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a b s t r a c t

The pandemic COVID-19 has caused severe losses in public health and economy. One of the
most difficult problems in prevention of the disease spread is the emergence of new
variants. In this paper, a mathematical model is formulated, which captures the main
feature of COVID-19 spread with two viral strains. It is shown by analytical method that the
model exhibits the competitive exclusion principle, where one viral strain with the larger
basic reproduction number is dominant and the viral strain with the smaller reproduction
number is excluded. The results are important for the deployment of prevention policy of
COVID-19.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

COVID-19 has caused severe losses in public health and economy. One of the most difficult problems in prevention of
COVID-19 is the emergence of new variants. These strains of COVID-19 virus show the different levels of transmission ability
and responses to vaccines (Ge&Wang, 2022). Then the key issue is how the original strain competes with a new strain for the
shared susceptible population. From a longer time scale for prevention of the disease, it is important to know whether two
strains coexist or one strain is dominant, because this information directs the deployment of medical resources.

Mathematical researches are powerful to reveal the evolutionary outcomes for strain competitions. Previous studies
indicate that the competitive exclusion of viral strains holds for a variety of mathematical models for generic diseases (see
(Bremermann & Thieme, 1989; Castillo-Chavez et al., 1999; Chen et al. 2015; Dang et al., 2017; Iggidr et al., 2006; Wang &
Chen, 1997) and the references cited therein). However, there are also models that exhibit the coexistence of different
strains due to heterogeneity in time and space (see (Lou & Salako, 2022; Matcheva, 2009) and the references cited therein).

Amathematical model is studied in this paper, which captures themain features of COVID-19 spreadwith two viral strains.
Similar models are investigated in (de Le�on et al., 2022; Massard et al., 2022), where the basic reproduction numbers are
estimated from the data, and its sensitivity in the parameters are analyzed. The objective of the present paper is to show
analytically that the model exhibits the competitive exclusion principle. That is, one viral strain with the larger basic
reproduction number is dominant and the viral strain with the smaller reproduction number is excluded.

The organization of this paper is as follows. In the next section, we formulate the mathematical model. Section 3 presents
the mathematical analysis of the model to show the competitive exclusion holds. The paper ends with brief discussions.
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2. Mathematical model

The population is divided into the 5 groups: susceptible, exposed, asymptomatic, symptomatic and recovered. Let S(t) and
R(t) be the numbers of susceptible individuals at time t respectively, and Ei(t) be the number of the exposed individuals
infected by strain i (i¼ 1, 2) at time t. The asymptomatic individuals and symptomatic individuals at time t, who are transited
from Ei, are denoted by Ai(t) and Ii(t) respectively. The flowchart of disease transmission and progression is shown Fig. 1.

The mathematical model is described by

dS
dt

¼ l� mS� b1ðI1 þ d1A1ÞS� b2ðI2 þ d2A2ÞS;

dE1
dt

¼ b1ðI1 þ d1A1ÞS� ðmþ a1ÞE1;

dA1

dt
¼ p1a1E1 � ðmþ g1ÞA1;

dI1
dt

¼ ð1� p1Þa1E1 � ðmþ g1ÞI1;

dE2
dt

¼ b2ðI2 þ d2A2ÞS� ðmþ a2ÞE2;

dA2

dt
¼ p2a2E2 � ðmþ g2ÞA2;

dI2
dt

¼ ð1� p2Þa2E2 � ðmþ g2ÞI2;

dR
dt

¼ g1ðA1 þ I1Þ þ g2ðA2 þ I2Þ � mR;

(2.1)

where l is the recruitment rate of the population, m is the natural death rate of the population, bi is the valid disease
transmission coefficient by strain i, di is the reduction coefficient of disease transmission coefficient for asymptomatic in-
dividuals, ai is the transition rate from the exposed class to infectious class with the probability pi being in asymptomatic
class, and gi is the recovery rate.

Clearly, the last equation of the model (2.1) can be decoupled from the system. Henceforth, we consider only the following
model:

dS
dt

¼ l� mS� b1ðI1 þ d1A1ÞS� b2ðI2 þ d2A2ÞS;

dE1
dt

¼ b1ðI1 þ d1A1ÞS� ðmþ a1ÞE1;

dA1

dt
¼ p1a1E1 � ðmþ g1ÞA1;

dI1
dt

¼ ð1� p1Þa1E1 � ðmþ g1ÞI1;

dE2
dt

¼ b2ðI2 þ d2A2ÞS� ðmþ a2ÞE2;

dA2

dt
¼ p2a2E2 � ðmþ g2ÞA2;

dI2
dt

¼ ð1� p2Þa2E2 � ðmþ g2ÞI2:

(2.2)
3. Mathematical analysis

Let us start from the subsystem of the first strain:
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Fig. 1. The transmission and progression of COVID-19 disease.
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dS
dt

¼ l� mS� b1ðI1 þ d1A1ÞS;

dE1
dt

¼ b1ðI1 þ d1A1ÞS� ðmþ a1ÞE1;

dA1

dt
¼ p1a1E1 � ðmþ g1ÞA1;

dI1
dt

¼ ð1� p1Þa1E1 � ðmþ g1ÞI1:

(3.1)

1
The disease-free equilibrium is E0 ¼ ðl =m;0;0;0Þ: Set

F1 ¼
0
@0 b1dl=m b1l=m

0 0 0
0 0 0

1
A; V1 ¼

0
@ mþ a 0 0

�p1a1 mþ g1 0
�ð1� p1Þa1 0 mþ g1

1
A:
By (van den Driessche & Watmough, 2002), the basic reproduction number of the first strain is

R10 ¼ b1 l a1 ðd1 p1 þ 1� p1Þ
m ðmþ g1Þðmþ a1Þ

:

Similarly, the basic reproduction number of the second strain is

R20 ¼ b2 l a2 ðd2 p2 þ 1� p2Þ
mðmþ g2Þðmþ a2Þ

:

Theorem 3.1. The disease-free equilibrium E10 of (3.1) is globally stable if R10 <1.

Proof. Choose ε > 0 small enough such that

R10ðεÞ ¼
b1 ðlþ εÞa1 ðd1 p1 þ 1� p1Þ

m ðmþ g1Þðmþ a1Þ
<1; (3.2)

which is possible because of R10 <1. From the first equation of (3.1), we see that a nonnegative solution of (3.1) satisfies
SðtÞ< lþ ε

m
; for large t:
As a result, we get

dE1
dt

� b1ðI1 þ d1A1Þ
lþ ε

m
� ðmþ a1ÞE1;

dA1

dt
¼ p1a1E1 � ðmþ g1ÞA1;

dI1
dt

¼ ð1� p1Þa1E1 � ðmþ g1ÞI1

(3.3)
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for large t. Since R10ðεÞ<1, the zero solution of the linear comparison system

dE1
dt

¼ b1ðI1 þ d1A1Þ
lþ ε

m
� ðmþ a1ÞE1;

dA1

dt
¼ p1a1E1 � ðmþ g1ÞA1;

dI1
dt

¼ ð1� p1Þa1E1 � ðmþ g1ÞI1

(3.4)
is asymptotically stable. It follows from (3.3) that the nonnegative solution of (3.1) satisfies (E(t), A(t), I(t)) / (0, 0, 0) as t
/∞. Then it is easy to see S(t)/ l/m as t/∞. This means that the disease-free equilibrium E10 of (3.1) is globally attractive.
Since R10 implies E10 is asymptotically stable, we conclude the global stability of E10 when R10 <1. ,

We show now that (3.1) admits a unique endemic equilibrium ðS*1; E*1;A*
1; I

*
1Þ if R10 >1. Indeed, the endemic equilibrium

solves

l� mS*1 � b1ðI*1 þ d1A
*
1ÞS*1 ¼ 0;

b1ðI*1 þ d1A
*
1ÞS*1 � ðmþ a1ÞE*1 ¼ 0;

p1a1E
*
1 � ðmþ g1ÞA*

1 ¼ 0;

ð1� p1Þa1E*1 � ðmþ g1ÞI*1 ¼ 0:

(3.5)
Direct calculations yield

E*1 ¼ l

mþ a1

 
1� 1

R10

!
; I*1 ¼ ð1� p1Þa1

mþ g1
E*1; A*

1 ¼ p1a1
mþ g1

E*1; S*1 ¼ �mþ a1
m

E*1 þ
l

m
:

Then simple computation leads to

S*1 ¼ ðmþ a1Þðmþ g1Þ
ðd1 p1 � p1 þ 1Þb1 a1

: (3.6)

1
Consequently, we conclude the existence and uniqueness of endemic equilibrium in (3.1) when R0 >1. The next theorem
states that this endemic equilibrium is globally stable.

Theorem 3.2. Let R10 >1. Then system (3.1) has a unique endemic equilibrium which is globally stable.

Proof. It is sufficient to prove that ðS*1; E*1;A*
1; I

*
1Þ is globally stable when R10 >1. Define a Lyapunov function by

V1 ¼ S� S*1 � S*1ln
S

S*1
þ E1 � E*1 � E*1ln

E1
E*1

þ b1S
*
1

mþ g1

�
I1 þ d1A1 � ðI*1 þ d1A

*
1Þ � ðI*1 þ d1A

*
1Þln

I1 þ dA1

I*1 þ dA*
1

�
:

Calculating the derivative of V along the solution of model (3.1), we get
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Fig. 2. The first strain is dominant and the second strain is excluded, where R10 ¼ 7:5238;R20 ¼ 5:4286.

640



W. Wang Infectious Disease Modelling 7 (2022) 637e644
dV1

dt
¼ l� mS� S*1

S
lþ mS*1 þ b1S

*
1ðI1 þ d1A1Þ

�ðmþ a1ÞE1 �
E*1
E1

b1SðI1 þ d1A1Þ þ ðmþ a1ÞE*1

þ b1S
*
1

mþ g1
fð1� p1 þ d1p1Þa1E1 � ðmþ g1ÞðI1 þ dA1Þ

� I*1 þ d1A
*
1

I1 þ d1A1
ð1� p1 þ d1p1Þa1E1 þ ðI*1 þ d1A

*
1Þðmþ g1Þ

�
:

* * * * * *
Using (3.6), it follows from l ¼ mS1 þ ðmþa1ÞE1 and b1S1ðI1 þd1A1Þ ¼ ðmþa1ÞE1 that

dV1

dt
¼ mS*1

�
2� S

S*1
� S*1

S

�
þ 2ðmþ a1ÞE*1

�S*1
S
ðmþ a1ÞE*1 �

E*1
E1

b1SðI1 þ d1A1Þ

� ðmþ a1ÞE*1
ðI1 þ d1A1Þðmþ g1Þ

ð1� p1 þ d1p1Þa1E1 þ ðmþ a1ÞE*1:
As a result, we get

dV1

dt
¼ mS*1

�
2� S

S*1
� S*1

S

�

þðmþ a1ÞE*1
�
3� S*1

S
� b1SðI1 þ d1A1Þ

E1ðmþ a1Þ
� ð1� p1 þ d1p1Þa1E1

ðI1 þ d1A1Þðmþ g1Þ
�
:

Since the arithmetical mean is great than or equal to the geometric mean, it follows from (3.6) that

dV1

dt
� 0:
Furthermore, we let

D1d

�
ðS; E1;A1; I1Þ2int R4þ :

dV1

dt
¼ 0

�
:

1
Since R0 >1, by similar arguments to those in (Wang& Chen, 1997; Wang& Zhao, 2004) we see that the positive solutions
of (3.1) are permanent. As a result, the positive solutions of (3.1) approach the maximal compact invariant set in D1, which lies
in the interior of R4þ, as t/∞. To locate such a set, we see from dV1

dt ¼ 0 that S ¼ S*1 and E1ðm þ a1Þ ¼ b1S
*
1ðI1 þ d1A1Þ. It follows

from the second equation that E1(t) is a constant. Similarly, one can deduce that I1(t) þ d1A1(t) is a constant. Hence,

l� mS*1 � b1ðI1 þ d1A1ÞS*1 ¼ 0;

b1ðI1 þ d1A1ÞS*1 � ðmþ a1ÞE1 ¼ 0;

ð1� p1 þ d1p1Þa1E*1 � ðmþ g1ÞðI1 þ d1A1Þ ¼ 0:
It follows that

E1 ¼ E*1; I1 þ d1A1 ¼ ð1� p1 þ d1p1Þa1
mþ g1

¼ I*1 þ d1A
*
1:

* *
Consequently, the last two equations of (3.1) imply that A1 ¼ A1; I1 ¼ I1 in the maximal compact invariant set in D1.
Therefore, the maximal compact invariant set in D1 is

fðS; E1;A1; I1Þ : S¼ S*1; E1 ¼ E*1;A1 ¼A*
1; I1 ¼ I*1g:
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The Lyapunov-LaSalle theorem (Hale & Verduyn Lunel, 1993) implies that all positive solutions of (3.1) approach the
maximal invariant set in D1 and the endemic equilibrium ðS*1; E*1;A*

1; I
*
1Þ is globally stable. This completes the proof. ,

Let us consider the subsystem of the second strain:

dS
dt

¼ l� mS� b1ðI2 þ d1A2ÞS;

dE2
dt

¼ b2ðI2 þ d2A2ÞS� ðmþ a2ÞE2;

dA2

dt
¼ p2a2E2 � ðmþ g2ÞA2;

dI2
dt

¼ ð1� p2Þa2E2 � ðmþ g2ÞI2:

(3.7)

Similarly, the disease-free equilibrium is globally stable if R2 <1 and an endemic equilibrium ðS* ; E* ;A* ; I*Þ is globally stable if
0 2 2 2 2
R20 >1, where

E*2 ¼ l

mþ a2

 
1� 1

R20

!
; I*2 ¼ ð1� p2Þa2

mþ g2
E*2; A*

2 ¼ p2a2
mþ g2

E*2;

and
S*2 ¼ ðmþ a2Þðmþ g2Þ
ðd2 p2 � p2 þ 1Þb2 a2

: (3.8)
The evolution outcomes of the disease driven by two virus strains are described by the following theorems.

Theorem 3.3. Let R10 <1. Then the disease of first strain dies out. That is, any positive solution of (2.2) satisfies

ðE1ðtÞ;A1ðtÞ; I1ðtÞÞ/ð0;0;0Þ as t/∞:
If R20 <1, then the disease of second strain dies out. That is, any positive solution of (2.2) satisfies

ðE2ðtÞ;A2ðtÞ; I2ðtÞÞ/ð0;0;0Þ as t/∞:
proof. The proofs are omitted because they are the minor modifications to the proof of Theorem 3.1. ,

Theorem 3.4. Let R10 >R20 >1. Then the first strain is dominant and the second strain is excluded. That is, any positive solution of
(2.2) satisfies

ðSðtÞ; E1ðtÞ;A1ðtÞ; I1ðtÞ; E2ðtÞ;A2ðtÞ; I2ðtÞÞ/ðS*1; E*1;A*
1; I

*
1;0;0; 0Þ as t/∞:
Proof. First, we note that the strain reproduction numbers can be rewritten as

R10 ¼ l

mS*1
; R20 ¼ l

mS*2
:

Thus, R10 >R20 >1 imply

S*1 < S*2: (3.9)
Set

x1 ¼ b2S
*
2d2

mþ g2
; x2 ¼ b2S

*
2

mþ g2
: (3.10)
It follows from (3.8) that
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p2x1 þ ð1� p2Þx2 ¼ b2S
*
2ð1� p2 þ p2d2Þ

mþ g2
¼ mþ a2

a2
: (3.11)
Now, let us consider the Lyapunov function:

V ¼ S� S*1 � S*1ln
S

S*1
þ E1 � E*1 � E*1ln

E1
E*1

þ b1S
*
1

mþ g1

�
I1 þ d1A1 � ðI*1 þ d1A

*
1Þ � ðI*1 þ d1A

*
1Þln

I1 þ dA1

I*1 þ dA*
1

�

þE2 þ x1A2 þ x2I2:
Calculating the derivative of V along the solution of (2.2), we obtain

dV
dt

¼ l� mS� S*1
S
lþ mS*1 þ b1S

*
1ðI1 þ d1A1Þ þ b2S

*
1ðI2 þ d2A2Þ

�ðmþ a1ÞE1 �
E*1
E1

b1SðI1 þ d1A1Þ þ ðmþ a1ÞE*1

þ b1S
*
1

mþ g1
fð1� p1 þ d1p1Þa1E1 � ðmþ g1ÞðI1 þ dA1Þ

� I*1 þ d1A
*
1

I1 þ d1A1
ð1� p1 þ d1p1Þa1E1 þ ðI*1 þ d1A

*
1Þðmþ g1Þ

�

�ðmþ a2ÞE2 þ x1p2a2E2 � x1ðmþ g2ÞA2 þ x2ð1� p2Þa2E2 � x2ðmþ g2ÞI2:
Using (3.10) and (3.11), we simplify it into

dV
dt

¼ l� mS� S*1
S
lþ mS*1 þ b1S

*
1ðI1 þ d1A1Þ þ b2ðS*1 � S*2ÞðI2 þ d2A2Þ

�ðmþ a1ÞE1 �
E*1
E1

b1SðI1 þ d1A1Þ þ ðmþ a1ÞE*1

þ b1S
*
1

mþ g1
fð1� p1 þ d1p1Þa1E1 � ðmþ g1ÞðI1 þ dA1Þ

� I*1 þ d1A
*
1

I1 þ d1A1
ð1� p1 þ d1p1Þa1E1 þ ðI*1 þ d1A

*
1Þðmþ g1Þ

�
:

* * * * * *
Note that l ¼ mS1 þ ðmþa1ÞE1 and b1S1ðI1 þ d1A1Þ ¼ ðm þ a1ÞE1. By similar arguments to those in the proof of Theorem
3.2, we obtain

dV
dt

¼ mS*1

�
2� S

S*1
� S*1

S

�
þ b2ðS*1 � S*2ÞðI2 þ d2A2Þ

þðmþ a1ÞE*1
�
3� S*1

S
� b1SðI1 þ d1A1Þ

E1ðmþ a1Þ
� ð1� p1 þ d1p1Þa1E1

ðI1 þ d1A1Þðmþ g1Þ
�
:

Let

Dd
�
ðS; E1;A1; I1; E2;A2; I2Þ2int R4þ � R3þ :

dV
dt

¼ 0
�
:

1 2
Since R0 >R0 >1, by (3.9) we see that a solution of (2.2) in D for all t exhibits

A2ðtÞ≡I2ðtÞ≡0:
It follows from the last equation of (2.2) that E2(t) ≡ 0. Then it is easy to see that the maximal compact invariant set in D
satisfies
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S ¼ S*1; E1 ¼ E*1; I1 þ d1A1 ¼ I*1 þ d1A
*
1; A2 ¼ 0; I2 ¼ 0; E2 ¼ 0:

1 2
Since R0 >R0 >1, by similar arguments to those in (Wang & Chen, 1997; Wang & Zhao, 2004) we see that the boundary of
R7þ with E1 ¼ A1 ¼ I1 ¼ 0 repels uniformly the positive solutions of model (2.2). Then by similar discussions to those in the
proof of Theorem 3.2, we conclude the maximal compact invariant set in D satisfies

S ¼ S*1; E1 ¼ E*1; A1 ¼ A*
1; I1 ¼ I*1; E2 ¼ 0; A2 ¼ 0; I2 ¼ 0:

* * * *
Therefore, the Lyapunov-LaSalle theorem (Hale& Verduyn Lunel, 1993) implies that ðS1; E1;A1; I1;0;0;0Þ is globally stable.
This proves the theorem. ,

Let us consider an example to support the theoretical results. Motivated by (Ge & Wang, 2022), we fix the parameters by
l¼ 0.1, m¼ 0.01, d1¼ d2¼ 0.5, a1¼ a2¼ 0.2, g1¼ g2¼ 0.1, p1¼ p2¼ 0.9, b1¼0.158, b2¼ 0.114. Then R10 ¼ 7:5238;R20 ¼ 5:4286.
It follows from Theorem 3.4 that the first strain is dominant and the second strain is excluded. Numerical computations
confirm this result, which is shown in Fig. 2.

4. Discussions

In this paper, we study the mathematical model which includes the asymptomatic disease transmissions and consider the
competition of two viral strains. Thus, themodel captures themain features of COVID-19 spread. Moreover, the superinfection
of different strains is neglected because the rate is small in practice. Indeed, infected individuals are much more likely
quarantined due to onset of symptoms or nucleic acid test, which makes the probability of secondary infection from other
strain quite small. Note that the different strains of COVID-19 exhibit the different levels of transmission ability, different
mortality rates and different responses to vaccines (Ge&Wang, 2022). Hence, the prevention and control strategies vary with
the characteristics of virus strain. More importantly, it is critical to know whether two strains coexist or one strain is
dominant, because this information directs the deployment of the limited medical resources. The previous studies on this
important issue use mainly numerical simulations to predict the trend of disease evolutions. The novelty of this paper is to
analyze the dynamical behaviors of model (2.2) by rigor mathematical approach. Using the technique of comparison and
Lyapunov functions, we show that the model has the property of competitive exclusion. That is, the viral strain with a larger
basic reproduction number is dominant and the viral strain with the smaller reproduction number is excluded. This result
precludes the possibility for coexistence of two viral strains of COVID-19, which is consistent with the progressions of COVID-
19 evolutions.

It will be interesting to consider multiple strains in the model and study how vaccination affect the outcome of
competition among viral strains. We leave these as future researches.
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