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Abstract: Sarcocystis parasites infect a wide range of animals, including reptiles, birds, and
mammals, and have complex two-host prey–predator life cycle. Sarcocysts are mainly
found in the muscles of intermediate hosts, and oocysts sporulate in the intestines of the
definitive host. The raccoon dog (Nyctereutes procyonoides), native to Asia and invasive in
Europe, is a known disease carrier. However, studies on raccoon dogs in the transmission
of Sarcocystis are scarce. Between 2019 and 2024, a total of 26 raccoon dog carcasses were
collected in Lithuania. The results of a light microscopy examination indicated that 50% of
the samples were positive for Sarcocystis spp. sporocysts and sporulated oocysts. Based
on nested PCR and sequencing of cox1, 88.5% of the samples were positive for these
parasites. Molecular analysis revealed the presence of 11 different Sarcocystis species. Eight
species, including S. alces, S. capracanis, S. hjorti, S. iberica, S. linearis, S. morae, S. tenella,
and S. venatoria were reported for the first time in raccoon dogs as definitive hosts. The
identified Sarcocystis species were linked to intermediate hosts, such as cervids, wild boars,
pigs, goats, and sheep. These findings suggest that raccoon dogs play a key role in the
spread of Sarcocystis, particularly species infecting cervids.

Keywords: Sarcocystis; raccoon dog; molecular identification; cox1; definitive host; epidemiology

1. Introduction
Protozoan parasites of the genus Sarcocystis Lankaster (1982) have a compulsory

two-host life cycle that relies on a prey–predator relationship. These parasites are abundant,
distributed worldwide, and infect a wide range of reptiles, birds, and mammals. The
genus Sarcocystis is characterized by the formation of sarcocysts, mainly in the muscles of
intermediate hosts (IHs). Sexual multiplication of parasites takes place in the intestines
of the definitive hosts, and the sporocysts produced after the sporulation of the oocysts
are released into the environment in feces. The IH becomes infected by consuming food
or water contaminated with sporocysts, while the definitive host becomes infected by
ingesting tissues containing mature sporocysts [1].

The raccoon dog, Nyctereutes procyonoides (Gray, 1834), is a widespread invasive canid
species in northern, eastern, and central Europe [2]. It is commonly believed that the animal
was introduced to the territory of Lithuania in 1948 and by 1960 had already invaded
it [3]. Raccoon dogs were brought to Europe because of their valuable fur or as pets and
either escaped or were intentionally introduced into the wild [4]. The raccoon dog is
known as an ecological generalist, meaning that it is highly adaptable to a wide range
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of environmental conditions and has a variety of food preferences. They are omnivores,
so their eating habits vary with the seasons and the environment in which they live [5,6].
Typical foods may include invertebrates, small mammals, amphibians, birds, carrion,
insects, and plants [7]. The current population of raccoon dogs in Lithuania is estimated to
be at least 10,000 individuals, which was counted by the number of road kills and hunted
animals [8].

The raccoon dog is listed among the 100 worst alien species in Europe [9]. This
invasive species can damage biological diversity and impact autochthonous ecosystems [10].
Raccoon dogs are omnivorous and can prey on native fauna, as well as compete with native
predators for natural resources [2,10]. This invasive canid species is also characterized
by its high behavioral plasticity, reproductive capacity, and adaptability to a wide range
of environmental conditions, which has allowed it to successfully colonize Europe [2].
In addition, according to the enemy release hypothesis, an invasive host may have a
competitive advantage over native species by leaving behind its natural enemies, including
parasites [11]. The raccoon dog encounters and accumulates parasites found in newly
colonized areas, and parasitological investigations are essential to identify these organisms.
Furthermore, it must be taken into account that this invasive species can be a vector and
potential reservoir for several illnesses [2].

Raccoon dogs are known to spread many zoonotic and pathogenic diseases [2,10,12–15]
that can be harmful to both human and animal health. These invasive mammals can also
serve as reservoirs for a variety of vector-borne diseases, including Borreliella Adeolu and
Gupta (2015) spp. and Rickettsia da Rocha-Lima (1916) spp., and for a number of infectious
agents, including rabies lyssavirus, canine distemper virus, SARS-CoV-2, Trichinella Railliet
(1895) spp., Baylisascaris procyonis Stefanski and Zarnowski, 1951, and Echinococcus multi-
locularis Leuckart, 1863 [12–16]. Trichinella spp. have previously been detected in muscle
tissues of raccoon dogs in Lithuania, Latvia, and Estonia [12,17]. In addition, cestodes
(Echinococcus multilocularis Leuckart, 1863, Mesocestoides Vaillant (1863) spp., and Taenia
Linnaeus (1758) spp.), nematodes (Toxocara canis Werner, 1782, Capillaria Zeder (1800) spp.,
and Uncinaria stenocephala Railliet, 1884), and trematodes (Alaria alata (Goeze, 1782) Krause,
1914 and Opistorchis felineus (Rivolta, 1884) Blanchard, 1895) were detected in Lithuanian
raccoon dogs through detailed helminthological examination [17]. Some helminth species
can cause serious illness in humans; for example, infection with Trichinella spp. can lead to
death [18]. On the other hand, Sarcocystis spp. infection in carnivores as definitive hosts
of these parasites are mainly asymptomatic. However, it has been shown that among
Sarcocystis spp. forming sarcocysts in meat-producing livestock, species transmittable via
canids are more pathogenic compared to those transmittable via other definitive hosts [1].
In this context, it is relevant to examine different canid species for their role in the transmis-
sion of various Sarcocystis species. Up to date among canids, dogs [19], gray wolves, Canis
lupus (Linnaeus, 1758) [20,21], red foxes, Vulpes vulpes (Linnaeus, 1758) [22,23], arctic foxes,
Vulpes lagopus (Linnaeus, 1758) [24], and golden jackals, Canis aureus (Linnaeus, 1758) [25]
were mostly investigated as potential definitive hosts of Sarcocystis species. However, there
is still a limited number of studies on raccoon dogs as definitive hosts of Sarcocystis spp.

The objective of our study was to evaluate the prevalence of Sarcocystis spp. in the
small intestines of raccoon dogs collected in Lithuania by means of light microscopy and
molecular methods and to identify parasite species using DNA sequence analysis.

2. Materials and Methods
2.1. Sample Collection and Isolation of Sarcocystis spp.

The research of the current study was conducted under the approval guidelines of the
Ethics Committee of the Nature Research Centre (no. GGT-1). The Minister of Environment
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in Lithuania approves the rules on hunting (20 June 2002 no. IX-966) of the Republic of
Lithuania, a list of game species and the time limits for hunting these animals. Based on this
document, the hunting of the common raccoon dog is allowed all year round in Lithuania.
A total of 26 raccoon dog carcasses were collected in Lithuania between 2019 and 2024. The
collection sites of raccoon dogs examined are shown in Figure 1.
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Figure 1. Detection of Sarcocystis spp. in the raccoon dogs from Lithuania. Circles indicate location
where animals were hunted. Red circles represent Sarcocystis spp.-positive animals, while empty
circles indicate individuals in which tested parasite species have not been established.

Different forms of Sarcocystis spp. from the intestinal samples of raccoon dogs were
isolated using a previously described protocol [26]. The necessary modifications made
during this procedure were already detailed in the earlier work by Prakas et al. [27].

2.2. Molecular Analysis

DNA extraction from the intestinal scrapings of raccoon dogs was conducted with
the GeneJET Genomic DNA Purification Kit (Thermo Fisher Scientific Baltics, Vilnius,
Lithuania) following the manufacturer’s recommendations.

Nested PCR (nPCR) was employed to amplify partial cox1 sequences from the ex-
tracted DNA samples. The primers used in this study are listed in Table 1. A total of
16 Sarcocystis species were selected, including five that use farm animals as intermediate
hosts: Sarcocystis arieticanis Heydorn, 1985; Sarcocystis bertrami Doflein, 1901; Sarcocystis
capracanis Fischer, 1979; Sarcocystis cruzi (Hasselmann, 1926) Wenyon, 1926; and Sarcocystis
tenella (Railliet, 1886) Moulé, 1886 [28–31]. Additionally, ten species that infect members of
the Cervidae family were chosen: Sarcocystis alces Dahlgren and Gjerde, 2008; Sarcocystis
capreolicanis Erber, Boch and Barth, 1978; Sarcocystis gracilis Ratz, 1906; Sarcocystis hjorti
(Dahlgren and Gjerde, 2008) Dahlgren and Gjerde, 2010; Sarcocystis linearis Gjerde, Gia-
comelli, Bianchi, Bertoletti, Mondani and Gibelli 2017; Sarcocystis iberica, Sarcocystis morae,
Sarcocystis venatoria Gjerde, Luzon, Alunda and de la Fuente 2017; Sarcocystis pilosa Prakas,
Butkauskas, Rudaitytė-Lukošienė, Kutkienė, Sruoga and Pūraitė, 2016; and Sarcocystis
taeniata Gjerde, 2014 [32–37]. Lastly, Sarcocystis miescheriana (Kühn, 1865) Labbé, 1899,
which infects both wild boars and domestic pigs, was included [38].

The first round of nPCR was carried out in a final volume of 25 µL, comprising 12.5 µL
of DreamTaq PCR Master Mix (Thermo Fisher Scientific, Vilnius, Lithuania), 0.5 µM of both
forward and reverse primers, and 4 µL of extracted DNA and nuclease-free water to make
up the remaining volume. The cycling conditions began with an initial denaturation at
95 ◦C for 5 min, followed by 35 cycles of 35 s at 94 ◦C, 45 s at the species-specific annealing
temperature (depending on the primer pair), 55 s at 72 ◦C, and finishing with 5 min at 72 ◦C.
The second round of amplification was also conducted in the reaction volume of 25 µL,
comprising 12.5 µL of DreamTaq PCR Master Mix, 0.5 µM of both forward and reverse
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primers, 2 µL of the amplified product from the first nPCR step, and nuclease-free water
up to 25 µL. Positive controls, consisting of DNA extracted from Sarcocystis spp. sarcocysts
in previous studies, and negative controls, consisting of nuclease-free water instead of the
DNA template, were used for the assessment of both nPCR rounds.

Table 1. PCR primers used in this study.

Species Primer Name Sequence Reference

1st step

Sarcocystis spp.
SF1 ATGGCGTACAACAATCATAAAGAA Dubey, 2013 [39]

SsunR3 CCGTTGGWATGGCRATCAT Marandykina-Prakienė et al.,
2022 [40]

2nd step

S. alces
V2alc3 CCTAGGTACCGTGCTCTTTGATG Present study
V2alc4 CTTCGAGGCCAGTAGTTACCATA

S. arieticanis
Arie7F TAATTTCCTCGGTACTGTACTGTTTG Marandykina-Prakienė et al.,

2023 [31]Arie7R TACTTACGCATTGCGATATTACG

S. bertrami
V2ber7 CCCCACTCAGTACGAACTCC

Baranauskaitė et al., 2022 [41]V2ber8 ACTGCGATATAACTCCAAAACCA

S. capracanis V2ca3 ATACCGATCTTTACGGGAGCAGTA Marandykina-Prakienė et al.,
2023 [31]V2ca4 GGTCACCGCAGAGAAGTACGAT

S. capreolicanis V2capreo1 CATCGTAGAGCCCCGTACTC

Present study

V2capreo2 ACCGCTATACGCTGGAGCTG

S. cruzi
V2cr7 CAATGTGCTGTTTACGCTCCA
V2cr8 TCGTACAGGCCCGTAGTTAG

S. gracilis V2gr9 GTGCTCGGGGCAGTGAAC
V2gr10 GCCAGTAGTCATCATGTGGTGT

S. hjorti V2hjo1 AAGGTACACGGCATTGTTCAC
V2hjo2 GAAAACTACCCTGCCGCCTA

S. iberica
S. venatoria

V2ibeven1 ATGGGCCATTATATTTACTGCTCTG
V2ibeven2 GCCGCCAAAAACTACCTTACC

S. miescheriana
V2mie5 TCCTCGGTATTAGCAGCGTACTG

Baranauskaitė et al., 2022 [41]V2mie6 ATTGAAGGGCCACCAAACAC

S. morae
V2mor1 GTGTGCTTGGATCGGTCAAC Marandykina-Prakienė et al.,

2023 [31]V2mor2 GCCGAATACCGGCTTACTTC

S. pilosa V2pil3 GTTAATTTCCTGGGCACAGTGTT

Present studyV2pil4 CGAAAACTACTCTGCCGCCTAC
S. taeniata
S. linearis

V2taelin1 CGTAGACTGCATGACGACTTACAA
V2taelin2 CAAAGATGGATTTGCTGCCTA

S. tenella
Ten8F ATACCGCTCTACGCTGGATCTAC Marandykina-Prakienė et al.,

2023 [31]Ten8R TACCGCTCTACGCTGGATCTAC

The amplified PCR products were assessed using 1% agarose gel electrophoresis.
Positive amplicons were purified using ExoI and FastAP (Thermo Fisher Scientific Baltics,
Vilnius, Lithuania) according to the manufacturer’s recommendations. Following this,
purified products were subjected to Sanger sequencing using the same forward and re-
verse primers as for the nPCR. The Big-Dye® Terminator v3.1 Cycle Sequencing Kit and
3500 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) were used to perform se-
quencing reactions according to the manufacturer’s recommendations. Obtained sequences
were checked manually for the absence of any double peaks or poly signals.

2.3. Sequence Data Analysis

To compute intraspecific and interspecific genetic similarity values, in the current study,
the obtained cox1 sequences were compared with those of closely related Sarcocystis spp. using
the Nucleotide BLAST online tool ([42]; accessed on 9 January 2025). Phylogenetic analysis was
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performed using MEGA v. 11.0.13 software [43]. Multiple sequence alignments were created
using the MUSCLE algorithm incorporated into MEGA. Sequences included in the sequence
alignment differed in nucleotide substitutions but not in deletions/insertions. Phylogenetic
relationships of Sarcocystis spp. were assessed using the maximum likelihood method. Based
on MEGA’s Find Best DNA/Protein Models (ML) function, Kimura 2 parameter + G was
selected as the best fitting to all alignments analyzed. The robustness of the phylogeny was
tested using the bootstrap method with 1000 replicates.

2.4. Statistical Data Analysis

The Clopper–Pearson method was used to compute 95% confidence intervals (CIs)
for the frequency of listed Sarcocystis spp. in definitive host animals collected for several
years. A Chi-squared test was used to evaluate differences in the detection rates of Sar-
cocystis species in the examined raccoon dogs. Statistical tests were carried out using the
Quantitative Parasitology 3.0 software [44].

3. Results
3.1. Microscopical Examination of Sarcocystis spp. Sporocysts/Oocysts from the Intestines of
Raccoon Dogs

Under light microscopy, oocysts and/or sporocysts of Sarcocystis spp. were detected in
13 out of 26 intestinal samples (50.0%; 95% CI = 36.9–76.7) from raccoon dogs. In contrast,
Sarcocystis spp. were identified in 23 out of 26 tested individuals (88.5%; 95% CI = 69.8–97.6)
using molecular methods. The observed detection rates indicate a significantly higher
efficiency of molecular methods compared to microscopy (χ2 = 9.03, p = 0.003).

Free sporocysts were observed in all samples where Sarcocystis parasites were detected
microscopically, whereas in eight samples sporulated oocysts were seen. The number
of Sarcocystis stages per 24 × 24 mm coverslip area ranged from 3 to 175 (73.1 ± 61.4).
In most of the intestinal samples, free sporocysts were more frequently detected than
sporulating oocysts. Sporocysts of Sarcocystis spp. measured 11.1–17.6 × 7.1–10.2 µm
(14.0 ± 1.4 × 8.4 ± 0.9 µm; n = 222), whereas ellipsoidal sporulated oocysts were thin-
walled and measured 14.6–23.2 × 12.0–18.1 µm (18.6 ± 3.0 × 14.8 ± 1.9; n = 31) (Figure 2).
The identification of Sarcocystis species was conducted by further molecular analysis.
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3.2. Molecular Identification of Sarcocystis Species

Using species-specific nested PCR and a subsequent sequencing approach, we have
tested the presence of 16 Sarcocystis species in the intestinal samples of raccoon dogs.
Overall, 11 different Sarcocystis species, i.e., S. alces, S. capracanis, S. capreolicanis, S. gracilis,
S. hjorti, S. iberica, S. linearis, S. miescheriana, S. morae, S. tenella, and S. venatoria have been
identified (Table 2). On the contrary, the designed primers failed to produce positive
amplicons when applied to S. arieticanis, S. bertrami, S. cruzi, S. taeniata, and S. pilosa.
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By using V2ibeven1/V2ibeven2 primers, theoretically designed to amplify S. iberica and
S. venatoria cox1 fragments, S. iberica was detected in three samples, and another tested
species was found in one sample. However, only one species, S. linearis, was identified
with the help of V2taelin1/V2taelin2 primers in silico designed to amplify cox1 of either S.
linearis or S. taeniata. After the resulting sequences were truncated by discarding the primer-
binding nucleotides, the lengths of the analyzed sequences varied between 207 and 617 bp
(Table 2). One to five cox1 haplotypes were identified in the Sarcocystis species detected. Our
generated sequences showed very high similarity compared to other sequences of the same
Sarcocystis species available in GenBank (96.2–100%). Despite the short DNA fragments
compared, for each tested Sarcocystis species, the calculated values of intraspecific genetic
similarity and interspecific genetic similarity did not overlap, indicating the correctness of
the method used in this study.

Table 2. The comparison of in the present study obtained cox1 sequences with those of various
Sarcocystis species available in GenBank.

Sarcocystis
Species

GenBank
Acc. No.

The Length
of the Fragment

No.
of Haplotypes

Similarity
with the

Same Species

Similarity with
Most Closely

Related Species

S. alces PQ900477–
PQ900481 352 bp 2 97.2–100% S. gracilis 85.0–86.7

[QC = 96%]

S. capracanis PQ900482–
PQ900487 284 bp 5 97.2–100% S. tenella 91.5–94.3%

S. capreolicanis PQ900488–
PQ900498 376 bp 1 99.5–100% S. alceslatrans

95.0–95.5%

S. gracilis PQ900499–
PQ900510 371 bp 2 98.7–100% S. capracanis

83.0–84.9%

S. hjorti PQ900511–
PQ900520 227 bp 2 96.7–100% S. pilosa

92.5–94.3%

S. iberica PQ900521–
PQ900523 207 bp 1 99.5–100% S. venatoria

95.7–97.1%

S. linearis PQ900524–
PQ900531 617 bp 5 98.5–100% S. taeniata 96.8–97.7%

S. mieshceriana PQ900532–
PQ900541 315 bp 3 98.1–100% S. rangiferi 75.6–76.9%

[QC = 96%]

S. morae PQ900542–
PQ900550 292 bp 2 96.2–100% S. cervicanis

83.6–85.3%

S. tenella PQ900551–
PQ900555 373 bp 5 98.7–100% S. capracanis

91.7–93.8%

S. venatoria PQ900556 207 bp 1 97.6–100% S. iberica
95.7–96.1%

QC—query coverage.

For some species, the differences between the intraspecific and interspecific genetic
variability values obtained were relatively small. Specifically, the resulting sequences of
S. capracanis, S. capreolicanis, S. hjorti, S. iberica, S. linearis, S. tenella, and S. venatoria showed
91.5–97.7% similarity with those of most closely related species. Therefore, phylogenetic
analyses were carried out for a conclusive identification of these species. In phylograms, our
sequences clustered with those of the same species obtained from the GenBank, confirming
the identity of the Sarcocystis species established (Figure 3). Based on the cox1 fragments
examined, S. linearis was a sister species to S. taeniata (Figure 3a), S. capracanis was a sister
species to S. tenella (Figure 3b,e), S. capreolicanis showed the closest relationships with
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S. alceslatrans, S. gjerdei, and S. pilosa (Figure 3c), S. hjorti was most closely related to S. pilosa
(Figure 3d), and S. iberica clustered with S. venatoria (Figure 3f). In general, the species
identified were most closely related to Sarcocystis spp. using members of the Bovidae or
Cervidae family as their IHs and canids as their definitive hosts.
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3.3. Distribution of Sarcocystis Species in Raccoon Dog Samples Analyzed

By using molecular methods, we have identified the Sarcocystis species utilizing both
domestic and wild animals as IHs in the intestinal samples of raccoon dogs. Among
the molecularly confirmed Sarcocystis species, the most prevalent ones were S. gracilis
(46.2%), S. capreolicanis (42.3%), and S. hjorti (38.5%), which employ Cervidae as IHs and
S. miescheriana (38.5%), forming sarcocysts in pigs/wild boars (Table 3). The analysis
revealed that S. gracilis was found to be significantly more prevalent in raccoon dogs than
several other Sarcocystis species, including S. alces (χ2 = 4.28, p < 0.05), S. iberica (χ2 = 7.59,
p < 0.0001), S. tenella (χ2 = 4.28, p < 0.05), and S. venatoria (χ2 = 12.41, p < 0.00001). Similarly,
S. capreolicanis showed significantly higher detection rates compared to S. iberica (χ2 = 10.83,
p < 0.00001) and S. venatoria (χ2 = 6.26, p < 0.05). In addition, S. hjorti, S. miescheriana, and
S. morae were detected more frequently than S. venatoria and S. iberica (p < 0.05). On the
other hand, S. venatoria was found to be less common than both S. capracanis (χ2 = 4.13,
p < 0.05) and S. linearis (χ2 = 6.58, p < 0.05).
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Table 3. Detection rates of identified Sarcocystis species in raccoon dogs.

Sarcocystis
Species Intermediate Host n Detection Rate, %

(95% CI)

S. alces Cervidae: moose (Alces alces) 5 19.2 (6.6–39.4)

S. capreolicanis Cervidae: roe deer (Capreolus capreolus) 11 42.3 (23.4–63.1)

S. gracilis Cervidae: roe deer 12 46.2 (26.6–66.6)

S. hjorti Cervidae: moose, red deer (Cervus elaphus), sika deer (Cervus nippon) 10 38.5 (20.22–59.43)

S. iberica Cervidae: red deer, sika deer 3 11.5 (2.4–30.2)

S. linearis Cervidae: moose, red deer, roe deer, sika deer, 8 30.8 (14.3–51.8)

S. morae Cervidae: fallow deer (Dama dama), red deer, sika deer, 9 34.6 (17.2–55.7)

S. venatoria Cervidae: red deer 1 3.9 (0.1–19.6)

S. miescheriana Suidae: pig and wild boar (Sus scrofa) 10 38.5 (20.2–59.4)

S. capracanis Caprinae: goat (Capra hircus), Barbary sheep (Ammotragus lervia),
European mouflon (Ovis aries musimon) 6 23.1 (09.0–43.7)

S. tenella Caprinae: sheep (Ovis aries), argali (Ovis ammon), Barbary sheep,
European mouflon, Tatra chamois (Rupicapra rupicapra tatrica) 5 19.2 (6.6–39.4)

n—number of infected animals.

Among 23 Sarcocystis spp.-positive raccoon dogs, a single Sarcocystis species was
identified only in one animal, while in the rest of the samples analyzed, two to seven
different Sarcocystis species were established. In most cases, two to four different Sarcocystis
species were present within a single animal specimen, accounting for 69.2% of the samples
investigated (18/26). The most prevalent parasite species combinations involved distinct
Sarcocystis species from the Cervidae family, as this was recorded in 34.6% of animals (9/26).
In five samples (19.2%), we found at least one species of Sarcocystis using Caprinae, Cervi-
dae, and Suidae as their IHs. For instance, S. capracanis and S. tenella (IH: Caprinae), S. hjorti
(IH: Cervidae), and S. miescheriana (IH: Suidae) were identified in one of the samples.

4. Discussion
Raccoon dogs have been recognized as one of the most successful invasive carnivorous

species after their introduction to the European continent from East Asia [45]. Their diverse
diet and adaptability to various environments allowed them to spread not only across
Lithuania but throughout eastern, central, and northern parts of Europe, competing with
native species [4,46]. Despite this, data on the role of raccoon dogs in spreading Sarcocystis
parasites are scarce, as is information on the diversity of these parasites within this host,
particularly in their native range [47,48]. Traditionally, identification of Sarcocystis parasites
in definitive hosts relied on transmission experiments using experimental animals from
the Canidae family, such as dogs or foxes, and from the Felidae family, such as cats [49–51].
Nowadays, due to ethical issues, the use of laboratory experiments on predatory mammals
is limited. Therefore, molecular methods have become increasingly popular for identifying
Sarcocystis species in fecal or mucosal scraping samples from wild predators infected under
natural conditions [26,52,53].

During our investigation, molecular analysis revealed that 88.5% (23/26) of the in-
testinal samples from raccoon dogs were positive for Sarcocystis parasites, while micro-
scopic analysis showed a lower detection rate of 50.0% (13/26). In many studies, molec-
ular methods have been found to give higher detection rates of Sarcocystis spp. than
microscopy. [23,54]. The scarcity and small size of excreted sporocysts in natural infec-
tions make the microscopic approach challenging for scientists without prior experience
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observing Sarcocystis spp. in the mucosal scrapings or feces of the definitive host [55].
Additionally, differences in detection rates may be attributed to the higher sensitivity of
molecular methods, which can detect parasitic gDNA present in lower concentrations [53].

Based on the results of microscopical methods, the occurrence of Sarcocystis spp. in
the intestines of raccoon dogs across Europe is generally similar, with 66.7% (2/3) found in
the large intestines of raccoon dogs from the Czech Republic [23] and 52.6% (20/38) and
53.8% (7/13) in the small intestines of raccoon dogs from Germany [56] and Lithuania [22],
respectively. Interestingly, lower detection rates of Sarcocystis parasites were recorded in
the intestinal scrapings of foxes, also members of the Canidae family. Only 20.0% (4/20) of
intestinal samples from red foxes in Lithuania [22], 38.0% (19/50) in Germany [56], 30.0%
(6/20) in Switzerland [57], and 39.4% (13/33) of intestinal samples from Pampas foxes,
Lycalopex gymnocercus (Fischer, 1814), in Argentina [58] tested positive for Sarcocystis. The
relatively higher detection rates of Sarcocystis spp. in raccoon dogs’ intestinal scrapings
compared to other Canidae species may be linked to their dietary preferences. However,
all these species—raccoon dogs, red foxes, and others—consume similar diets, including
small and medium to large mammals, ungulates, and carrion [59–61]. Therefore, further
research involving various Canidae species within the same geographic area is needed to
compare detection rates of Sarcocystis spp. among the members of the Canidae family.

Experimental studies confirmed raccoon dogs to be definitive hosts for at least four
Sarcocystis species: S. cruzi (IH: cattle) [47], Sarcocystis grueneri Yakimoff and Sokoloff,
1934 (IH: Cervidae/reindeer (Rangifer tarandus)) [62], S. miescheriana (IH: wild boars and
pigs) [47], and Sarcocystis tarandivulpes Gjerde, 1984 (IH: Cervidae/reindeer (Rangifer taran-
dus)) [62]. Through the application of molecular methods, raccoon dogs were found to be
definitive hosts for four additional Sarcocystis species, S. capreolicanis (IH: Cervidae/roe
deer (Capreolus capreolus)), S. gracilis (IH: Cervidae/roe deer (Capreolus capreolus)) [56], Sar-
cocystis lutrae Gjerde and Josefsen, 2015 (IH: carnivores of families Canidae, Mustelidae and
Procyonidae) [63], and Sarcocystis rileyi (Stiles, 1893) Dubey, Cawthorn, Speer and Wobeser,
2003 (IH: birds of family Anatidae) [22]. Our study provides new evidence that raccoon
dogs can serve as definitive host for eight Sarcocystis species, all of which were previously
unidentified in this host. This includes six species (S. alces, S. hjorti, S. iberica, S. linearis,
S. morae, and S. venatoria) that typically use Cervidae as IHs and two species (S. capracanis
and S. tenella) that infect members of subfamily Caprinae.

Some Sarcocystis species are zoonotic and pose a significant health risk to humans.
Currently, humans can act as definitive hosts for three species: S. heydorni and S. hominis,
transmitted through cattle, and S. suihominis, which spreads through wild boars and
pigs [64–66]. Furthermore, recent studies indicate that ingesting raw meat containing a
high concentration of Sarcocystis spp. sarcocysts may result in toxic effects. In Japan, there
have been documented instances where individuals developed temporary gastrointestinal
issues, including nausea, abdominal discomfort, diarrhea, and vomiting, within a few hours
of consuming contaminated horsemeat carrying Sarcocystis fayeri Dubey, Streitel, Stromberg
and Toussant, 1997, sarcocysts or raw venison contaminated with Sarcocystis truncata
(Gjerde, 1984) Gjerde, 2014 [67–69]. In addition to the human health impact, Sarcocystis
species also affect various animal hosts, particularly ruminants. Occasionally, S. tenella
and S. arieticanis infections in sheep can result in miscarriage or acute disease during
the early stages, with chronic effects, such as reduced productivity and persistent illness,
becoming evident in the later stages of infection [70,71]. In pigs, acute infections with S.
miescheriana can lead to serious symptoms such as loss of appetite, fever, cyanosis, heart
inflammation, liver damage, and kidney issues [72]. Similar pathological changes, such
as fever, miscarriage, or even death, have been observed in goats with acute S. capracanis
infections [73], though no zoonotic Sarcocystis species have been detected in small ruminants



Pathogens 2025, 14, 288 10 of 14

to date. Data on the pathogenicity of Sarcocystis species in cervids (Cervidae) are extremely
limited. Despite that, a study in Switzerland identified S. hjorti as a cause of eosinophilic
fasciitis in red deer (Cervus elaphus), highlighting the need for further research on its impact
on wildlife health [57]. Evidence suggests that Sarcocystis spp. transmitted by canids
or primates are generally more pathogenic than those spread by felids. In the present
study, we have identified S. capracanis, S. hjorti, S. miescheriana, and S. tenella, which can
be pathogenic to their respective IHs, indicating that raccoon dogs may contribute to the
spread of pathogenic Sarcocystis species (Figure 4).
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Raccoon dogs are considered medium-sized predators, and the winter season plays
a crucial role in their survival [74,75]. Of all the species in the Canidae family, this is the
only one that demonstrates winter lethargy in regions with severe winter conditions [6].
Although they typically hibernate, raccoon dogs in Lithuania remain active year-round
during milder winters [60]. In this study, we identified multiple Sarcocystis species, with
their IHs belonging to the Caprinae subfamily, Cervidae, and Suidae families, showing the
importance of this predator in the transmission of various Sarcocystis spp. During previous
studies, it was observed that active raccoon dogs often visit an increased number of artificial
wild boar-feeding sites in Northern Europe [76], which may explain the relatively high
detection rate of S. miescheriana in our study. However, the majority of Sarcocystis spp.
detected during our study infect Cervidae as IHs. This preference may be linked to
raccoon dogs’ avoidance of areas with high human activity, as they tend to favor natural
habitats, particularly mixed forests in Lithuania [77]. Other members of the Canidae
family prevalent in Lithuania, red foxes and gray wolves, are known to prey on livestock,
particularly in rural habitats. These predators often target farm animals, including poultry,
sheep, and cattle, when natural prey is scarce or when they are in close proximity to

https://BioRender.com/j04o051
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human settlements [78,79]. This feeding behavior is further supported by studies from
Switzerland and Germany, which found that red foxes were more commonly infected
with Sarcocystis spp. whose IHs are farm animals, while raccoon dogs were predominantly
infected with species whose IHs are Cervidae [56,57].

5. Conclusions
The prevalence of Sarcocystis spp. in this study was notably higher when detected

using molecular methods (88.5%) compared to microscopy (50.0%). The comprehensive
analysis, incorporating microscopical, molecular, and phylogenetic techniques, revealed
that raccoon dogs in Lithuania were infected with 11 distinct Sarcocystis species. Among
these, S. alces, S. capracanis, S. hjorti, S. iberica, S. linearis, S. morae, S. tenella, and S. venatoria
were identified in raccoon dogs as natural definitive hosts for the first time worldwide.
Of the Sarcocystis species detected, some can be pathogenic to farm animals and cervids.
Additionally, raccoon dogs more frequently harbored Sarcocystis species with wild animals
as their IHs than those associated with farm animals.
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41. Baranauskaitė, A.; Strazdaitė-Žielienė, Ž.; Servienė, E.; Butkauskas, D.; Prakas, P. Molecular Identification of Protozoan Sarcocystis
in Different Types of Water Bodies in Lithuania. Life 2022, 13, 51. [CrossRef]

42. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410.
[CrossRef]

43. Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38,
3022–3027. [CrossRef]

44. Reiczigel, J.; Marozzi, M.; Fábián, I.; Rózsa, L. Biostatistics for Parasitologists—A Primer to Quantitative Parasitology. Trends
Parasitol. 2019, 35, 277–281. [CrossRef]

45. Nummi, P.; Väänänen, V.-M.; Pekkarinen, A.-J.; Eronen, V.; Nurmi, J.; Rautiainen, A.; Rusanen, P. Alien Predation in Wetlands the
Raccoon Dog and Waterbird Breeding Success. Balt. For. 2019, 25, 228–237. [CrossRef]
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