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Abstract: The term castrate resistant prostate cancer (CRPC) was initially proposed by the Prostate
Cancer Working Group 2 in 2008 to define the state of clinical and/or biochemical progression of
prostate cancer (PCa) in an environment with very low serum testosterone concentration. Clinical
progression is based on the radiological imaging proposed by the Response Evaluation Criteria in
Solid Tumors (RECIST) adapted to PCa. Biochemical progression is defined as an over 25% increase
in serum prostate-specific antigen within two consecutive measurements separated by at least one
week, and an absolute value above 2.0 ng/mL. Finally, the castrate environment is usually defined
as a serum testosterone concentration maintained below 50 ng/dL or 1.7 nmol/dL. This definition
does not incorporate the new and more accurate imaging modalities to assess clinical progression
and the capability of the new biochemical measurements to assess the true castration environment.
Ga-68-PSMA-11 PET CT/MRI and whole-body MRI are the new imaging modalities that should
replace the classic thoracic CT scan, abdomino-pelvic CT scan, and technetium 99-m bone scintigra-
phy. In addition, Ga-68-PSMA-11 PET is the current basis for the new therapies targeting metastatic
sites. Moreover, the current methods for measuring the very low serum testosterone concentrations
in clinical laboratories are the widespread chemiluminescent assays, which are inappropriate, while
LC-MSMS is the only method recommended to assess the castrate environment. In addition, recent re-
search shows that serum luteinising hormone concentration associates better than serum testosterone
with the castration environment, even when it is measured with LC-MSMS. In summary, the current
definition of CRPC seems outdated. An extensive update to diagnose true CRPC is also needed to
differentiate CRPC men with M0 (non-metastatic) from those with M1 (metastatic) CRPC. WC: 277.

Keywords: prostate cancer; castration-resistance; PSMA-PET; testosterone; free-testosterone;
luteinising-hormone

1. Introduction

The hormone dependence of prostate cancer (PCa) was discovered by the urologist
Charles Brenton Huggins in 1941 [1]. Huggins was awarded the Nobel Prize in Physiology
and Medicine in 1966 for his contribution to the treatment of PCa with what is currently
named androgen deprivation therapy (ADT) [2]. Huggins and Hodges introduced surgical
castration and the administration of oestrogens to decrease the serum testosterone levels
in men with advanced PCa [1]. Between 1960 and 1975, the Veterans’ Administration
Cooperative Urological Research Group (VACURG) conducted three major randomised
clinical trials comparing various endocrine treatments for patients newly diagnosed with
advanced PCa. The main conclusions regarding hormonal treatment that emerged from
these studies were: (1) increased hazard of cardiovascular death after therapy with 5 mg di-
ethylstilbestrol (DES); (2) orchiectomy plus DES is no better than orchiectomy or DES alone;
(3) the effects of 1.0 and 5.0 mg DES on cancer are equivalent; (4) reduced cardiovascular
hazard from therapy with 1.0 mg DES [3].

Another significant contribution to the endocrine treatment of PCa came from the
endocrinologists Roger Guillemin and Andrew Victor Schally, who contributed to the
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understanding of the hypothalamic–pituitary axis and the discovery of the chemical struc-
ture of peptide hormones, as well as the gonadotrophin releasing hormones (GnRH) [4].
These discoveries were also awarded the Nobel Prize in Physiology and Medicine in 1977
and prompted the development of the current luteinising hormone-releasing hormone
(LH-RH) agonists. Buserelin was the first LH-RH agonist introduced to treat advanced
PCa outside the US in 1985 [5], and goserelin was the first Food and Drug Administration
(FDA)-approved LH-RH agonist in 1989 [6]. Therefore, medical castration was introduced
to facilitate reversible ADT and avoid the secondary psychological effects of bilateral
orchiectomy [7].

Castration resistance is defined as the progression of disease in a castration environ-
ment, and it precedes hormone resistance, which is defined as the progression of disease
despite whichever hormonal manipulation is added to castration. The term castrate-
resistant prostate cancer (CRPC) was proposed by the Prostate Cancer Working Group
2 (PCWG2) in 2008 to describe clinical and/or biochemical progression in a castration
environment [8]. The clinical progression of solid tumours is usually based on the Response
Evaluation Criteria in Solid Tumors (RECIST 1.1), in which the criterion for progression
is an increase of at least 20% in the longest diameter of target lesions, taking as reference
the smallest longest diameter recorded since the treatment started or the appearance of
one or more new lesions [9]. The current specific criteria to define the progression of PCa
after castration are those proposed by the PCWG 2, in which biochemical progression
is defined as an over 25% increase in serum prostate-specific antigen (PSA) within two
consecutive measurements separated by at least one week, with a 2.0 ng/mL minimum
increase over the starting value, and PSA doubling time is also incorporated to predict
the aggressiveness of progression [10]. For RECIST 1.1 progression of visceral metastases,
at least a 2 cm length of lymph nodes on computed tomography (CT) scan or magnetic
resonance imaging (MRI) is required. Prostate and/or prostate bed progression can be
assessed by CT scan, pelvic MRI, endorectal MRI, transrectal ultrasound, or incidental
positron emission tomography (PET)/CT. Bone progression is defined as two or more new
lesions appearing in technetium-99 m scintigraphy, although confirmation by CT scan or
MRI is required when results are ambiguous. Finally, the castrate environment is defined
as a serum testosterone concentration below 50 ng/dL or 1.7 nmol/dL [8]. The current
EAU (European Association of Urology) CRPC definition is based on the biochemical
and/or clinical progression according to PCWG 2 and RECIST 1.1 criteria being the serum
testosterone below 50 ng/mL, Figure 1 [11].

We aim to review the new insights from more efficient imaging modalities than those
currently proposed by RECIST 1.1 for the assessment of PCa clinical progression, as well as
the new insights regarding the best methods to assess the castration environment, in order
to improve the current definition of CRPC and the proper selection of patients for treatment.
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2. Effects of Castration on Serum Hormones

Castration reduces the amount of circulating testosterone produced in the Leydig cells
of the testis under the stimulation of serum luteinising hormone (LH) liberated from the
pituitary gland, which accounts for 95% of circulating testosterone. The remaining 5%
of circulating testosterone is produced in the adrenal cortex under the stimulation of the
adrenocorticotropic hormone. A significant difference in the concentration of serum LH
is observed after medical vs. surgical castration: while a drastic decrease in serum LH is
observed after LH-RH agonist or antagonist administration, the serum LH remains high
after surgical castration. The main clinical difference of the new LH-RH antagonist is their
immediate block of pituitary LH-RH receptors which is translated in a rapid decrease of
serum testosterone to castrate levels in less than 24 h over the classic agonist which induced
this decrease in one month. In one study conducted at 150 sites in the US and Mexico that
included 1191 men with PCa undergoing GnRH agonist treatment and 59 subjected to bilat-
eral orchidectomy, the mean serum levels of LH (range) were 1 UI/L (1–526) and 159 UI/L
(33–369), respectively [12]. Testosterone is the main sex hormone in men, regulating many
functions such as libido, bone mineral density, red blood cell count, male characteristics,
and male behaviours. Total blood levels of testosterone comprise bound and free forms.
Most of the circulating testosterone is bound to either albumin or sex hormone-binding
globulin (SHBG), which is a protein produced by the liver. To protect from testosterone
degradation, SHBG serves to regulate the amount of free testosterone that is available
for biological activity by keeping it bound and therefore inactive. Free testosterone is the
metabolically active form of testosterone that carries out the biological functions associated
with its activity [13]. An individual’s free testosterone is internalised into the cells after the
cytoplasmatic 5-α-reductase enzyme transforms free testosterone to 5-dihydrotestosterone,
which is able to promote androgen receptor dimerisation and then translocation into the
nucleus, where it makes possible deoxyribonucleic acid replication [14].

3. Methods for Measuring Total Serum Testosterone

Castration results in a significant reduction of serum testosterone levels, and sensitive
assays are required to accurately measure these low concentrations. Although several
studies have validated techniques for the measurement of relatively high levels of serum
testosterone (above 100 ng/dL) [15], the castrate levels of testosterone fall much lower [16].
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The FDA has never defined the castrate level of serum testosterone. However, many
documents support the use of a serum testosterone level below 50 ng/dL as a standard
for FDA approval of castration products [17]. These data came from the orchiectomy
arms of the VACURG trials [3], and 50 ng/dL was the lowest limit of detection of the
radioimmunoassays (RIAs) used at that time [18]. The European Medical Association’s
Sixth International Consultation on New Developments in Prostate Cancer and Diseases
agreed that because total serum testosterone levels below 20 ng/dL (measured with chemi-
luminescent assay [CLIA]) are typical in men who have undergone bilateral orchiectomy,
this threshold should be utilised for chemical castration [13]. However, the American
Urological Association lists 50 ng/dL as the threshold for chemical castration [19], and the
European Association of Urology PCa guidelines also establish the threshold of chemical
castration at 50 ng/dL, although they noted that testosterone levels below 20 ng/dL are
associated with an improvement in outcomes compared with levels within the 20–50 ng/dL
range [11].

The double-isotope derivative dilution technique made possible the initial measure-
ments of serum testosterone in the late 1960s [20]. RIAs were used, starting in the 1970s,
but they have limited accuracy and sensitivity to measure low concentrations [17]. Mea-
surement of the true spread of serum testosterone in clinical laboratories was enabled by
the sensitive and automatable CLIAs, with the Chiron/Ciba-Corning Diagnostics ACS: 180
(Norwood, MA, USA) being the first immunoassay analyser approved for clinical use [21].
This technique permitted the assessment of low testosterone concentrations while also
decreasing the waiting time for results. Oefelein et al. redefined the castrate level of serum
testosterone with a CLIA as 20 ng/dL [16], and microelevations of serum testosterone were
described in men undergoing GnRH agonist treatment [22,23]. In 2007, our group first
demonstrated that lower serum testosterone levels were associated with longer survival free
of castrate resistance, especially in men without microelevations over 32 ng/dL [24]. Other
studies have also suggested that lower testosterone levels are associated with better follow-
up [25]. All the studies analysing the influence of microelevations of serum testosterone
on the findings during follow-up have been carried out with CLIAs [26]; in contrast, the
studies presented to the FDA for the approval of agents for castration always used a type
of chromatography before specific RIAs [27] and, more recently, liquid chromatography
and tandem mass spectrometry (LC-MSMS), which is currently considered the gold stan-
dard method for testosterone testing, especially for low testosterone concentrations [28,29].
While the microelevations of serum testosterone over 50 ng/dL ranged between 3% and
12% in studies that used CLIAs for testosterone measurement, they ranged from 0% to 1%
in the clinical trials in which LC-MSMS was used [23].

Between 2003 and 2004, two important studies compared the standard method of
liquid or gas chromatography (GC) mass spectrometry with the available immunoassays
(RIAs and CLIAs) in women and children [30] and adult men [31]. These studies concluded
that RIAs and CLIAs usually overestimate low concentrations of serum compared to the
standard LC/GC-MS measurements. In 2007, the International Society of Endocrinology
stated that LC-MSMS is the recommended method to measure serum testosterone in
children and women [15]. In one study analysing the serum testosterone levels of 249 men
with PCa undergoing GnRH agonist treatment, we observed no correlation between the
levels measured with two commercial CLIAs, as the rate of microelevations over 50 ng/dL
ranged between 21.3% and 0.8% [32]. In a more recent study, we compared the serum
testosterone levels of 126 PCa patients undergoing continuous GnRH agonist treatment
using CLIA and LC-MSMS. The median serum testosterone was 14.0 ng/dL (range 2.0–67.0)
when measured with LC-MSMS and 31.9 ng/dL (range 10.0–91.6) with CLIA (p < 0.001). The
serum testosterone levels measured with LC-MSMS were below 20 ng/dL in 65.9%, between
20 and 50 ng/dL in 31.7%, and over 50 ng/dL in 2.4% of patients. These rates were 27,
57.1, and 15.9%, respectively, when testosterone was measured with CLIA (p < 0.001). The
castrate levels of serum testosterone measured with LC-MSMS and CLIA were 39.8 ng/dL
(95% CI 37.1–43.4) and 66.5 ng/dL (95% CI 62.3–71.2), respectively. We concluded that
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CLIA overestimated the serum testosterone levels in PCa patients undergoing LH-RH
agonist therapy. More than 15% of CLIA measurements were over 50 ng/dL, while 2.4%
of LC-MSMS measurements were above this value. The estimated castrate level of serum
testosterone from the appropriate method of measurement was lower than the currently
used up to 50 ng/dL [33].

4. Methods for Evaluating the Castration Environment

There are at least three methods for evaluating the castration environment.

4.1. Total Serum Testosterone

The classical method for evaluating the castration environment in patients with PCa is
the assessment of total testosterone in serum [17]. Serum testosterone testing was initially
used to assess the effectiveness of DES as a method of castration compared to surgical
castration [3]. The castrate level of serum testosterone was established as 50 ng/dL, which
was the lowest level detected by the RIA used in the 1960s [20]. Measuring the true
spread of serum testosterone was possible after the introduction of automatable CLIAs [21].
However, some research demonstrated that immunoassays usually overestimated low
levels of serum testosterone and had low reproducibility [30,31]. This evidence led the
International Society of Endocrinology to recommend against using immunoassays for the
measurement of testosterone levels in children and women, which should be measured
with the classic mass spectrometry following liquid or gas chromatography [15]. This issue
for serum testosterone testing in men with PCa undergoing castration has recently been
investigated, and a similar recommendation has been proposed [32,33]. Today, LC-MSMS
is completely automated and offers an accurate, reproducible, and quick measurement
of serum testosterone, with the high price being the only disadvantage compared to
CLIAs [34].

4.2. Free Serum Testosterone

Testing of free serum testosterone should be the ideal method for evaluating the
castration environment because it is the active form of testosterone. Less than 5% of the
total amount of serum testosterone is free, and it can diffuse into the cells and bind to
the androgen receptor after being converted to dihydrotestosterone by the 5-α-reductase
enzyme [35]. In addition to its direct measurement in serum or plasma, the free testosterone
value can also be calculated using the Vermeulen method, a formula relying on the total
testosterone, SHBG, and albumin concentrations measured from immunoassay [36]. In
patients with advanced PCa, being subjected to castration and achieving lower free serum
testosterone seems to be associated with better overall survival [17]. In 2018, Schweizer
et al. analysed the effects of different ADTs on free serum testosterone levels. Using RIA
to measure free serum testosterone, the authors did not find a difference in levels when
comparing patients subjected to surgical vs. medical castration [12]. In 2005, we analysed
free serum testosterone levels in 135 patients with advanced PCa undergoing continuous
luteinising hormone-releasing hormone (LH-RH) analogue treatment. After establishing
cutoffs for castration levels of total testosterone below 50 ng/dL and for free testosterone
below 1.7 pg/mL, 86% of patients met the cutoff for total testosterone after treatment, while
95% met the cutoff for free testosterone. Although correlation was observed between the
testosterone measurements, the authors concluded that total and free testosterone may
report complementary information [37]. One study analysed the relationships between
serum total testosterone, SHBG, and the calculated free testosterone in PCa patients who
underwent surgical castration or oestrogen administration. The third of the 33 patients
subjected to orchiectomy who had the lowest free testosterone or total testosterone levels
exhibited a better survival over 2 years than the two-thirds who had higher levels. Despite
these findings, there was no evidence of an increase in free testosterone level accompanying
the clinical progression in these patients. In addition, free testosterone was lower in
oestrogen-treated patients than in orchiectomised patients [38]. In 2017, we analysed free
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and total serum testosterone in 29 patients with advanced PCa undergoing continuous
LH-RH analogue treatment. The purpose of the study was to compare serum free and total
testosterone levels to predict survival free of castration resistance. Total testosterone cutoffs
of 50, 32, and 20 ng/dL were established, and free testosterone cutoffs were set at 1.7,
1.1, and 0.7 pg/mL. The lowest threshold that detected a significant difference in survival
free of castration resistance was 1.7 pg/mL of free testosterone. Therefore, free serum
testosterone was a better predictor than total serum testosterone in predicting castration
resistance [39].

Since the International Society of Endocrinology position statements regarding total
testosterone testing in 2007 [15] and 2010 [40], no position statement regarding free testos-
terone testing has been published. The Vermeulen method to calculate the free testosterone
serum concentration was designed using immunoassay measurements of total serum testos-
terone [36], and no validation of this method has been performed with castrate levels of
testosterone and other measurement methods. In addition, no evidence exists regarding the
sensitivity or reproducibility of free serum testosterone measurements, whether calculated
or directly measured with available immunoassays.

4.3. Serum Luteinising Hormone

The hypothesis that measurement of serum LH could be used as a method to assess
the castrate environment was established from the observation that patients with PCa
who underwent continuous medical castration with LH-RH analogues exhibited serum
testosterone levels over 50 ng/dL and low serum LH concentrations. We believe that, in
this scenario, extra-testicular production of testosterone or false microelevation of serum
testosterone is possible [12]. In addition, by measuring serum LH, Garnick and Mottet
have efficiently monitored the switch from LH-RH antagonist to LH-RH analogues in PCa
patients [41].

Serum LH and total serum testosterone were measured by CLIAs in 1091 men, 488 PCa
patients undergoing treatment with LH-RH analogues, referred to as “on LH-RH agonists”;
303 PCa patients in whom LH-RH analogue was withdrawn (“off LH-RH agonists”);
and 350 men with suspicion of PCa who never received LH-RH analogues (“no LH-RH
analogues”). In addition, in a validation cohort of 147 PCa patients whose total serum
testosterone was measured by LC-MSMS, 124 were “on LH-RH analogues” and 19 were
“off LH-RH analogues”. The area under the curve (AUC) for distinguishing patients “on
LH-RH agonist” from those “off LH-RH analogues” was 0.997 for serum LH and 0.740 for
total serum testosterone measured by CLIA (p < 0.001). The castrate threshold of serum LH
was established as 1.1 UI/L. The AUCs of serum LH, serum total testosterone measured
by CLIA, and serum total testosterone measured by LC-MSMS in the validation cohort
were 1.000, 0.646, and 0.814, respectively (p < 0.001). The accuracy of distinguishing PCa
patients “on LH-RH analogues” from those “off LH-RH analogues”, using the thresholds
of 1.1 U/L for serum LH and 50 ng/dL for serum total testosterone measured by CLIA and
LC-MSMS, were 98.6, 78.3, and 89.5%, respectively (p < 0.001). This study concluded that
regardless of the method used to measure serum testosterone, serum LH was more efficient
in assessing the castrate environment, as it efficiently distinguished between patients “on
LH-RH agonist” and those “off LH-RH agonists” [42].

We have recently analysed whether serum LH could distinguish between optimal and
suboptimal castration in 136 patients with PCa undergoing continuous LH-RH analogue
treatment. For this purpose, optimal castration was defined as a serum total testosterone
level below 20 ng/dL (measured by CLIA and LC-MSMS), and the serum LH level ranges
were < 0.12 UI/L and 0.13–1.1 UI/L. In patients with optimal castration, the rate of LC-
MSMS serum testosterone levels below 20 ng/dL was 78.3%, while the rate was 21.7% in
patients with suboptimal castration (p < 0.001). The rates of CLIA serum measurements
below 20 ng/dL were similar in the optimal and suboptimal castration groups (53.6 vs.
46.4%, p = 295). We conclude that serum LH was significantly associated with serum
testosterone (when it was appropriately measured) in PCa patients undergoing continuous
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medical castration. A serum LH level of 0.12 U/L was associated with optimal castration,
defined as serum testosterone < 20 ng/dL [43].

Future studies verifying that optimal castration based on serum LH measurement is
associated with better follow-up than patients with suboptimal castration and those with
no castrate environment are needed.

5. Imaging Modalities for the Diagnosis of Castration-Resistant Prostate Cancer

Beyond the current imaging modalities proposed by the RECIST guidelines [9], which
mainly comprise CT scans and MRI, the PCWG2 also considered technetium-99 m bone
scintigraphy to assess the progression of bone metastases when more than two hot spots
appear; however, CT scans or MRI are required when results are ambiguous [8].

PET-whole body CT/MRI and whole body multiparametric MRI are new imaging
modalities improving the classic CT scan and MRI for the detection of new metastatic
sites and the bi-dimensional assessment of progression using different radiotracers as
Ga-68-PSMA-11 which is one of the most specific for prostate cancer cells [44].

Currently, there is solid evidence on the re-staging efficacy of Ga-68-PSMA11-PET
in men with non-metastatic CRPC [45,46]. Frendler et al. conducted a multicenter and
retrospective study of 200 patients with CRPC with serum PSA levels over 2 ng/mL, a
PSA doubling time below 10 months, and/or a Gleason score ≥ 8 in whom conventional
imaging showed the absence of metastasis. The Ga-68-PSMA11-PET/CT showed positive
findings in 98% of the patients. In 44% of the patients, positive results were observed in the
pelvis, with 24% of patients having progression or recurrence in the prostate or prostate bed.
Furthermore, in 55% of the patients who developed disease recurrence, metastases were
found in the extra-pelvic lymph nodes (39%), bone (24%), and visceral organs (6%) [47].
Using Ga-68-PSMA11-PET/CT, Fourquet et al. analysed 30 non-metastatic PCa patients
with increasing serum PSA after medical castration and observed positive findings in all
20 patients whose serum PSA was over 2 ng/mL and in 7 of 10 patients whose serum PSA
stayed below 2 ng/mL. In the 7% of cases with positive PSMA-PET, lesions were confined
to the prostate gland or prostate bed. In addition, 20% of the patients had oligometastatic
disease with fewer than three lesions and 63% had polymetastatic disease [48].

Whole-body MRI and localised multiparametric MRI are other candidate imaging
modalities for re-staging patients with CRPC [49]. Head-to-head comparative studies
between Ga-68-PSMA11-PET/CT/MRI and whole-body MRI are difficult; however, it
seems that the efficiency of both imaging modalities depends on the metastatic sites.
In any case, both imaging modalities are more efficient than those that are currently
recommended [50].

Thus, the current definition of CRPC based on the classic imaging modalities does not
represent the true stage of the disease [51]. Additionally, new focal treatments for metastatic
CRPC based on PET imaging and adding certain conjugated drugs with biological activity
against prostate cells are under development [44,52,53]. Figure 2 gather up the proposed
components of a new definition of castration resistant prostate cancer.
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ADT androgen deprivation therapy
AUC area under the curve
CT computed tomography
CLIA chemiluminescent assay
CRPC castrate resistant prostate cancer
DES diethylstilbestrol
dL deciliter
Gn gonadotropin
GC gas chromatography
LC liquid chromatography
LH luteinising hormone
SHBG sex hormone binding globulin
FDA Food and Drug Administration
Ga gallium
L litre
M metastases
mL milliliter
MRI magnetic resonance imaging
MS mass spectrometry
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PCa prostate cancer
PCWG prostate cancer working group
PET positron emission tomography
PSMA prostate specific membrane antigen
RIA radioimmunoassay
RECIST response evaluation criteria solid tumour
RH releasing hormone
UI unit international per litre
VACURG Veterans’ Administration Cooperative Research Group
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