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Review 

Some thoughts about what non-mammalian jawed 
vertebrates are telling us about antigen processing and 
peptide loading of MHC molecules 
Rebecca Martin1 and Jim Kaufman1,2,3   

The major histocompatibility complex (MHC) of mammals 
encodes highly polymorphic classical class I and class II 
molecules with crucial roles in immune responses, as well as 
various nonclassical molecules encoded by the MHC and 
elsewhere in the genome that have a variety of functions. These 
MHC molecules are supported by antigen processing and 
peptide loading pathways which are well-understood in 
mammals. This review considers what has been learned about 
the MHC, MHC molecules and the supporting pathways in non- 
mammalian jawed vertebrates. From the initial understanding 
from work with the chicken MHC, a great deal of diversity in the 
structure and function has been found. Are there underlying 
principles? 
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Introduction 
The textbook view of major histocompatibility complex 
(MHC) organisation is that of humans and mice (Figure 
1): overall a huge region with hundreds of genes and 
riven by recombination, but organised as a class III re
gion with many different kinds of genes, flanked by a 
class I region with multigene families of classical and 
nonclassical class I genes amid a variety of framework 
genes on one side, and by a class II region with a mul
tigene family of class II genes as well as nonpolymorphic 
antigen processing and peptide loading (APPL) genes on 
the other side [1,2]. An enormous literature describes the 
pathways that lead to antigen presentation by classical 
class I and class II molecules, including the cross- 
presentation pathways that occur mostly in specialised 
cells [3,4]. 

Mammals make up only an estimated 5000 mammalian 
species out of the roughly 66 000 jawed vertebrate 
(gnathosome) species with MHC molecules (https://en. 
wikipedia.org/wiki/Vertebrate). So far, what have we 
learned about antigen processing, peptide-loading and 
antigen presentation from the non-mammalian jawed 
vertebrates (NMJVs)? 

For many years, targeted cloning, monoclonal antibodies 
and genetic mapping provided the only avenues to look 
at the MHC and MHC molecules outside of mammals, 
with the most detailed examination for the domestic 
chicken [5,6••]. More recently, genomic sequencing 
projects for many NMJVs, the latest by long-read (third 
generation) technologies [7•–9•], have given informa
tion about genes and genomic organisation at various 
levels of resolution and have provided the basis for more 
detailed studies. Thus far, detailed studies at the protein 
level have only been reported for chickens. 

Given the length of this review, a knowledge of the 
MHC molecules and APPLs in mammals is assumed, 
and many seminal reports with original discoveries are 
not cited since they are covered in later papers or re
views. Statements without citations are supported by 
references in reviews, including [5,6••,10–12]. 

]]]] 
]]]]]] 

www.sciencedirect.com Current Opinion in Immunology 77( 2022) 102218 

http://www.sciencedirect.com/science/journal/09527915
mailto:jim.kaufman@ed.ac.uk
https://www.sciencedirect.com/journal/current-opinion-in-immunology/special-issue/106022LZMW2
https://doi.org/10.1016/j.coi.2022.102218
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Vertebrate
https://en.wikipedia.org/wiki/Vertebrate
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coi.2022.102218&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coi.2022.102218&domain=pdf


The chicken major histocompatibility complex 
provided the first model for a major 
histocompatibility complex of non- 
mammalian jawed vertebrates 
In contrast to typical mammals [5,6••,12], the chicken 
MHC was found to be compact with little evidence for 
recombination, simple with far fewer genes, and ar
ranged differently, with the class III region on the out
side and the polymorphic TAP genes flanked by the two 
classical class I genes (Figure 1). Only one of the two 
classical class I genes, BF2, is expressed at a high level, 
and the peptide-binding specificity of BF2 was found to 
match the peptide-translocation of the chicken TAPs for 
each MHC haplotype, suggesting that the lack of fre
quent recombination allows co-evolution to drive the 
presence of a single dominantly-expressed class I mo
lecule. A similar situation was suggested for the class II 
B (BLB) genes and the polymorphic DM genes. In this 
sense, genomic structure was proposed to determine 
function, with single dominantly-expressed classical 

MHC genes leading to strong genetic associations with 
infectious disease [13]. The presence of single dom
inantly-expressed classical MHC genes leading to strong 
genetic associations with infectious disease was also 
suggested by studies with the bony fish Atlantic 
salmon [14]. 

On the basis of the chicken MHC, it was proposed that 
the ancestral MHC was organised with the class III 
region on the outside and with the class I and class II 
genes next to their APPL genes [5,11]. It was envi
sioned that an inversion occurred on the lineage to 
placental mammals, with the class III region swinging 
to the inside, the class I gene(s) swinging to the out
side, but with the APPL genes left behind in the region 
that became the class II region. Recombination be
tween the separated APPL genes and the class I gene 
(s) meant that the co-evolutionary relationships broke 
down, so that the APPL genes became average best fits, 
supplying peptides for whatever class I allele(s) 

Figure 1  
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Major differences in MHC organisation between humans, chickens and the passerine bird zebra finch. The top panel shows a textbook representation 
of the human HLA region on chromosome 6 with the order class II region, class III region and class I region, altogether an enormous region (to scale as 
indicated) with hundreds of genes not depicted. The middle panel shows the chicken BF-BL region on chromosome 16, first to the same scale as HLA 
and then magnified to show there very few genes present in the ‘minimal essential MHC’ with the order class II region, class I region and class III 
region. The bottom panel shows evidence from zebra finch, with the top line indicating the results of a mapping study showing the genetic distances 
between the BRD2, class I and class II genes, and with the bottom line indicating a BAC containing the TAP1 and TAP2 genes; cytogenetics shows 
that different microchromosomes bear BRD2-class I-class II genes and TAP genes. 
Top and middle panels modified from [5]; data in bottom panel from [18,19].   
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appeared by recombination, thus allowing a multigene 
family. Moreover, it was suggested that the APPL 
genes were present in the primordial MHC for co- 
evolution to set up the pathways. Finally, based on the 
presence of an NK receptor/ligand pair in the chicken 
MHC, it was proposed that the original antigen-specific 
receptors were also present in the primordial MHC, 
which was the birthplace of the adaptive immune 
system of jawed vertebrates. Based on different con
siderations, other researchers came to similar conclu
sions [15•], but the presence of immune receptors in 
the primordial MHC has been challenged by recent 
genome reconstructions [7•]. 

Just to be clear, it is an idealised version of the chicken 
MHC that is proposed as a model for the primordial 
MHC. Among the features that don’t fit are the class II A 
gene (BLA) located 5 cM away from the BF-BL region, 
tapasin located in between class II B genes, two CD1 
genes located at the edge of the BF-BL region, and 
variable numbers of nonclassical class I and class II B 
genes located in the genetically-unlinked Y region on 
the same chromosome [5,12]. The latest comparison of 
bird genomes concludes that the ancestral organisation 
of the avian MHC was compact and simple like the 
chicken and ratites (the most ancient surviving clade, 
including ostriches), but without the apparent translo
cations [16•]. 

A wide variety of major histocompatibility 
complex organisations 
Overall, the evidence for MHC organisation remains 
frustratingly fragmented. Some species, like Xenopus 
frogs, have a very similar organisation to chickens, in
cluding a single classical class I gene next to its APLL 
genes, a class II gene pair next to their APPL genes, a 
class III region on the outside and even a region of 
nonclassical class I genes, the XNCs [15•]. The marsu
pial American opossum has the class III region outside of 
the class I and class II genes, although the original or
ganisation was missing two class I genes [17]. Birds 
closely-related to chickens have very similar MHC or
ganisations, and many other birds show a similar orga
nisation with or without some of the translocations [16•]. 

However, other species differ in a variety of ways, 
highlighting dynamic changes in the genomic organisa
tion in some lineages. The passerines (perching and 
song birds which make up roughly 50% of bird species) 
have dispersed their MHC genes over long distances and 
even on other chromosomes [16•]. For example, the 
zebra finch has separated class I and class II genes by 
9 cM, and the TAP genes appear to be on a different 
chromosome [18,19] (Figure 1). This situation is re
miniscent of the marsupial Tammar wallaby, in which 
the class I genes are dispersed in the telomers of many 

chromosomes, far away from the TAP genes [20]. In the 
salamander axolotl, the region containing MHC genes is 
100 Mb long, with much apparent duplication [8•]. 

Some fish, like the cartilaginous sharks (and likely the 
lobe-finned bony fish, most closely related to the an
cestors of tetrapods) have a single MHC, but one or two 
rounds of genome-wide duplication followed by differ
ential gene silencing have complicated the organisation 
of the MHC genes in teleosts (the major radiation of ray- 
finned bony fish). In general, there is a canonical teleost 
class I region with TAPs, tapasin and inducible protea
some components along with other genes found in the 
MHC of many jawed vertebrates, with class II and class 
III region genes spread on different chromosomes [10]. 
Strikingly, some fish like cod and relatives have lost the 
class II system altogether, with some of the many class I 
genes suggested to have taken on class II functions, al
though there have been concerns [21,22]. 

For the surviving members of the jawless fish lampreys 
and hagfish (the earliest fish group to appear in the 
evolutionary record), there is an adaptive immune 
system with three kinds of antigen-specific receptors 
based on leucine-rich repeats, but no genes with obvious 
similarity to or properties like MHC genes have been 
reported [23,24]. However, the discovery of the so-called 
W genes in sharks, various bony fish and salamanders 
shows that class II genes preceded the appearance of 
class I genes [25••], finally laying to rest the controversy 
over which came first [26•]. The W genes are present in 
AB gene pairs and are expressed as αβ heterodimers with 
the domain structure of class II molecules, but have 
many key sequence features of class I molecules. In 
particular, β2-microglobulin and the W β2 domain both 
lack the so-called invariant tryptophan found in nearly 
all Ig domains, showing the direction of evolution from 
class II to W to class I genes (Figure 2). There is no 
evidence for polymorphism or canonical peptide-binding 
residues, so the past and present functions of W mole
cules are unknown [25••,27]. 

Many major histocompatibility complex genes but only 
one or a few classical major histocompatibility complex 
genes 
The number of MHC class I and class II genes as well as 
APPL genes varies considerably among the NMJV, but 
many species have a single or a dominantly-expressed 
classical class I gene closely linked to APPL genes, with 
the remaining class I genes likely to be nonclassical. 
Classical MHC molecules are defined as those that 
present peptides to T cells, have high levels of poly
morphism and are widely and well-expressed. 
Nonclassical molecules lack one or more of these fea
tures and arise to counter particular threats, appearing 
and disappearing at different times in evolutionary his
tory, so that some are more ancient and others are 
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present only in particular lineages [28]. As examples, 
CD1 genes are found in mammals, birds and reptiles, 
but are thought to have arisen before and been lost from 
earlier lineages, while MR1 genes are thus far only found 
in mammals [29]. In mammals, nonclassical genes such 
as CD1, MR1 and FcRn are found in so-called MHC 
paralogous regions derived from two rounds of genome- 
wide duplication at the base of the jawed vertebrates, 
but their presence has recently been ascribed to trans
locations [15•]. 

Among tetrapods, Xenopus frogs have a single classical 
class I gene closely linked to the TAP genes, with two 
lineages of each (but without detailed sequencing to 
look for potential co-evolution of peptide translocation 
and binding specificities), along with many nonclassical 
XNC genes known to be recognised by natural killer T 
cells [29]. Only one of the two classical class I (BF) genes 
in chickens is well-expressed throughout the body, a 
situation proposed to have been driven by co-evolution 
with polymorphic APPL genes that are not separated 
often by recombination. In addition, there are two 
monomorphic CD1 genes nearby and a variable number 
of nonclassical YF genes on the same chromosome, all of 
which bind hydrophobic ligands [12,30,31]. Ducks also 
have polymorphic TAPs next to five class I genes, only 

one of which is a well-expressed classical gene (although 
another is upregulated upon infection) [32,33]. In con
trast, there are many apparently nonclassical class I 
genes in passerine birds, with the APPL are located at a 
distance from the classical class I gene(s). As examples, 
there is one classical class I gene on a separate chro
mosome from the TAP genes in zebra finch, and only 
one of the two classical class I genes in sparrows is well- 
expressed and with the nonpolymorphic TAP genes lo
cated far away [18,34] [Rebecca Martin, PhD thesis, 
University of Cambridge, 2021]. There are as many as 
five lineages of class I genes found in fish, but apparently 
only one classical lineage, and with dramatic expansions 
of some nonclassical lineages in one or another fish  
[10,35,36]. In some bony fish like Atlantic salmon and 
medaka [10], there are only one or two classical class I 
genes closely linked to a TAP2 gene, although there are 
many more nonclassical genes. 

There is wide variation in the other APPL genes of the 
class I pathway. Birds have no inducible proteasome 
genes, which is surprising since PSMB11 (β5t) is con
sidered essential for positive selection of mammalian 
thymocytes [37,38]. In contrast, PSMB8 (β8) genes in 
sharks, bony fish and Xenopus frogs have two allelic 
lineages with different protease specificities, and the 
inducible proteasome genes in the bony fish zebrafish 
have copy number variation [39,40]. Tapasin is reported 
to be absent in ducks, and in fact tapasin family mem
bers have been found in only a few passerine bird gen
omes [32] [Rebecca Martin, PhD thesis, University of 
Cambridge, 2021]. However, three tapasin family 
members are found in many other NMJV including 
chickens: tapasin (TAPBP), TAPBPR and TAPBPL  
[41]. In birds, only TAP2 has a homologous tapasin- 
binding site, raising questions of structure and me
chanism of the peptide-loading complex compared to 
mammals [12]. 

The situation is even less clear for class II and their 
APPL genes. In a few species, like parrots, axolotls, 
Atlantic salmon and medaka, there is only a single 
classical class II gene pair [10,42,43], but in most species, 
there are several classical class II genes described, but 
without evidence for their relative expression or im
portance. Some species also have many other (pre
sumably nonclassical) class II genes, such as the zebra 
finch, Hawaiian honeycreepers, zebrafish and shark  
[10,18,44–46•]. Invariant chain (Ii) genes are found in all 
NMJV examined, with the exception of those that have 
lost the entire class II system, such as cod [48]. DM 
genes are found throughout the tetrapods as well as in 
lungfish (a lobe-finned fish thought to be most closely 
related to the ancestors of the tetrapods), but no DM 
orthologs have been found in other fish [45,47,48•]. 
Whether cartilaginous fish and most bony fish have an 
alternative dedicated chaperone or none at all remains 

Figure 2  
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The newly-described W genes show that class II genes preceded class I 
genes. Two transmembrane chains of roughly equal size constitute the 
W, class II and proposed ancestral molecules (α chain in blue, β chain in 
green, membrane in yellow), with the domains rearranged in class I 
molecules (β2-microglobulin in blue, heavy chain in blue and then green). 
A so-called ‘invariant tryptophan’ (W in white) is found between the β- 
sheets of most immunoglobulin domains, but is replaced by other 
hydrophobic residues in the W α2 domain and β2-microglobulin. Other 
changes include the glycines that allow the two transmembrane regions 
to pack together (G in black), and tryptophans involved in inter-domain 
interactions (W in black). 
Figure modified from [27].   
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unclear. DO genes have not been found outside of 
mammals, although the similarity of DO and classical 
class II genes may mean that some nonclassical class II 
genes in other species, such as the YLB genes in 
chickens, could play a similar role. 

Generalists and specialists: a potential explanation for 
the different major histocompatibility complex 
strategies 
Outside of mammals, natural ligands have been de
termined only for chicken classical MHC molecules. A 
suite of properties was found for the dominantly-expressed 
class I BF2 molecules which varied in a hierarchy, from 
quite stringent peptide motifs compared to most human 
class I alleles to extremely promiscuous [5,6••,12]. The 
structures showed that the promiscuous BF2 * 2101 mo
lecule remodels the binding site to bind peptides with 
completely different sequences, while BF2 * 0201 binds 
peptides with a wide range of hydrophobic anchor residues  
[49]. Another way to achieve promiscuity arises from one of 
the highly-conserved residues that bind the C-terminus of 
the peptide changing from a tyrosine in mammals to an 
arginine found in all nonmammalian jawed vertebrates 
(and also in class II molecules), which allows peptides to 
extend out of the groove at the C-terminus [50]. In terms 
of peptide loading, the translocation specificity of the TAP 
correlates with peptide motif of the BF2 molecules in a 
given MHC haplotype (Figure 3), and there is a haplotype- 
specific effect on maturation ascribed to tapasin [5,6••,12]. 

In contrast, the BF1 gene is at least ten-fold less well 
expressed than BF2 and has fewer alleles, many of 
which have nearly identical peptide-binding motifs  
[5,6••,12]. Given the wide range of peptide-transloca
tion specificities among MHC haplotypes, it seems 
likely that most BF1 alleles are highly promiscuous 
(Figure 3). What little data exists suggests that BF2 is 
primarily a ligand for cytotoxic T lymphocytes, while 
BF1 is primarily a ligand for NK cells; the potential si
milarities (and differences) between BF1 and HLA-C 
have not gone unnoticed [51]. 

A concept of generalist and specialist alleles arose from 
these findings for BF2 molecules, based on a suite of 
properties established during peptide loading [5,6••,49]. 
Promiscuous alleles bind a wide variety of peptides and 
protect against a wide variety of common pathogens, but 
they have relatively low stability and low expression on 
the cell surface. Fastidious alleles have stringent binding 
requirements resulting in narrow peptide repertoire, 
higher stability and higher cell surface expression. 
Comparison with human HLA-B alleles shows that these 
features are a fundamental property of some classical 
class I loci, with the fastidious well-expressed human 
alleles binding special peptides to resist particular pa
thogens, including elite controllers of progression from 
HIV infection to AIDS. Taken together, the 

promiscuous molecules generally protect from many 
pathogens, while the fastidious molecules protect against 
a few special pathogens. In chickens, the peptide- 
translocation specificity of the TAP molecule correlates 
with the peptide-binding specificity as well as the pep
tide repertoire of the BF2 molecule (with tapasin alleles 
yet to be rigorously tested), while in humans the corre
lation is with tapasin-dependence (Figure 3), with fas
tidious alleles requiring tapasin [5,6••,12,52•]. 

The correlations found for the hierarchy of class I al
leles can be applied to some aspects of different MHC 
organisations. Based on what is known for chicken 
BF2 and human classical class I molecules, the lack of 
linkage to the nonpolymorphic TAP along with the 
lack of a tapasin gene in sparrows may mean that al
leles of the single dominantly-expressed classical class 
I molecule are promiscuous, getting peptides from a 
highly promiscuous TAP molecule and thus being 

Figure 3  
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Humans and chickens use combinations of TAP, tapasin and classical 
class I molecules with different levels of promiscuity to achieve antigen 
presentation. Above, depicted are the molecules from one human 
haplotype, with two molecules of a somewhat fastidious class I 
molecule (reflecting the greater numbers found on the cell surface) and 
two somewhat promiscuous class I molecules, along with highly 
promiscuous (and monomorphic) tapasin and TAP molecules. Below, 
depicted are the molecules from two chicken haplotypes, one with 
fastidious BF2, tapasin and TAP molecules along with a promiscuous 
BF1 molecule, and the other with very promiscuous BF2, tapasin and 
TAP molecules along with a similar promiscuous BF1 molecule 
(reflecting the lower number of alleles with different peptide-binding 
sites for BF1 compared to BF2). Solid colours indicate fastidious 
molecules, rainbows indicate promiscuous molecules with more colours 
indicating greater promiscuity; thus chicken class I molecules can be 
more promiscuous than the most promiscuous human class I molecule, 
while human TAP molecules are much more promiscuous than the most 
promiscuous chicken TAP molecule. Dotted lines around tapasin 
indicate relative tapasin-independence of the interaction with 
promiscuous molecules, while only one tapasin per haplotype is shown 
for chickens, since only the TAP2 chain has a recognisable binding site 
for tapasin.   
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tapasin-independent. Similarly, the single class I mo
lecules of Xenopus frogs and the bony fish Atlantic 
salmon may also be promiscuous (Figure 4). The 
question then would become why highly promiscuous 
TAPs in sparrows, Xenopus and salmon are not sup
porting a multigene family of class I molecules as in 
mammals. One possibility is that the concept of a 
multigene family of similar class I molecules in 
mammals is not quite right, but instead the best way to 
imagine them is as a collection of somewhat specia
lised class I molecules, some promiscuous and others 
fastidious [5,52•]. Indeed, HLA-C is primarily an NK 
cell ligand, and there are indications that HLA-A and 
HLA-B are focused on presentation of different kinds 
of viruses [53,54]. In fact, one might ask why highly 
promiscuous TAP alleles in chickens do not support a 
multigene family of class I genes. 

Conclusions 
Among the welter of details described in this review are 
many differences from what is found in textbooks based 
primarily on humans and mice. Of immediate interest 
might be the function of the third tapasin-family 
member outside of mammals and how the class I mo
lecules of some birds acquire their peptides in the ab
sence of tapasin family members, how positive selection 
for avian T cells occurs without inducible proteasome 
components, the way in which classical class II mole
cules of most fish acquire their peptides in absence of 
DM, and the way in which the fish like cod deal with 
pathogens in the absence of the class II pathway. Also of 
interest are the importance of co-evolution between 
APPL and classical MHC molecules given the current 
understanding of promiscuous and fastidious class I 
molecules (particularly the reasons for a single dom
inantly-expressed class I molecule in many NMJVs 
versus a multigene family as in mammals, and the 
polymorphism of chicken DM genes [55,56] given the 
suggestion of promiscuous and fastidious class II mole
cules in humans [57]), the functions of the many ap
parently nonclassical class I and class II B genes found 
outside of mammals, the function of the original W 
molecules (speculated to be ligands of γδ T cells, [27]) as 
well as the current ones, and the mechanistic reasons for 
the appearance of the W/class I-specific interdomain 
contacts. 

Finally, nearly everything known about the functions of 
the MHC has been determined by correlations using 
outbred humans and experiments using inbred mice. 
NMJV species may validate some concepts and chal
lenge others, as has been suggested for chickens [6••]. 
In the longer term, any answers to these questions will 
lead to more questions, some of which we cannot even 
imagine at present. 
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Figure 4  
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The dominantly-expressed classical class I molecules of chickens range 
from fastidious (solid colours) to promiscuous (rainbow colours) with 
TAP and tapasin genes to match, while sparrows and salmon are 
proposed to have only promiscuous classical class I alleles with 
nonpolymorphic promiscuous TAPs. Depicted are two haplotypes for 
chickens, one with fastidious and the other with promiscuous TAP, 
tapasin and class I molecules. For sparrows and salmon, the two 
haplotypes each have the same monomorphic promiscuous TAP 
molecule (with the same rainbow pattern) but different alleles of 
promiscuous class I molecules (with different rainbow patterns). There is 
no evidence for tapasin in sparrows (which would fit with the low 
tapasin-dependence of the proposed promiscuous class I alleles), while 
tapasin is found in salmon but whose role may be limited to acting only 
as a chaperone (as indicated by dotted lines), if the class I alleles are 
promiscuous as proposed.   
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