⁎

h I t I
t

03
1

3

Since t1 is already fixed, it is sufficient to determine the values of t2, t3 such that both h5 and h6 are negative. We 
assume that t2 <​ (d +​ ζ)/γ and set

ε
γ

+ =
+

t
t

t
t d

,
(15)

2

1

2

3

then

λ γ η ε ζ γ ζ=




 +





 + − − − − = − − < .⁎h t

t
t
t

S t d t d2 05
2

1

2

3
2 2

It follows by (15) that t2 is monotonically increasing as a function of t3. If t3 →​ 0, then t2 →​ 0, t2/t3 →​ (ε)/(γ +​ d), 
and

ζ= − − < .
→

h d 0
t

6
03

Thus, we can always choose a proper t3 >​ 0 small enough such that h6 <​ 0 and t2 given by (15) is less than 
(d +​ ζ)/γ. Therefore, we have ψ <​ 0, which implies the diagonal dominance as claimed and thus verifies the above 
condition (1).

The determinant of ⁎J ( ) can be computed as

 λ ζ η ε γ λε

λ ε
λ ζ
γ ζ

η
λ ζ
γ

λ ζ η ε γ λε
λ ε λ ζ γζ ηζ γ
λ ζ η ε γ ζ λε
λ εγζ λ ηζ γ

λ ζ η ε γ λ εγζ λ ηζ γ
λ γ ζ ε η ε λ εγζ
λ ζ ε η ε λ γ ζ η ε

= + + + + + −

−




−
−

− −
+

−
− −







= + + + + + −
+ + − − +

= + + + + + − +
− − +

= + + + + − − +
= + + + + + −
= + + + + + + + + > .

⁎ ⁎ ⁎

⁎
⁎ ⁎

⁎ ⁎

⁎ ⁎

⁎ ⁎

⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎

⁎ ⁎

J I d d d d S

I
S

d
S

d

I d d d d S
I S d d

I d d d d d d S
I I d

I d d d I I d
I d d d d I
I d d d d I d d

det( ( )) ( )( )[( )( ) ]

0

( )( )[( )( ) ]
[ ( ( ) ) ( )]

( )( )( )( ) ( )
( )

( )( )( ) ( )
( )( ( ) ( ))

( ( ) ( )) ( ) 0

This verifies the above condition (2) and completes the proof.

Remark: If ζ =​ 0, then system (1) can be also reduced to model the case that recovered nodes have permanent 
immunity. Let s(t) =​ S(t)/N(t), d(t) =​ D(t)/N(t), i(t) =​ D(t)/N(t) and r(t) =​ D(t)/N(t) denote the fractions of the 
compartments S, D, I, R in the population, respectively. Then system (1) becomes

λ
λ η ε
ε γ
η γ











′ = − −
′ = − + +
′ = − +
′ = + −

s t b N t N t s t i t ds t
d t N t s t i t d d t
i t d t d i t
r t d t i t dr t

( ) / ( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ), (16)

subject to the restriction s(t) +​ d(t) +​ i(t) +​ r(t) =​ 1. In system (16), the term b/N(t) represents the percentage of 
newly-connected S-nodes over the whole network within unit time, λN(t) means the average infection rate of 
I-nodes over the whole network per unit time. Next, we denote λ λ= =

b b N t N t: / ( ), : ( ), and assume that b, λ 
keep constant here, which indicates that in this case b and λ are actually changing with the varying network size.

Observe that the variable r(t) does not appear in the first three equations of (16) and note that the identity 
s(t) +​ d(t) +​ i(t) +​ r(t) =​ 1 implies = d b. This allows us to attack (16) by studying the subsystem

λ
λ η ε

ε γ










′ = − −

′ = − + +

′ = − + .

 









s t b s t i t bs t
d t s t i t b d t
i t d t b i t

( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) (17)

From physical considerations, we study (16) in the closed set Γ = ∈ | ≤ + + ≤+s d i s d i{( , , ) 0 1}3 . It can 
be verified that Γ​ is positively invariant with respect to (17). We denote by ∂​Γ​ and Γ​ the boundary and the interior 
of Γ​, respectively. Note that system (17) is essentially equivalent to a special case (α =​ 0) of system (2.3) in ref. 39. 
Thus, we can similarly address the global stability of the malware-free equilibrium (respectively, malware equilib-
rium) of system (17) with respect to Γ​ (respectively, Γ​) by the method given in ref. 39.
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Compound matrices.  For an n ×​ n matrix A and integer 1 ≤​ k ≤​ n, the k-th additive compound matrix of A 
is denoted by A[k]. This is an N ×​ N matrix, = ( )N n

k
, defined by

= ++
=

A D I hA( ) ,k k

h

[ ] ( )

0

where B(k) is the kth exterior power of an n ×​ n matrix B and D+ denotes the right-hand derivative. Some details 
for the definition and properties of additive compound matrices together with their connections to differential 
equations can be referred to the papers49,50.

The entries in A[2] are linear relations of those in A. Let A =​ (aij). For any integer = … ( )i n1, , 2 , let (i) =​ (i1, i2) 
be the ith member in the lexicographic ordering of integer pairs such that 1 ≤​ i1 <​ i2 ≤​ n. Then, the entry in the ith 
row and the jth column of Z =​ A[2] is defined by

=










+ =

−

.

+z

a a i j

a i j j i

i j

, if ( ) ( ),

( 1) , if exactly one entryi of ( ) does not occur in ( ) and does not occur in( ),

0, if ( ) differs from ( ) in two or more entries
ij

i i i i
r s

i j rss r

1 1 2 2

Pertinent to our purpose, for n =​ 4, the second additive compound matrix A[2] of an n ×​ n matrix A =​ (aij) is

=







+ − −
+ −

+
− + −
− +

− − +







.A

a a a a a a
a a a a a a
a a a a a a

a a a a a a
a a a a a a

a a a a a a

0
0

0
0

0
0

[2]

11 22 23 24 13 14

32 11 33 34 12 14

42 43 11 44 12 13

31 21 22 33 34 24

41 21 43 22 44 23

41 31 42 32 33 44

For any integer 1 ≤​ k ≤​ n, the kth additive compound matrix A[k] of A is defined canonically. Some properties 
of the additive compound matrices and further applications can be found in the refs 50 and 51.
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