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Abstract: Thanks to the unique properties of graphite oxides and graphene oxide (GO), this material
has become one of the most promising materials that are widely studied. Graphene oxide is not only a
precursor for the synthesis of thermally or chemically reduced graphene: researchers revealed a huge
amount of unique optical, electronic, and chemical properties of graphene oxide for many different ap-
plications. In this review, we focus on the structure and characterization of GO, graphene derivatives
prepared from GO and GO applications. We describe GO utilization in environmental applications,
medical and biological applications, freestanding membranes, and various composite systems.

Keywords: graphene oxide; synthesis; characterization; applications

1. Introduction

Graphene is one of the most studied materials in the world; thanks to its unique prop-
erties, it was called a “material of the future” [1]. Graphene consists only of carbon atoms
where every carbon atom is attached to three other carbon atoms with sp2 hybridized or-
bitals making a honeycomb lattice [2]. Graphene’s rare properties make it a very promising
material for a huge variety of applications, including field-effect transistors (FETs), gas and
biomolecules sensors, transparent conductive films (TCFs), and graphene batteries [3–7].

Graphene oxide (GO) is a layered carbon structure with oxygen-containing functional
groups (=O, -OH, -O-, -COOH) attached to both sides of the layer as well as the edges of the
plane [8]. As with any 2D carbon material, GO can also have either single layer or multilayer
structure. A structure with one layer is graphene oxide; two layers of graphene oxide are
referred to as a two-layered GO. GO with more than two layers and less than five layers is
called few-layered graphene oxide, GO with five to ten layers is called multilayered GO,
and material with eleven or more layers is called graphite oxide [9]. GO can be synthesized
by the oxidation of graphite into graphite oxide followed by the exfoliation of this graphite
oxide into GO. The properties of the material are strongly dependent on the synthesizing
method, which influences the resulting number and type of oxygen-containing groups
in the formed GO. In contrary to graphene, GO is hydrophilic, and it is hence relatively
simple to prepare a water- or organic solvent-based suspensions. Highly oxidized forms of
GO are electric insulators with a bandgap of approximately 2.2 eV.

Due to the presence of various oxygen functionalities on the surface of GO, GO can be
used as a starting material for the synthesis of graphene derivatives such as fluorographene,
bromographene, graphane, and many others. On the other hand, by thermal or chemical
reduction of GO, thermally or chemically reduced graphene can be prepared (see Figure 1).
Interestingly, GO can also be used for advanced applications such as for drug delivery, in
high-temperature materials, or in construction materials. There are still some remaining
issues that can be improved and studied more intensively. It is very important to develop
novel methods of environmentally friendly low-cost large-scale synthesis of GO. In this
review, we tried to summarize available knowledge about GO structure, synthesis and
characterization of GO, GO functionalization, and selected GO applications.
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Figure 1. Scheme of preparation and utilization of GO (colors of atoms: grey—carbon, red—oxygen,
yellow—fluorine, white—hydrogen).

2. Structure of GO

Over the years, the structure of GO was studied in detail using several instrumental
techniques: annular dark-field imaging, 13C and 1H NMR, ultra-high-resolution transmis-
sion electron microscopy, X-ray diffraction, and many others [10–13]. Despite the number
of attempts to reveal the structure of GO, a number of possible structural models exist
with no unambiguous one. The main reason for this is the complexity of the material and
the originality of every sample with variable stoichiometry [14]. Simplistically, GO is a
monolayer sheet of graphite containing hydroxyl, carboxyl, and epoxy oxygen groups on its
basal plane and edges, resulting in a mixture of sp2 and sp3 hybridized carbon atoms [15].

Many models of GO have been developed based on a number of analyses and theoreti-
cal simulations. The first model was suggested by Hofmann and Rudolf [16] in 1939, where
a lot of epoxy groups were distributed randomly across the graphite monolayer. Then, in
1946, Ruess [17] updated the model by incorporating hydroxyl groups and alternating sp2

hybridized carbons with those revealing sp3 hybridization. In 1969, Scholz and Boem [18]
suggested a less organized structure with double bonds C=C and periodically recurring
C-C single bonds in the carbon layers that are corrugated with hydroxyls and carbonyls,
without ether oxygen. Later, in 1994, Nakajima and Matsuo [19] proposed a model that re-
sembled graphite intercalation compound. Then, in 1998, Lerf and Klinowski [11] created a
model (LK model) that contains two different kinds of regions: regions with six-membered
aliphatic rings and regions with nonoxidized benzene aromatic rings (see Figure 2). The size
of the two regions is dependent on the level of material oxidation. The model is composed
mainly of aromatic bodies, epoxide groups, and double bonds. Wrinkling in the monolayer
is caused by the slightly distorted tetrahedral configuration of hydroxyl groups attached to
carbon atoms. The oxygen functional groups are attached to the monolayer of carbon above



Materials 2022, 15, 920 3 of 21

and below, creating two layers of oxygen atoms with variable concentrations composed
mainly of epoxide and hydroxyl groups that are very close to each other. All of the oxygen
functionalities, aromatic bodies, and oxidized rings are distributed randomly across the
carbon monolayer. The acidity of GO can be explained by the oxygen groups that are
attached to the edges of the lattice, which are hydroxyl and carboxyl groups. This LK model
has become one of the most acceptable and used models for moderately oxidized GO.
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Figure 2. Lerf–Klinowski model of graphene oxide.

After the discovery of graphene, researchers worldwide started to focus on GO and
other derivatives. In 2006, Szábó and Dékány examined previous models by a number
of analyses and suggested a model without carboxylic acids composed of two main re-
gions: corrugated hexane ribbons occupied with quinones and ketones, and translinked
cyclohexane chairs with 1,3-epoxide and tertiary alcohols. In 2013, Dimiev, Alemany, and
Tour [20] proposed a dynamical structural model (DSM) that describes the development of
various carbon structures with attached water, contrary to the static LK model. Recently,
Liu et al. [21] experimentally observed the evidence of the C=O bonds on the edge of the
carbon monolayer, confirming parts of the earlier models, especially the LK model [22].
Real GO also includes some defects, such as topological defects (pentagons, heptagons,
octagons, etc.), adatoms, vacancies, and adsorbed impurities.

By using concentrated acids for oxidation, low-molecular-weight fragments are pro-
duced, known as oxidation debris [23,24]. Oxidation debris is a mixture of highly oxidized
polyaromatic fragments adsorbed on the poorly oxidized GO platelets by π–π stacking,
hydrogen bonding, and van der Walls interactions [25]. The amount of the oxidation debris
is strongly influenced by the reaction time of graphite and concentrated acids [26,27]. To
wash away those fragments, a base washing is needed [27–29]. The pure GO without the
oxidation debris presents an oxidation level that is similar to chemically reduced GO [30].
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3. Conventional Routes of GO Synthesis

The first attempt to synthesize graphite oxide was performed in 1859 by British chemist
B. C. Brodie who investigated the reactivity of flake graphite [31,32]. It is a chlorate route,
where potassium chlorate is used as an oxidizing agent. Benjamin Brodie treated graphite
with a number of strong oxidizing agents for the first time to decode its structure. In the
experiment, he treated graphite in a mixture of potassium chlorate and fuming nitric acid
at 60 ◦C for 4 days (Brodie’s graphene oxide (BR-GO)). He performed multiple oxidative
treatments one after another (4–7) and the resulting composition of carbon, oxygen, and
hydrogen was estimated as C11H4O5 (corresponds to C/O ratio 2.2) [32]. The product was
found to be soluble in pure water, while it tended to flocculate in a more acidic environment.
Brodie named the product “graphic acid” because it had a slight reaction with litmus paper.
Another chlorate route is the Staudenmaier method [33]. Later, L. Staudenmaier modified
Brodie’s method by adjusting the way the chlorate was added and also adding sulfuric
acid into the mixture (ST-GO—Staudenmaier’s graphene oxide). Potassium chlorate was
added in small portions into the mixture in order to eliminate the danger of explosive
by-products and heat evolution. The increased acidic environment caused a decrease in
terms of reaction time. The obtained material has very similar properties to BR-GO. In 1937,
Hofmann used potassium chlorate and nonfuming nitric acid to synthesize Hofmann’s
graphene oxide (HO-GO) with lower oxygen content (C/O ratio 2.5). It was found that the
concentration of nitric acid highly influences the level of oxidation of the resulting graphite
oxide or graphene oxide [34]. The lower the concentration of nitric acid, the higher level of
oxidation of graphene oxide.

The most used and effective method of all time is one of the permanganate methods,
the Hummers method [35] created by Hummers and Offeman. It is a relatively fast
conventional method used for the synthesis of GO. In this method, the reaction mixture
is composed of an excess of potassium permanganate, sulfuric acid, and a small amount
of sodium nitrate. The reaction time ranges between 8 and 12 h. This route is much safer
because it avoids the creation of explosive ClO2. At the end of the reaction, the excess of
the potassium permanganate is neutralized with a diluted solution of H2O2. The product
of the Hummers’ method (Hummers’ graphene oxide (HU-GO)) has a very similar C/O
ratio (2.25) to the C/O ratio of BR-GO (2.2). Unfortunately, this method is not environment-
friendly, because of NOx that evolves during the reaction. There are several modified
Hummers methods, including nitrate-free [36–38], two-step [36,37], co-oxidant [38], and
low- and room-temperature [39,40] methods. Then, in 2010, Tour developed his own
method, Tour’s method, which is described below.

4. Modern Ways of GO Synthesis

There are several ways to prepare graphite oxide/graphene oxide. The most common
way is to use an oxidizing agent in an acidic environment. Other methods are electrochemi-
cal and microbial.

In 2010, a novel method was developed. Tour’s method [41] (Tour’s graphene oxide
(TO-GO)) also falls under permanganate methods. In this procedure, phosphoric acid is
mixed with sulfuric acid in the ratio 1:9 and potassium permanganate and graphite added
in the ratio 6:1 in an ice bath (Figure 3A). The mixture is then heated at 50 ◦C and stirred
for 12 h (Figure 3B). After cooling down, the mixture is poured onto ice (Figure 3C). Finally,
30% H2O2 is added in order to remove the excess of potassium permanganate (Figure 3D).
Phosphoric acid works as a dispersive and etching agent, as well as a stabilizer of the
oxidation process, which makes the synthesis of GO safe. This route produces a higher
yield of GO with a higher level of oxidation and a more regular structure.
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Besides permanganate and chlorate methods, there are more modern ways to oxidize
graphite in order to prepare GO, including the use of potassium chromate in combination
with perchloric or nitric acid [42] or under the Jones conditions [43,44]. Alternatively, less
toxic potassium ferrate in sulfuric acid [45] can be applied for GO preparation. Contrary
to these results, another study evidences why it is not possible to prepare GO by using
potassium ferrate [46]. Moreover, graphite can be oxidized in water with H2O2 at 50 ◦C
by Fe(VI) [47] or at 110 ◦C with benzoyl peroxide [48]. Let us note that GO prepared
by chemical routes often displays a highly damaged structure due to the harsh acidic
conditions of the synthesis as well as the presence of impurities. Such characteristics
are indeed far from being optimal for electronics applications. Even though chemical,
especially chlorate and permanganate, ways of preparation provide GO with poor elec-
trical properties, the exploration is not at its end yet. For example, in 2017, Jankovský
et al. modified Tour’s method and suggested that the shortened reaction time (from 12 h
to 1 h) has no significant impact on the resulting material [49]. In 2018, Ranjan et al. [50]
also modified Tour’s method and proposed the oxidation process of graphite flakes in
permanganate (ratio 1:6) in a mixture of sulfuric and phosphoric acids (ratio 9:1) heated at
65 ◦C for 12 h. All of the chemicals were precooled at 5 ◦C.

Apart from the chemical routes, electrochemical synthesis represents another approach
to GO synthesis that might be the key to large-scale production. Electrochemical production
is more eco-friendly than chemical production due to reusing the electrolyte multiple
times and minimal washing of the utensils [51,52]. The better quality of electrochemical
GO (EGO), in contrast to standard procedures, can be explained by the use of aqueous
electrolytes and no need for oxidizing agents, hence avoiding impurities [52]. Moreover,
thanks to the variety of experimental setups, the level of oxidation and density of defects
can be controlled.

Interestingly, the usage of biological systems to oxidize graphitic materials is very
important to obtain eco-friendly graphene oxide. However, after the microbial cultivation,
graphite is not homogeneously oxidized. Acidithiobacillus ferrooxidans or Pseudomonas
have been tested [53] as oxidizing bacteria.

5. Derivatives of GO

Derivatives of graphene oxide are materials based on GO as a starting material. These
involve graphene acid (GAF), a highly oxidized GO exhibiting a composition close to
[C1(COOH)1]n; chemically reduced graphene oxide (CRG) and thermally reduced graphene
oxide (TRG), which are reduced forms of GO with some remaining oxygen functionalities
left in the structure; and fluorographene, a fluorinated form of graphene with composition
[C1F1]n (see Figure 1). The functionalization of graphene oxide is possible thanks to the
presence of oxygen functionalities, unlike in other carbon nanomaterials.



Materials 2022, 15, 920 6 of 21

For a closer inspection of the essential characteristics of those derivatives, we per-
formed transmission electron microscopy (Figure 4 left), scanning electron microscopy
(Figure 4 right), and energy-dispersive spectroscopy (Figure 5) to study the surface and
composition of the samples. The first micrographs in Figure 4 of GAF show a wrinkled
structure, where the flakes of GAF are connected together forming a foil-like structure.
Next, micrographs of [C1F1]n show small flakes of fluorographene which consist of multiple
wrinkled sheets. Whereas micrographs of CRG do not show such wrinkled structure of
multiple sheets, the last micrographs of TRG show small flakes of multiple-sheet struc-
ture which are highly wrinkled. According to EDS (see Figure 5), all samples consist of
carbon, oxygen, and sulfur except for fluorographene which consists of carbon, oxygen,
and fluorine.
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reduced graphene (CRG), and thermally reduced graphene (TRG).

Graphene acid (GA) is a graphene derivative with a composition close to [C1(COOH)1]n.
The synthesis of such material consists of two consecutive oxidation steps of graphite. After
the first oxidation by the Tour method, GO is obtained and further used as a starting
material for the second oxidation. The second oxidation runs according to the Tour method
as well [54]. Further oxidation leads to a total decomposition of GA (oxidation to CO2).
Another possible way to synthesize GA is by acidic hydrolysis of cyanographene (graphene–
nitrile) by 20% HNO3 [55].

GO is mostly used for the production of graphene (reduced graphene oxide (rGO)) by
chemical (chemically reduced graphene (CRG)) or thermal (thermally reduced graphene
(TRG)) reduction. Reduced graphene oxide can be used in electronic devices, energy storage
devices, (bio)sensors, biomedical applications, supercapacitors, membranes, catalysts, and
water purification. As an electronic device, rGO is used in field-effect transistors (FETs) as
chemical sensors and biosensors [56–59]. rGO was also used in light-emitting diodes (LEDs)
as a transparent electrode [60,61]. Thanks to the extreme surface area of rGO, the material is
used as an electrode in double-layered capacitors, batteries, fuel cells, and solar cells [62,63].
Energy storage capacity and cycle stability of Li-ion battery devices can be enhanced using
Fe3O4 on rGO anode rather than pure Fe3O4 or Fe2O3 [64]. Stacked sheets of GO have
nanocapillaries between individual sheets, which are closed by chemical reduction of
GO, creating a material that is impermeable to liquids, gases, and even strong chemicals.
Corrosive acids can be stored in glass or copper containers that are covered inside with such
graphene paint [65,66]. In order to improve shelf life in medical infrastructure, graphene-
coated plastic films may be used [67].
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Graphene oxide can be reduced thermally simply by applying heat, a process called
thermal annealing reduction. Firstly, the exfoliation of GO occurs during rapid heating,
where gases such as CO2, CO, and H2O are released from the sample [68–70]. During
the rapid increase in temperature, the oxygen-containing groups transform into gases
mentioned above that generate huge pressure between the stacked layers of graphene
oxide. At approximately 300 ◦C, the pressure reaches ~40 MPa, and it is increased to
~130 MPa if the temperature is raised to 1000 ◦C [71]. In fact, a pressure as low as 2.5 MPa is
enough to separate two stacked layers of GO, as predicted by the evaluation of the Hamaker
constant [71]. The originated platelets can be referred to as graphene or TRG because the
elevated temperature causes decomposition of oxygen-containing functional groups which
leads to the exfoliation of the material. This could be a good strategy for bulk rGO synthesis;
however, this route yields only small-sized and wrinkled graphene sheets [68,72]. This effect
is caused by the removal of carbon atoms during the transformation of oxygen-containing
groups into the above-mentioned gases, which splits wide sheets of graphene oxide into
small-sized graphene sheets [73,74]. High temperatures of the thermal reduction lead to
the emissions of highly toxic volatile organic hydrocarbons [75]. Another way to fabricate
reduced graphene oxide is by a liquid-phase exfoliation in an inert atmosphere. This route
is highly affected by the temperature of GO reduction [6,68,76,77]. At a temperature lower
than 500 ◦C, the C/O ratio is not higher than 7, while when the temperature reaches 750 ◦C,
the C/O ratio is very likely to be higher than 13. In addition to this effect, there is also a
great importance of the used annealing atmosphere. Annealing reduction of GO can be
carried out in vacuum [6], inert [77], or reducing atmosphere [69,77–79].

The first option to reduce GO chemically is using the reducing agent at room tem-
perature or at slightly elevated temperature. It is an easy and cheap way for the mass
production of graphene in comparison to the thermal reduction route. Hydrazine was
the first chemical compound used for the reduction of GO even before the discovery of
graphene [80]. Stankovich et al. reported the preparation of chemically derived graphene
using hydrazine [81,82]. Apart from hydrazine, its derivatives such as hydrazine hydrate
and dimethylhydrazine can be also used to reduce GO [83]. The reduction is achieved
by adding the liquid reagents to a GO aqueous suspension, where the graphene-based
nanosheets are agglomerated due to the increased hydrophobicity. Another great chemical
reducing reagent is ascorbic acid (vitamin C), which is considered to be an ideal hydrazine
substitute [84]. The resulting material has a very similar C/O ratio as the one reduced by
hydrazine, but vitamin C has a great advantage of nontoxicity. Moreover, the colloid state
reduction of vitamin C does not bring about a product agglomeration, which is helpful
for further applications. In addition, using Ar+ ion irradiation of GO foils creates highly
conductive graphene papers [85].

Fluorographene is fluorinated graphene with stoichiometry [C1F1]n [86,87]. As with
every graphene/graphene oxide derivative, it has extraordinary electronic, optical, physical,
and chemical properties that make it one of the thinnest insulators with a wide electronic
gap [88]. The preparation of such a material can be divided into two strategies. The first one
is based on the exfoliation of bulk graphitic materials containing fluorine atoms, while the
second strategy relies on the fluorination of graphene or graphene oxide with fluorinating
agents. Exfoliation can be performed in a liquid phase or mechanically. In the liquid-phase
exfoliation, a medium is used to weaken the van der Waals interactions between the layers,
resulting in single- or few-layer fluorographene [89]. For the first time, sulfolane was
used and the mixture of the solvent and bulk graphite fluoride was sonicated for 1 h at
50 ◦C [90]. Isopropanol [91], ethanol [92], acetonitrile [93], and chloroform [94] can be
mentioned as other reported solvents for the exfoliation of bulk graphite fluoride. Another
strategy to prepare fluorographene is to combine graphene with fluorination agents such
as xenon difluoride in a reactor [95]. The process can be initiated by exposing the reactants
to temperature, irradiation, or pressure. Fluorographite and fluorographene can be used as
a precursor for the synthesis of highly hydrogenated graphene (graphane) [96].
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6. Typically Used Analytical Methods for GO

In order to provide typical analytical results of GO, a sample of GO was prepared by
modified Tour’s method [49] and analyzed by SEM, EDS, and TEM. Usually, Raman spec-
troscopy, XPS, XRD, XRF, EA, EDS, AFM, and STA-MS are also used for the characterization.

Transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and
scanning electron microscopy (SEM) were used to study the surface of GO. The first
micrographs in Figure 6A of TO-GO show wrinkled sheets of graphene oxide by both
TEM and SEM methods. According to EDS (see Figure 6B), the sample consists of carbon,
oxygen, and sulfur. Let us note that the hydrogen is not visible on EDS.
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Figure 6. TEM (left) and SEM (right) micrographs (A) and EDS micrographs (B) of GO.

The composition of the sample can be determined via X-ray fluorescence (XRF). The
composition of GO depends on the level of oxidation of the sample. Generally, graphene
oxide is composed of carbon, oxygen, and hydrogen, but there are very often other im-
purities from the starting materials, such as sulfur, chlorine, nitrogen, manganese, and
potassium [97]. Manganese and potassium are contaminants that remain from the starting
reactants (potassium permanganate), and chlorine remains from hydrochloric acid that is
usually used in order to wash away the contaminants.

The composition of TO-GO can be also investigated by elemental analysis (EA) [98].
The results can also prove the presence of impurities such as sulfur and nitrogen, depending
on the used synthesis method. Sulfur and nitrogen remain from the sulfuric acid and nitric
acid, respectively, that are used as starting chemicals to synthesize GO. EA is a suitable
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method to determine hydrogen content; however, the determination of oxygen is not
precise due to the indirect calculation.

Raman spectroscopy is a powerful tool for the determination of defect rate. Using
Raman spectroscopy, two local maxima around 1350 cm−1 and 1600 cm−1, respectively, are
usually registered. The first local maximum is called the D band and shows a quasitetrahe-
dral coordination with sp3 carbon hybridization (irregularities such as functional groups).
The other local maximum is called the G band and detects a planar arrangement with sp2

hybridization (regular graphene lattice). The D/G ratio, calculated from the intensity of
peaks, shows the level of oxidation of the sample and should be around 1.00 [99].

X-ray diffraction is used to determine the interlayer distance between GO layers.
Whereas pure graphite has (002) reflection at 26.3◦ that corresponds to the interlayer dis-
tance of 3.342 Å [100], the (002) reflection for GO can be found around 10.0–12.0◦ [101–105],
indicating an interlayer distance of around 7.4–9.0 Å. This significant increase in the inter-
layer distance of pristine graphite and graphene oxide is caused due to oxygen functional
groups attached to the carbon layer.

GO may be analyzed by X-ray photoelectron spectroscopy (XPS) to determine the
composition of the sample surface and more interestingly to determine the ratio of individ-
ual functional groups. Two local maxima are usually detected around ~284.4 eV for the
C1s peak and around ~532.4 eV for the O1s peak. Maxima for N1s, S2s, and S2p peaks
might also be found, showing the contamination of the sample by sulfur and nitrogen. The
composition is very variable and depends on the level of oxidation of the sample [106]. The
deconvolution of the C1s peak can be used in order to quantify individual bonds that are
present in the samples, for a sample of deconvoluted C1s peak. From the C1s peak, six
kinds of bonds can be distinguished: C–C at ~284.5 eV; C=C at ~285.2 eV; C-O at ~286.2 eV;
C=O at ~287.8 eV, O–C=O at ~289.0 eV; and π–π* interaction at ~291.0 eV. From the O1s
peak, four kinds of bonds with the following binding energy may be identified: O-C=O at
~531.2 eV, C=O at ~ 532.5 eV, C-OH at ~533.3 eV, and C-O-C at ~534.0 eV [107].

With simultaneous thermal analysis in an inert atmosphere, the temperature of ex-
foliation is investigated. The literature claims that the temperature of the exfoliation of
graphene oxide is around 200 ◦C [108]. The obtained value is dependent on the heating
rate and other conditions. The process of exfoliation, where stacked layers of graphene
oxide are divided into individual reduced graphene oxide sheets, is accompanied by the
formation of gases; gases detected by mass spectrometer were H2O, CO, and CO2.

Atomic force microscopy (AFM) can be employed in order to study the thickness of the
GO sample, therefore investigating the number of layers. It is known from the literature that
a monolayered sample of GO has a thickness of 0.8–1.2 nm [109,110]. Shenghua Lv et al.
reported AFM results of graphene oxide nanosheets with a sample thickness of less than
7.7 nm (see Figure 7).
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7. Applications of GO
7.1. Environmental Applications of GO

One of the biggest threats to the environment is air pollution caused by the industrial
release of harmful gases such as CO2, CO, NO2, and NH3. Thanks to the oxygen groups
decorating the basal planes and the edges, GO is capable of covalent or noncovalent
interactions with various molecules. GO can be employed in catalysis for converting
polluting gases during industrial processing. The elimination of such harmful gases can be
performed by capturing and storing gases, catalyst reactions of gas conversion, or direct
utilization [112]. Apart from gas pollution, water pollution also represents a very huge
environmental problem. The approach of GO application in this area can be divided into
two paths: pollutant adsorption and conversion. The main water pollutants are heavy metal
ions and organic dyes; they strongly threaten humans, aquatic life, animals, and plants.

7.1.1. Removal of Toxic Gases

The functional groups of few-layered GO composites exhibit unique adsorption be-
havior towards CO2 [113–116]. Laminar GO structures were assembled having fast and
selective channels for gas separation with excellent preferential CO2 permeation perfor-
mance [117]. Multi-permselective mixed matrix membranes and other mixed matrix mem-
branes for efficient separation of CO2 were developed, enhancing the diffusivity selectivity,
solubility selectivity, and reactive selectivity [118–122]. In addition, GO-based compos-
ites have a unique ammonia adsorption capability [123–127]. Moreover, other harmful
gases such as acetone [128,129], formaldehyde [130], H2S [131–133], SO2 [134–136], and
NOx [137,138] can be adsorbed by GO-based composites.

7.1.2. Conversion of CO2

Thanks to the unique electronic properties, GO-based composites exhibit superior
photocatalyst abilities for CO2 conversion [139,140]. Hsu et al. [141] reported the photocat-
alytic conversion of carbon dioxide to hydrocarbons or their derivatives such as methanol
for possible simultaneous CO2 reduction and solar energy harvesting.

7.1.3. Water Purification

GO exhibits high adsorption ability towards Cd(II), Co(II), Au(III), Pd(II), Ga(III),
and Pt(IV) [142–144]. Researchers Klímová et al. explored the adsorption ability of GO
towards the whole periodic table. Adsorption ability mainly depends on the synthesizing
method [145]. Few-layered graphene oxide nanosheets show a very high affinity towards
Pb(II) ions, with a sorption capacity of about 842 mg g−1 at 293 K [146]. On the other hand,
the adsorption capacity of Cu2+ ions is very low, even with oxygen groups on GO acting as
active sites [147]. With the assistance of organic compounds, GO can provide more feasible
anchoring sites for heavy metal ions [148–155]. Additionally, graphene oxide provides the
ability to adsorb other harmful water pollutants—organic dyes [156–159]. Molla et al. [160]
reported that the selectivity of positive dye methylene blue and rhodamine B was rapid
(within 15 min) with the efficiencies of 97% and 88%, respectively, whereas the negative
dye, methyl orange, was not absorbed.

7.2. Medical and Biological Applications of GO

The first possible application in this field is GO-based biosensors. GO-based biosensors
rely on their preferred interaction with single-strand DNA (ssDNA) rather than double-
strand DNA (dsDNA). This effect is caused by the effective hiding of nucleo-bases in
dsDNA in a helical structure, which prevents GO from direct interaction with nucleo-
bases [161–163].

Another interesting application is gene delivery, which is a promising way to treat
genetic disorders, including cancer. The therapy uses gene vectors protecting DNA from
nuclease degradation. GO sheets have been covered by polyethyleneimine (PEI) as a
surface modifier for gene delivery into the cells. The delivery runs through complexation
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by electrostatic interaction and covalent conjugation for the loading of plasmid DNA
(pDNA) [161,164].

Small-molecule drug delivery seems to be another promising medical application of
GO. Small molecules of drugs can be attached to a GO surface using pH-sensitive linkers.
A complex of doxorubicin and GO (DOX-GO) shows a release of DOX from GO dependent
on pH due to higher solubility of DOX at low pH [165]. Moreover, cancer-targeting was
successfully manifested as a codelivery of camptothecin (CPT) using folic acid conjugated
nano-GO (FA-NGO) [166].

7.3. GO Membranes

GO membranes may be used as ionic and molecular sieves or for selective gas transport.
GO membranes were first introduced to the world by Nair et al. [167]. It was reported
that a membrane of pure graphene oxide can block everything except for water vapor
(see Figure 8A). Nair et al. claimed that a GO membrane allows only water vapor to pass
through (Figure 8B), while ethanol and other alcohol molecules are blocked from passing
through. The membrane can be prepared by vacuum filtration or by spraying a suspension
of GO on a solid surface and then etching away the membrane from the surface. Others
reported a study exploring the dependence of gases that pass through on the number of
layers of GO. In other words, the selective diffusion of gases can be accomplished by the
regulation of gas flow pores and channels by various stacking strategies [113].
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As a reaction to Nair’s paper, Sun et al. [168] demonstrated a selective ion penetration
through the GO membrane. They reported that salts of heavy metals and organic pollutants
take a much longer time to permeate than sodium salts that pass through quite freely.
The reason for this observation is that the salts of metals pass through capillaries in the
membrane, where the heavy metal ions create coordination between the GO membrane
and those ions that block the permeation. In 2014, Gao et al. [169] proposed the use of
an ozonated GO membrane, having more oxygen functional groups, to improve proton
conductivity in fuel cell applications at higher humidity. The water surface was used as a
template for assembling the GO film on it by using the amphiphilicity of the GO [170].

7.4. High-Temperature Materials and GO

Graphene and graphene oxide are very promising materials for the reinforcement
and general enhancement of mechanical properties of high-temperature materials. Some
researchers studied the effects of graphene oxide on high-temperature materials such as
metal alloys and ceramics. The mechanical resistance can be significantly improved by only
1 vol.% of GO. High energy ball milling was used to disperse graphene oxide powder in
an aluminum (AlMg5) alloy matrix. Hot pressing was used to densify the obtained mate-
rial [171]. More frequently, the reinforcement of high-temperature ceramics or graphene
oxide/reduced graphene oxide coatings has been found to achieve better corrosion resis-
tance. Spark plasma sintered Si3N4 ceramic matrix was enriched by multilayered graphene
or graphene oxide to study the influence of the addition on mechanical, tribological, and
electrical properties. The addition of multilayered graphene caused higher hardness, modu-
lus, and bending strength in comparison to graphene oxide addition. However, the addition
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of graphene oxide and multilayered graphene resulted in lower mechanical properties but
better electrical and tribological properties [172].

7.5. Building Materials and GO

Ordinary Portland cement (OPC) is one of the most used materials in the field of civil
engineering thanks to the thirst for urbanization. The concrete is produced by mixing
aggregates, binder (OPC), and water for hydration. Concrete has its advantages, such as
unique compressive strength, as well as disadvantages, including poor crack formation
resistance or low tensile strength [173]. Researchers have attempted many times to enhance
the properties of cement-based materials by admixtures [174–176], fibers [177,178], and
supplementary cementitious materials [179,180]. In more recent studies, newly produced
nanomaterials such as nano-titanium oxide, nano-silica, nano-iron oxide, carbon nanotubes,
and graphene oxide have been incorporated into the cement-like structures to enhance
the mechanical properties of such materials. Such nanoparticles are able to fill even the
smallest pores in the cement, providing a compact structure. Since GO is a two-dimensional
material, it offers a large surface area for C-S-H nucleation [181,182]. The large surface area
and the presence of functional groups make GO a highly reactive material. Mechanical
properties of graphene are degraded by functionalization, meaning that GO shows lower
elastic modulus and tensile strength than graphene. However, GO’s tensile strength and
elastic modulus are still superior to those of cement—adding GO to cement-like materials
enhances the mechanical properties of such building materials. Introducing small amounts
of GO (0.05 wt.%) increases the flexural strength by 40–60% and compressive strength by
15–33% [182].

Magnesium oxychloride cements (MOCs) are promising alternatives to Portland ce-
ment. Let us note that OPC production is connected to high emissions of CO2 during manu-
facturing [183]. An alternative building material that can reduce the impact of CO2 during
the carbonation is magnesium oxychloride cement (also known as Sorel cement) [184].
In order to enhance its flexural and compressive strength, carbonaceous nanomaterials,
such as graphene, graphene oxide, or graphite oxide, can be added to the mixture (see
Figure 9) [97]. Even the very poor water resistance can be improved by the addition of
graphene [185].
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8. Conclusions

In this article, the history, synthesis, properties, and application of graphene oxide
were reviewed. There are many GO derivatives, including graphene acid, fluorographene,
and graphene oxide reduced by thermal or chemical reduction (TRG or CRG). Graphene
oxide as well as its derivatives have plenty of various applications. Thanks to the oxy-
gen functional groups on the edges and basal plane, GO can be used as a solution for
environmental problems such as excess of CO2 and toxic gases such as ammonia, acetone,
formaldehyde, H2S, SO2, and NOx. There is also a possibility to convert CO2 by photocat-
alytic reaction using GO-based composites. Organic dyes and inorganic heavy metal ions
in water represent another worldwide environmental issue that can be solved by using
GO. There are also medical applications such as gene delivery, which is a very promis-
ing way of treating genetic disorders; drug delivery for targeting cancer; and GO-based
biosensors. GO-based membranes can be employed as molecular and ionic sieves or for
selective gas transport. In high-temperature materials, GO works mainly as an additive
used for reinforcement and general enhancement of mechanical properties. Employing GO
into building materials such as ordinary Portland cement or magnesium oxychloride can
enhance their flexural and compressive strength as well as MOC’s poor water resistance.
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88. Chronopoulos, D.D.; Bakandritsos, A.; Pykal, M.; Zbořil, R.; Otyepka, M. Chemistry, properties, and applications of fluoro-
graphene. Appl. Mater. Today 2017, 9, 60–70. [CrossRef] [PubMed]
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