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Cardiovascular disease remains the leading cause of death worldwide. Myocardial

ischemia is a major contributor to cardiovascular morbidity and mortality. In the case

of acute myocardial infarction, subsequent cardiac repair relies upon the acute, and

coordinated response to injury by innate myeloid phagocytes. This includes neutrophils,

monocytes, macrophage subsets, and immature dendritic cells. Phagocytes function

to remove necrotic cardiomyocytes, apoptotic inflammatory cells, and to remodel

extracellular matrix. These innate immune cells also secrete cytokines and growth factors

that promote tissue replacement through fibrosis and angiogenesis. Within the injured

myocardium, macrophages polarize from pro-inflammatory to inflammation-resolving

phenotypes. At the core of this functional plasticity is cellular metabolism, which has

gained an appreciation for its integration with phagocyte function and remodeling of

the transcriptional and epigenetic landscape. Immunometabolic rewiring is particularly

relevant after ischemia and clinical reperfusion given the rapidly changing oxygen and

metabolic milieu. Hypoxia reduces mitochondrial oxidative phosphorylation and leads

to increased reliance on glycolysis, which can support biosynthesis of pro-inflammatory

cytokines. Reoxygenation is permissive for shifts back to mitochondrial metabolism and

fatty acid oxidation and this is ultimately linked to pro-reparativemacrophage polarization.

Improved understanding of mechanisms that regulate metabolic adaptations holds the

potential to identify new metabolite targets and strategies to reduce cardiac damage

through nutrient signaling.
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INTRODUCTION

According to the American Heart Association, ∼720,000 individuals in the United States alone
will succumb to a first hospitalized acute myocardial infarction (AMI), and ∼335,000 more will
have a recurrent event (1). Improvements in timeliness and efficiency of clinical treatment have
reduced mortality after first heart attack. Nevertheless, the incidence of heart failure, including
post-MI heart failure, has seen recent escalations (2). The progression to heart failure is often
related to the degree of ventricular damage after acute insult. Occlusion of coronary arteries
restricts blood flow to the myocardium. This leads to reduced oxygen availability and metabolic
substrates that are essential to sustain active cardiomyocyte metabolism. Oxygen restriction also
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modulates the immune response to the injured heart. Further
clinical percutaneous reperfusion and re-oxygenation may cause
unintended tissue damage in the ischemic heart (3).

Acute Coronary Syndromes Have Long Been Associated
With Inflammation (4, 5) and Metabolic Syndromes. In the
majority of patients who succumb to sudden death after AMI,
cardiac pathology typically reveals significant accumulation of
polymorphonuclear and mononuclear phagocytes. In general,
acute inflammation is followed by a resolution program
that acts to dampen the amplitude of inflammation and
orchestrate tissue repair. However, in many diseases of aging,
this transition fails and leads to a persistence of chronic
inflammation (6). Defects in inflammation resolution are often
linked to a systemic metabolic imbalance (7). A similar
phenomenon may occur after AMI, in which inefficient
inflammation resolution due to hyperlipidemia (8) is linked
to maladaptive myeloid response (9). In experimental animals,
the ischemic heart recruits a diverse repertoire of innate
and adaptive immune cells. This is triggered by chemokines
and cytokines that are secreted by cardiac resident and
recruited cells. Neutrophils enter and accumulate in the
ischemic heart soon after AMI, and this is followed by
recruitment of monocyte subsets. Two monocyte sources
are of particular interest in this context. This includes
monocytes generated from hematopoietic stem cells in the
bone marrow, and mature monocytes released from the splenic
reservoir (10). Independent of their site of origin, these
monocytes differentiate into cardiac macrophages (11), which
may either contribute to promote or resolve the inflammatory
response (11). This occurs by the liberation of cytokines
and growth factors that are recognized by parenchymal and
stromal cells and therefore modulate the tissue response
to injury (12).

Within the ischemic myocardium, reductions in both oxygen
and nutrient supply are associated with acute cell death
and necrosis (13). Prolonged ischemia impairs mitochondrial
oxidative phosphorylation that is coupled to the synthesis
of adenosine triphosphate (ATP) synthesis. In order to
meet bioenergetic demands needs, cells must then rely on
glycolysis, which in turn increases the concentration of lactate.
Intracellular lactate accumulation lowers cytosolic pH whereas
extracellular lactate is sensed by immune cells and can lead
to their activation (14). Accumulation of metabolically active
immune cells also depletes local oxygen and nutrient substrate
availability. A consequence of reduced oxygen availability
is the induction of hypoxia-inducible transcription factors
(HIF), which act transcriptionally to promote glycolysis.
Additional triggers, including liberation of damage associated
molecular patterns (DAMP) in heart (15), activate immune
cell toll like receptors, that are also tied to signaling that
induce glycolytic polarization. This glycolytic switch has
functional consequences. This includes facilitating the diversion
of metabolites from Krebs cycle and the pentose phosphate
pathway (PPP), to substrates that promote cellular proliferation
during tissue repair. As the repair site matures, macrophages
polarize to phenotypes associated with mitochondrial oxidative
phosphorylation, as discussed below. Most studies of myocardial

ischemic metabolism have focused on the myocyte. In contrast,
discussed herein (Figures 1, 2) are advancements in the field of
immunometabolism that hint at a significant role of phagocyte
metabolism to cardiac repair.

NEUTROPHIL IMMUNOMETABOLIC LINKS
TO HEART

As the predominant phagocyte in blood, the glycolytic-biased
polymorpho-nuclear (PMN) neutrophil, is primed to rapidly
respond to secreted alarms of tissue injury (16). PMNs have
been referred to as the “wrecking crew” for their propensity
to secrete proteases that facilitate wound breakdown that
enables wound clearance. Thus, PMNs contribute to reparative
functions after tissue injury, however they are also notoriously
affiliated with causing maladaptive collateral tissue damage,
particularly after clinical reperfusion. Patients in the highest
tertile of circulating neutrophils track with heightened risk
for MI (17). This bad reputation extends to after cardiac
transplant, as pre-operative neutrophil phenotype is a biomarker
for early allograft rejection (18). Elevated neutrophils are also
prognostic for poor clinical outcome (19) and directly correlate
with infarct size following percutaneous coronary intervention
(20). Neutrophil depletion and inhibition of neutrophil-derived
enzymes (21) have long been associated with experimental
improvements with cardiac function (22). Harmful neutrophil
effects may be amplified in the setting of metabolic syndromes
(23). For example, neutrophils from hyperlipidemic patients
exhibit elevated markers of superoxide release (24). Moreover,
neutrophils from diabetic humans and experimental mice
are more susceptible to cell death by NETosis (neutrophil
extracellular traps), which impairs wound healing (25) and is
linked to glucose metabolism. In contrast, neutrophil depletion
may aggravate cardiac function after AMI, which is consistent
with a conserved reparative function (26). The mechanism
underlying this protective role may be linked to crosstalk
with macrophages, which can polarize toward a reparative
phenotype after PMN efferocytosis. This dichotomy between
deleterious vs. protective roles of PMNs after AMI may be
better understood by examining PMN function at distinct stages
of AMI inflammation vs. resolution vs. reperfusion, as further
discussed below.

Recent Reports Highlight our Evolving
Understanding of Neutrophil Polarity (16)
For instance, neutrophils isolated from infarcted mouse hearts
on the first days after coronary ligation expressed pro-
inflammatory markers IL1β and TNFα. By contrast, the
neutrophil profile was more anti-inflammatory a few days later
(27). In tumors, neutrophils have been classified into N1 and
N2 polarization states (28), akin to the widely but overly
simplistic M1/M2 macrophage classification. In this context,
it is tempting to speculate that neutrophil polarization states
may reflect unique metabolic rewiring, as illustrated in the
M1/M2 dichotomy.
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FIGURE 1 | Table of metabolic links to key phagocytes during AMI. Neutrophil and Macrophage subsets are divided into early and late phases of cardiac inflammation

after myocardial infarction and according to metabolic phenotype.

FIGURE 2 | Working model of phagocyte immunometabolism after myocardial infarction (MI). This figure separates cardiac inflammation based on time (the first week

post MI) and oxygen saturation within the infarct border zone. Little information is known about the functional metabolic capacity of macrophage CCR2 and MHCII

resident and recruited subsets in the heart, therefore generalizations are made to classify macrophages according to metabolic phenotype.

Neutrophil variation also manifests through diurnal variation.
For example, immune regulation may be tied to a metabolic
clock (29). It has been estimated that ∼15% of all metabolites

may be under circadian control (30). This includes amino
acid, lipid, and carbohydrate metabolic pathways (31). A
molecular clock may integrate daily metabolic changes driven
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by feeding-fasting and energy storage, to immune function.
Indeed, the master inflammatory regulator NFκB is required
for maintenance of behavioral rhythm in mice (32). Among
immune cells, neutrophils appear unique in their daily pattern
of release, re-entry, and clearance from the bone marrow (33).
In this context, neutrophil recruitment to sites of tissue injury
is altered by time of day. In heart, elevations in chemokine-
dependent recruitment of neutrophils occurred during non-
sleep activity periods, relative to rest. During cardiac injury,
heightened cardiac neutrophil infiltration was also observed
during these activity periods (34). This was in parallel to
systemic metabolic fluctuations in hepatic gluconeogenesis,
elevated serum glucose (35), and leukocyte mobilization from
the bone marrow (36). Nevertheless, it remains unclear
if rhythmic neutrophil recruitment is also associated with
neutrophil metabolic and inflammatory polarization. Although
causal molecular clock mechanisms in neutrophils have not
been characterized in detail, clock genes such as Bmal1 exhibit
significant daily variation in human neutrophils. Furthermore,
human peripheral neutrophil pools display daily oscillation
that correlates with time-dependent changes in superoxide
production and phagocytosis (37). Circadian clock also controls
the activity of the NAD+ dependent deacetylase Sirtuin3,
which dampens mitochondrial respiration and oxidative enzyme
activity (38). Interestingly, Sirtuin 3 deficiency aggravates
experimental thrombosis and leads to increased neutrophil
extracellular traps (NET). Taken together, intriguing links
between circadian rhythm, neutrophil function, and metabolism
are brought to light (39).

Recent Findings Implicate Mitochondrial
Respiration Pathways in Neutrophil
Maturation
For example, autophagy-dependent generation of fatty
acids is important during neutrophil differentiation.
Autophagy-defective neutrophil precursors have increased
glycolytic activity but impaired mitochondrial respiration and
fatty acid oxidation. This led to lipid droplet accumulation
and diminished neutrophil development (40). These data
suggest that autophagy is necessary for the release of free
fatty acids from intracellular stores and within neutrophil
precursor cells. That is, lipophagy may be required to provide
mitochondrial fuel to support oxidative phosphorylation
necessary for neutrophil maturation. On the other hand,
mice lacking autophagy related 5 (Atg5), a gene essential for
autophagosome formation, exhibited increased neutrophil
proliferation and maturation (41). Furthermore, treatment of
myeloid progenitors with ATP-synthase inhibitor oliogomycin,
reduced electron transport chain flow and neutrophil
differentiation, highlighting the essential role of oxidative
phosphorylation during neutrophil maturation (42). Finally,
mitochondrial dysfunction has been associated with an
impaired unfolded protein stress response and mitochondrial
dysfunction, leading to reduced neutrophil differentiation
(43, 44). The contribution of most of these pathways in heart are
largely untested.

As Early as the 1960s, Observations Were
Made in Guinea Pigs, Reporting That
Mature Polymorphonuclear Leukocytes
Are Glycolytic (45)
This is consistent with ultrastructural imaging, which often
fails to identify significant numbers of mitochondria in mature
neutrophils (46). Furthermore, mitochondrial respiration in
neutrophils was found to be low (47). These observations
have led to a hypothesis of high glycolytic reliance and a
selective role of the mitochondria as a platform for apoptotic
signaling (47, 48). Indeed, neutrophils rely greatly on glycolysis
for their inflammatory functions (48). Glycolysis is increased
in neutrophils during phagocytosis, and in the absence of
glucose, the rate of ATP generation in neutrophils drops
drastically. Furthermore, neutrophils from patients with chronic
granulomatous disease have the same rate of glycolysis and
ATP content as normal cells, consistent with resistance to
defective respiration with glycolytic bias (49). After release, NETs
become crosslinked to plasma fibrinogen, leading to thrombosis.
This is a reason for the “no-reflow” phenomenon observed
when artery circulation is restored. Thus, an experimental
treatment approach employing DNase-based and thrombolytic
agent combinations to treat ischemia-reperfusion injury has been
shown to reduce NET formation and result in long-term benefit
in heart function (50). NETs have also been identified in patients
with ST-elevationmyocardial infarction (STEMI) (51). Glycolysis
and the glucose transporter (Glut-1) have also been implicated
in NET formation (52). The pentose phosphate pathway (PPP)
is also critical for NET release. Glucose diversion toward the
PPP allows the production of nicotinamide adenine dinucleotide
phosphate (NADPH), which in turn fuels NADPH oxidase to
produce superoxide, and NETs release (53).

In Addition to Their Pro-Inflammatory
Roles, Neutrophils and Their Metabolism
Also Play a Role in Inflammation
Resolution
For example, neutrophils metabolize the specialized pro-
resolving lipid Resolvin E1 (RvE1), derived from omega-3
eicosapentaenoic acid, into inactive byproducts. This may be
part of a coordinated return to homeostasis as RvE1 is a
proresolving lipid mediator that is pro-phagocytic at low nM
concentrations (54). Neutrophils at steady state also facilitate
a diurnal IL-23 signaling axis to alert the need for additional
myeloid cells (55). During inflammation, neutrophils recruit
inflammatory monocytes and macrophages (56). Inflammatory
neutrophils secrete chemoattractants such as heparin binding
protein (HBP) (57) and LL-37 (58) that regulate monocyte
and macrophage infiltration. In heart, neutrophils trigger
macrophage polarization toward an anti-inflammatory and
a reparative phenotype (26), whereas depleting neutrophils
with monoclonal Ly-6g antibodies in mice inhibited Ly-
6Chi monocyte release from splenic reservoirs. This in turn
increased macrophage proliferation in the infarct, and increased
cardiomyocyte death, fibrosis, and markers of heart failure. An
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interesting question to answer is whether neutrophils may also
instruct cardiac macrophage reprogramming through rewired
cellular metabolism. Phagocytic uptake of dying neutrophils
and apoptotic cells is known to induce an anti-inflammatory
response. The phagocytic program is regulated by nuclear
receptors including LXR (59), PPARγ (60), and PPARδ, which
are known to be master-regulators of lipid and mitochondrial
metabolism (61).

MACROPHAGE METABOLISM AND LINKS
TO CARDIAC REPAIR

For Decades we Have Appreciated That
Activated Macrophages Often Exhibit
Features of Heightened Glycolysis and
Warburg Metabolism (62)
This phenotype is characterized by augmented glycolysis,
increased expression of glycolytic enzymes (63), and diminished
oxygen consumption. Although a less efficient path for the
generation of ATP, glycolysis does not requires oxygen, which
is rate limiting during myocardial hypoxia. Oxygen reductions
stabilize macrophage HIFs (64) and accumulation of the
HIF-1α isoform is linked to glycolytic induction, including
glucose transporter GLUT-1 (65), hexokinase (66), and 6-
phosphofructokinase (67). Simultaneously, HIF-1α may
antagonize oxidative phosphorylation by shunting pyruvate
away from the mitochondria through the action of PDK1 (68).
Interestingly, HIFs also sense changes in metabolism from
extracellular sources. For example, lactic acid produced by
glycolytic tumor cells, induces a HIF-1α-dependent polarization
of tumor-associated macrophages (69). In macrophages,
metabolic regulation by HIFs appears to be a property specific to
the HIF-1α isoform. HIF-2α in contrast induces inflammatory
cytokines, independent of significant changes in glycolysis (70).
During myocardial infarction, Hif-1α deficiency in myeloid
cells decreased leukocyte recruitment inside the damaged
tissue and improved cardiac function post MI (71). Glycolysis
and HIFs are also triggered by the activation of macrophage
toll like receptors (72). In heart, liberation of endogenous
damage-associated molecular patterns (DAMPs) become ligands
for TLR activation (73). TLR4-activation stimulates glycolysis
and triggers pyruvate kinase-M2, in cooperation with HIF-1α
and to transactivate the expression of the Il1β gene (74).
As discussed further below, HIF-1α is activated after TLR4
stimulation through the accumulation of TCA-derived succinate
(75). Under aerobic conditions, AKT-mTOR signaling activates
HIF-1α to “train” immunity (76) through epigenetic remodeling.
Trained immune cells are also characterized by a high ratio
of nicotinamide adenine dinucleotide (NAD+) relative to
its reduced form NADH. NAD+ has been implicated in key
macrophage signaling events. For example, NAD+ depletion
can induce macrophage necroptosis while NAD+ replenishment
protects cell from necroptosis and alleviates cytotoxicity
(77). In a therapeutic context, intraperitoneal injection
of NAD precursor nicotinamide mononucleotide (NMN)

significantly increased NAD+ in heart and protected from
I/R injury (78).

The propensity for glycolytic activation in innate immune
cells during inflammation is exploited in the clinic. For
example, glucose analog 2-(18F)-fluoro-2-deoxy-D-glucose
(FDG) concentrates in tissue with high glycolytic activity
(79), including organs rich in inflammatory macrophages
(80); this is readily detected by positron emission
tomography. Granulocyte-macrophage colony-stimulating
factor (GM-CSF), which attracts phagocytes to the
heart (81), enhances macrophage glycolytic activity and
18F-FDG-update during inflammation in vivo (82),
and after MI (83). More recent approaches have non-
invasively imaged glycolytic cardiac inflammation with
hyperpolarized magnetic resonance through employ of [1-
13C] pyruvate and lactate (84). Development of similar
clinical techniques to monitor the balance between immune
cell glycolysis and oxidative phosphorylation may be useful
in differentiating discreet stages of inflammation and
inflammation resolution.

The PPP

The switch to glycolysis from oxidative phosphorylation is more
efficient for the generation of biosynthetic intermediates that
may fuel macrophages in the response to tissue injury. This
is in part due to the pentose phosphate pathway (PPP), or
hexose monophosphate shunt. Increased glycolytic utilization
drives buildup of metabolites like glucose-6-phosphate, which
flux into the PPP. This shunt is an alternative glucose-oxidizing
pathway that is essential for the production of purines and
pyrimidines for nucleic acid synthesis. The PPP also produces
NADPH through Glucose-6-phosphate dehydrogenase (G6PD)
and phosphogluconate dehydrogenase (PGD). NADPH is fed
into NADPH oxidase and NOX2 on phagosomes (85, 86) to
generate localized reactive oxygen species; this may also be useful
for the breakdown of engulfed apoptotic bodies during transport
to the lysosome. NADPH is additionally important during light-
chain 3 associated phagocytosis (87). Thus, the PPP may serve
as an important metabolic shunt in phagocytes during early
phagocytic phases of MI. Interestingly, metabolite profiling of
blood from patients undergoing plannedMI, revealed a signature
that included alterations in the PPP (88). Due to its dual role, the
PPP is also essential to protect macrophages against oxidation
by fueling with numerous NADPH-dependent antioxidative
enzymes as glutathione-disulfide reductase (89). In the case of
excess of circulating glucose, as in diabetic patients, G6PD, a rate-
limiting enzyme of the PPP, may be reduced. This can elevate
oxidative stress and cell death susceptibility (90). Hyperglycemia
promotes myelopoiesis, increases circulating neutrophils, and
impairs inflammation resolution in atherosclerosis (91). Elevated
myelopoiesis is also a risk factor for impaired cardiac healing post
MI (92). Moreover, hyperglycemia leads to increased advanced
glycation end products and inflammatory macrophage RAGE
signaling (93); this may be targeted by RAGE antagonists
(93). The consequences of insulin resistance on macrophage
immunometabolic function requires further study.
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Glycolytic Pathways Also Feed Into the
Mitochondria
Beyond their energetic function, mitochondria act as signaling
organelles (94). This was prominently exemplified by the
discovery that mitochondrial cytochrome c is released into
the cytosol to activate cell death signaling (95). Mitochondria
also release metabolites and reactive oxygen species (96) which
activate cytosolic signaling. Signaling complexes may also form
on outer mitochondrial membranes and form connections
with the endoplasmic reticulum as mitochondria-associated
membranes and transport lipids between organelles (97).

In the case of inflammation, toll like receptor signaling
triggers re-localization of mitochondria to sites proximal
to phagosomes. This subcellular trafficking augments the
production of mitochondrial reactive oxygen species (ROS) (98).

ROS is also generated by the mitochondrial electron transport
chain/ETC. The ETC is composed of four respiratory complexes.
Complex I, III, and IV have been found to assemble as larger
molecular super-complexes (99). Interestingly, TLR signaling
and inflammasome NLRP3 activation reduce the formation of
these super-complexes, in turn leading to increased CII activity.
The adaptation of ETC complex assembly, including CII activity,
is linked to macrophage activation (100). The ETC is also
tightly coupled to the TCA. During inflammation, integrated
metabolomics and transcriptomics analyses have revealed TCA
cycle breaks. For example, one disruption occurs at isocitrate
dehydrogenase (IDH) (101). This IDH break leads to the
escalation of itaconate (102), which is highly produced by
activated macrophages (103). Itaconate in activated macrophages
inhibits dehydrogenase-mediated oxidation of succinate and
is anti-inflammatory in culture as well as after myocardial
ischemia-reperfusion injury (102). As introduced above, a second
inflammation-induced TCA break may occur at succinate (101).
Succinate is linked to macrophage activation through the activity
of succinate dehydrogenase (104). Accumulation of succinate
can be transported from the mitochondria to cytosol where in
excess it impairs the activity of Prolyl hydroxylases (PHDs),
which in turn leads toHIF-1α stabilization and pro-inflammatory
IL-1β production (74, 104). Accumulation of succinate from
the tricarboxylic acid cycle contributes to activation of the
NLRP3 (NOD-like receptor family, pyrin domain containing)
inflammasome (105) to activate IL-1β. Succinate also contributes
to mitochondrial ROS (mROS) formation. mROS exacerbates
issue injury after ischemia-reperfusion (106). Accumulations in
succinate may be reoxidized by succinate dehydrogenase upon
reperfusion, driving extensive ROS generation by reverse electron
transport at mitochondrial complex I (104). Decreasing ischemic
succinate accumulation is sufficient to ameliorate ischemia
reperfusion injury in murine models of heart attacks (107).

Accumulating evidence highlights the importance of
mitochondrial dysfunction in inflammation and cardiovascular
disease. In macrophages, mitochondrial dysfunction prevents
repolarization of inflammatory macrophages (108), and the
NLRP3 inflammasome senses mitochondrial dysfunction
(105). Recent findings provide evidence for mitochondrial
DNA damage and decreased activity of mitochondrial electron

transport complexes (109) and mitochondrial respiration
(110) in coronary artery disease; restoring mitochondrial DNA
copy number in these settings may be ameliorative (111).
Mitochondrial dysfunction is characterized by uncoupling
of the electron transport chain, reduced production of
adenosine triphosphate, and elevated production of ROS.
Excessive mROS may do damage to mitochondrial DNA.
Mitochondrial DNA damage and dysfunction is also associated
with oxidative stress post MI. For example, compared to control,
the mtDNA-encoded gene transcripts of CI and CIII of the
electron transport chain are decreased, along with the enzyme
activity of complexes I, III, and IV after MI (112). Ultimately,
dysfunctional mitochondria may be cleared or metabolized
through mitophagy.

Mitochondria in Anti-inflammatory
Processes
In comparison to initial links between glycolytic metabolism and
pro-inflammatory macrophage activation, our understanding
of metabolic integration with anti-inflammatory macrophage
polarization has trailed behind, yet has made significant recent
strides forward. During aerobic respiration, glycolytic pyruvate
is shuttled to the mitochondria for entry into the enzyme-
catalyzed reactions of the tricarboxylic acid cycle (113). In studies
that employed 2-deoxy-D-glucose (2DG) to competitively inhibit
the production of glucose-6-phosphate from glucose, glycolysis
was implicated in generation of pyruvate for entry into the
TCA cycle, as well as regulation of interleukin-4 dependent
oxidative phosphorylation (114). In addition, glycolysis may
contribute to alternative macrophage activation via an M-CSF-
induced mTORC2-IR4 axis, acting in parallel with IL-4Rα/Stat6
signaling (114). However, a recent study concluded that glycolysis
is not required for alternative activation of macrophages.
The differences between the studies may be explained by
off-target effects of 2-DG on oxidative phosphorylation and
the TCA cycle (115). Prior studies associated cell-intrinsic
lipolysis and fatty acid oxidation to IL-4 induced macrophage
polarization by etomoxir (ETO), an inhibitor of carnitine
palmitoyl transferase (CPT1) (116). Subsequent studies in Cpt1a-
deficient macrophages did not reveal contributions of LC-
fatty acid oxidation during alternative macrophage polarization.
Rather, etomoxir was found to have the potential to reduce the
pool of Coenzyme A (CoA) during IL-4-triggerd macrophage
polarization (117). Furthermore, Cpt-2-deficient macrophages
also did not show impaired macrophage polarization, raising
further questions on the role of long chain fatty acid oxidation
(LC-FAO) and macrophage polarization (118). Nevertheless,
inhibition of mitochondrial oxidative phosphorylation has been
shown to prevent repolarization from classically activated to
alternatively activated macrophages. For example, inhibiting
nitric oxide production in classically activated macrophages
dampens declines in mitochondrial function and facilitates
repolarization to the alternative state (108). IL4 may have
potential post MI in promoting reparative phase cardiac
macrophages (119).
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Mitochondrial Metabolism and Epigenetic
Modulation
Epigenetics play a key role in the establishment of the so called
M1 and M2 program. α-KG produced by the Krebs cycle, or
generated from glutaminolysis, is an important co-factor for
numerous enzymes involved in epigenetic modification of DNA
and histones (120). Among these enzymes, Jmjd3, an essential
H3K27 demethylase, has been reported to promoteM2 activation
whereas its activity attenuates inflammation in classically
activated macrophages. In M2 macrophages, α-KG accumulates
whereas its abundance is decreased in M1 macrophages
due to its broken Krebs cycle, as well as a higher α-KG
dehydrogenase activity to the benefit of succinate accumulation
(102). Interestingly, α-KG/succinate ratio can modulate Jmjd3
activity (121). Thus, manipulation of this ratio may allow the
control of macrophage polarization state. Another example of
the epigenetic control over macrophage inflammatory status is
given by TET2, a deoxyribonucleic acid (DNA)methyltransferase
that is highly expressed in macrophages. TET2 restricts
inflammatory gene activation through DNA methylation at 5-
methylcytosine sites, whereas its deletion increases inflammation
at basal levels and after LPS stimulation (122). Interestingly,
in experimental mice harboring Tet2 deletion, myeloid Tet2
deficiency accelerated heart failure through the IL-1β/NLRP3
inflammasome (123). Clonal hematopoiesis associated with Tet2-
deficiency has been shown to accelerate atherosclerosis in
experimental mice (124, 125), whereas whole-exome sequencing
of carriers of clonal hematopoiesis of indeterminate potential
(CHIP) patients indicated that mutations in TET2 are associated
with heightened coronary heart disease risk (125).

Clearance and Catabolism of Dying
Cardiomyocytes and Apoptotic Cells by
Efferocytosis (126) Is Necessary for
Cardiac Repair (127, 128)
Efferocytosis is distinct mechanistically and metabolically
to the substrates acquired during microbial phagocytosis.
The engulfment of dying cells has the capacity to double
the phagocyte cellular content and provide new nutrient
substrates for signaling reactions. Early studies connected the
cellular metabolism of efferocytosis to generation of high
energy phosphates which are necessary for actin-mediated
engulfment of apoptotic bodies (45). Later studies elucidated
roles for mitochondrial uncoupling proteins in regulating
continued dying cell engulfment (129). Also, mitochondrial
fission machinery (130) is necessary for multiple rounds of
efferocytosis, which is likely critical to tissue injury that is
characterized by heightened cell turnover. These later scenarios
suggest conserved relationships and feedback mechanisms
between mitochondrial metabolic sensing and uptake of dying
cells. In the case of myocardial infarction and after ischemic
reperfusion, dying cardiomyocytes are engulfed by recruited and
resident cardiac macrophages (128, 131); this correlates directly
with both heightened macrophage oxygen consumption and
anti-inflammatory Il10 cytokine expression. IL-10 is a hallmark
cytokine produced in disparate settings of tissue injury. Within

the re-perfused myocardium, IL-10 is produced and linked to the
regulation of extracellular matrix biosynthesis (132) and cardiac
repair (133). IL10 is linked to inflammation resolution and
may inhibit toll like receptor-associated glucose uptake through
mTOR and induce macrophage polarization toward oxidative
phosphorylation (134). Consistent with these relationships,
macrophages fed apoptotic cells exhibit a transcriptional and
metabolic signature polarized for fatty acid oxidation, and
mitochondrial organelles can be found in close proximity to
phagosomes. So how might mitochondrial metabolism be linked
to anti-inflammatory cytokine production? One answer may be
NAD. The citric acid cycle generates NADH reducing equivalents
which are fed into the electron transport chain for oxidative
phosphorylation (113). Efferocytosis increases NAD+, and NAD
is sufficient to for efferocytic-induced IL10 through the activation
of Sirtuin-mediated signaling (135). In comparison, glucose
availability is linked to both lower cytosolic NADH:NAD+
ratios and reduced NF-kB activation, and macrophage pro-
inflammatory gene expression. This can be rescued by forced
elevation of NADH, or reduced expression of the NADH-
sensitive transcriptional co-repressor CtBP (136). Efferocytosis
also triggers phagocyte polarization and metabolic parallels
and distinctions may be made between efferocytic-induced
polarization vs. cytokine-induced. For example, alternative
polarization of macrophages by interleukin-4 (IL-4) has also been
linked to the mobilization of intra- and extra-cellular free fatty
acids (FFAs). However, unlike after IL-4, glycolytic requirements
may be unnecessary for efferocytic-induced IL10.

An understanding of these basic mechanisms of efferocytic
metabolism is important in the context that cardiovascular
disease is associated with impaired phagocytosis (137, 138)
and metabolic imbalance. For example, obesity is linked to
defective efferocytosis in association with elevated levels of
saturated fatty acids. This may be corrected by the action of
omega-3 fatty acids (139). Impairments of cholesterol efflux
from macrophages under conditions of excess lipid, as occurs
during cardiovascular disease, may lead to macrophage death
(140). Interestingly, lysosomal cholesterol hydrolysis couples
efferocytosis to anti-inflammatory oxysterol production (141).
Thus, cellular imbalances of metabolites during disease could
in principle dysregulate the integrated metabolic response of
macrophages to promote tissue repair.

Amino Acids
Amino acids are utilized for numerous anabolic reactions in
macrophages and are sensed by mammalian target of the
rapamycin (mTOR) (142). mTOR-inhibitors such as rapamycin
block immune cell activation and can inhibit allograft rejection.
mTOR is particularly sensitive to branched-chain amino
acids/BCAAs (143). The BCAA isoleucine is required for
cell proliferation in a mTORC1-dependent pathway. For
example, experimental mice fed a BCAA-reduced diet exhibited
decreased numbers of Foxp3+ T-regulatory cells (144). BCAA
catabolism is initiated by branched-chain aminotransferase
(BCAT) enzymes. BCATs transfer α-amino groups from
BCAAs to αKG and BCAT1 deficiency can lead to alpha-KG
accumulation (145). Furthermore, selective inhibition of BCAT1
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activity by the compound ERG240 leads to decreased oxygen
consumption and glycolysis through the down regulation of
IRG1 expression, which leads to decrease itaconate production
in human macrophages. ERG240 has also been shown to reduce
macrophage migration and inflammatory responses in immune-
mediated inflammation (146). Further studies are warranted
to test this pathway in disparate inflammatory settings of
inflammation, including heart.

One of the earliest links between amino acids and phagocytes
was the discovery that arginine is important to macrophage
function. Classically activated macrophages metabolize
L-arginine through inducible nitric oxide synthase (147)
whereas alternatively activated macrophages metabolize L-
arginine trough arginase-1 (Arg1) (148). Macrophages that
are stimulated with TLR ligands express nitric oxide synthase,
which metabolizes arginine to nitric oxide and citrulline (149).
Extracellular arginine supports the initial burst of NO, which
is also required for control of infection (150). In comparison,
alternatively activated macrophages express Arg1 that hydrolyzes
arginine to ornithine and urea. In this setting, Arg1-deficiency in
macrophages leads to increased pro-inflammatory macrophage
polarization (151). In heart, L-arginine is associated with a higher
risk of ischemic heart disease, and L-arginine administration
post-infarction may be associated with a higher post-infarction
mortality (152). Interestingly, oral administration of arginine
improved wound healing and increased insulin-like growth
factor-1 (IGF1) in post-surgery patients (153). Also, inhibition
of Arg1 activity did not alter alternatively activated macrophage
numbers but increased local inflammation and defects in matrix
deposition (154).

Glutamine
may also be important in proliferating immune cells as an
alternative input for the TCA cycle, or as a source of citrate
for fatty acid synthesis. For example, glutamine has recently
been implicated in T-cell metabolism (155). In phagocytes,
glutamine metabolism provides support for macrophage
activation. Multiple polarization states of macrophages rely on
glutamine to mount desirable immune functions. For example,
classically activated macrophages exhibit increased glucose and
glutamine consumption and suppress oxidative metabolism
(156). In IL-4 activated macrophages, the TCA cycle is intact
and glutamine is metabolized into UDP-GlcNAc, which is
important for glycosylation of lectin or mannose receptors
for pathogen recognition. Glutamine deprivation reduces
this macrophage polarization (101). Later studies reported
that glutamine supports alternative macrophage activation
through suppressing NFκB-dependent classical macrophage
activation. αKG generated through glutaminolysis is required
for PHD-dependent proline hydroxylation of IKKβ, thus
suppressing NF-κB downstream of LPS. In vivo, glutamine
metabolism supports induction of endotoxin tolerance in
an αKG dependent manner (121). Glutamine metabolism
has also been shown to be increased in trained monocytes.
For example, glutaminolysis led to replenishment of the
TCA cycle and accumulation of fumarate. Fumarate induced
monocyte epigenetic reprogramming by inhibiting KDM5

histone demethylases. Inhibiting glutaminolysis and cholesterol
metabolism inhibited blocked trained immunity in monocytes
(157). Moreover, glutamine deficiency reduced lipid-induced
lysosome dysfunction, mTORC1 activity, and thereby increased
autophagy and reduced cell death in macrophages (158). During
ischemic heart disease, glutamine enhances recovery from acute
ischemia in isolated rate hearts. Furthermore, post-ischemic
reperfusion of isolated rat hearts with glutamine resulted in a full
recovery of cardiac output (159).

Summary and Future Research
The field of immunometabolism arose to integrate cellular
nutrient metabolism with innate and adaptive immune cell
function. Largely absent are past preconceived notions that
cellular nutrient processing is solely for energetic currency.
Nutritional status has long been associated with optimal wound
healing, yet early molecular interest grew in part from pioneering
recognition of the association between excessmetabolism and cell
stress (160). During tissue injury, the integration of information
between nutrient availability and anabolic needs leads cells to
adapt their metabolism to ensure their functions.

In the translational and clinical arena, current interest of
relationships between metabolism and inflammation is high.
Compounds that were initially prioritized for metabolic benefit,
also act through immunometabolic nodes. For example, the
insulin sensitizer metformin (dimethylbiguanide) has effects
beyond glucose control. Metformin stimulates the energy sensor
AMP-activated protein kinase (AMPK), which is activated during
nutrient deficiency (161). Induction of AMPK elevates the fatty
acid transporter CPT1 and drives β-oxidation. Simultaneously,
AMPK may antagonize inflammatory NFκB gene expression
and has been implicated in anti-inflammatory macrophages
through an axis of SIRT1-PGC-1α mitochondrial biogenesis
(162). AMPK also inhibits the glycolytic-inhibitor mTOR (163),
and mTOR-inhibitor rapamycin has been shown to attenuate
myocardial damage after ischemia reperfusion (164). Separately,
inhibitors of the sodium-glucose cotransporter SGLT2 may have
promise in cardiovascular outcomes (165), yet their action on
macrophages are unclear and caution must be taken given
potential side effects of urinary tract infections. In comparison,
drugs that directly target inflammatory cytokines, may also
regulate cellular metabolism. For instance, IL-1β is notable
as introduced above for its sensitivity and responsiveness to
metabolic alterations (166). Another case in point is the finding
that elevated glucose levels after feeding induces macrophage
IL-1β secretion (167). In the case of myocardial infarction
(MI), IL-1β is markedly upregulated in infarcted myocardium
(168) and in blood (169), paralleling peripheral cell blood
counts. Preclinical studies have shown that anti-IL-1β therapy
reduced post MI hematopoiesis and leukocytosis, enhanced
inflammation resolution in the infarct, and ameliorated post-
MI heart failure (170). The landmark Canakinumab Anti-
inflammatory Thrombosis Outcome Study (CANTOS) inhibited
interleukin 1β (IL-1B) in survivors of myocardial infarction
and reduced cardiovascular events (171, 172). However, IL-
1β exerts both detrimental and beneficial effects (173). Thus,
further studies are warranted to optimize the full potential of
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IL-1β targeting in heart, as well as potential immunometabolic
consequences (174). This is particularly the case in the face of
recent negative clinical results after treatment with low dose
methotrexate (175).

Because of the complicated integration and flux of numerous
metabolic pathways, an informed future perspective will benefit
from a coupled global network analysis of metabolomics and
inflammatory signaling axes. As an example, integrated top-
down transcriptional and metabolic omics approaches were
key in revealing that pro-inflammatory macrophages exhibit a
disrupted TCA cycle (101). These global and non-biasedmethods
are necessary to completely appreciate the heterogeneity of a
diverse phagocyte population. Insight into the metabolic activity
of single cells holds the potential to uncover nuanced degrees of
immunometabolic control, that we do not currently comprehend.
In combination with genetic lineage tracing, fate mapping,
and epigenetics signatures, we will also better understand
how metabolism may regulate immune cell origins and their
differentiation during inflammation (176). Surely, we have only
scratched the surface of the spectrum of metabolites that are
protagonists of signal transduction in immune cells and heart.

Finally, much of our understanding of immunometabolism
has originated from studies in cell culture and experimental
rodents. Therefore, it will be important to test the conservation
of these findings in human cells and in the clinic. These are
important considerations given that mice naturally exhibit a

basal metabolic rate per gram of body weight that is greater
than that of humans. Advancements and accessibility of induced
pluripotent stem cells that may be differentiated into immune
cells (177) will facilitate human-mouse comparisons, as well as
genetic associations. In experimental animals, multiple studies
that have targeted inflammatory pathways have shown promise
in enhancing cardiac repair, however, a disconnect exists between
translating outcomes in preclinical models to improved patient
outcomes (178). This is a challenge to understand experimental,
species, and clinical distinctions between independent
studies. It is also a challenge to dig deeper into fundamental
mechanisms that regulate immunometabolic signaling in
cardiovascular disease.
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