
Review

Of Mice, Cattle, and Humans: The Immunology and
Treatment of River Blindness
Judith E. Allen1, Ohene Adjei2, Odile Bain3, Achim Hoerauf4, Wolfgang H. Hoffmann5, Benjamin L.

Makepeace6, Hartwig Schulz-Key5, Vincent N. Tanya7, Alexander J. Trees6, Samuel Wanji8, David W.

Taylor9*

1 Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom, 2 Kwame Nkrumah University of Science and Technology,

Kumasi, Ghana, 3 Museum National d’Histoire Naturelle, Paris, France, 4 Universitätsklinikum Bonn, Bonn, Germany, 5 Eberhard Karls Universität, Tübingen, Germany,
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Abstract: River blindness is a seriously debilitating
disease caused by the filarial parasite Onchocerca volvulus,
which infects millions in Africa as well as in South and
Central America. Research has been hampered by a lack of
good animal models, as the parasite can only develop
fully in humans and some primates. This review highlights
the development of two animal model systems that have
allowed significant advances in recent years and hold
promise for the future. Experimental findings with
Litomosoides sigmodontis in mice and Onchocerca ochengi
in cattle are placed in the context of how these models
can advance our ability to control the human disease.

Introduction

Infection with Onchocerca volvulus, a filarial nematode, can lead to

debilitating skin disease and blindness (river blindness). Adult

worms live in subcutaneous nodules; however, the pathology of

onchocerciasis is primarily associated with death of microfilariae

larvae in the skin and eyes (Figures 1 and 2). It is estimated that 37

million people are infected with O. volvulus [1], over 99% of whom

live in West and Central Africa, although there are significant foci

in South and Central America. Early attempts at control of

onchocerciasis relied on treatment of water courses with

insecticides to kill the larvae (larviciding) of the blackfly (Simulium

spp.) vectors. Using this approach for over 25 years, the WHO/

UNDP Onchocerciasis Control Programme (OCP) reduced the

burden of disease in savannah regions of West Africa [2,3]. In

1987, ivermectin (Mectizan, Merck & Co.) was introduced for

mass treatment of onchocerciasis either alone or in combination

with larviciding. The OCP closed in December 2002, and control

of onchocerciasis now relies on community-based treatment with

ivermectin implemented through the African Programme for

Onchocerciasis Control (APOC) [4]. The Onchocerciasis Elimi-

nation Programme for the Americas similarly distributes Mectizan

twice a year in its target countries of Brazil, Colombia, Ecuador,

Guatemala, Mexico, and Venezuela [5].

Ivermectin is very effective at killing microfilariae and has

proved successful in reducing morbidity within the community and

the risk of severe skin or ocular disease for the individual.

However, its macrofilaricidal activity (i.e., efficacy against adult

parasites) is, at best, slow and partial, necessitating the use of

repeated drug administration for several years [6–8]. Furthermore,

early hopes that mass treatment with ivermectin would eradicate

the disease by breaking transmission have not been realised [2]

because of inadequate treatment coverage, migration, and

recrudescence of infections in areas where treatment has been

suspended. In addition, there is mounting evidence that resistance

to ivermectin is emerging [9–13]. Such circumstances require

development of complementary measures to sustain even the

current levels of control, let alone eliminate the disease. What are

needed is a safe and effective macrofilaricide and a vaccine.

A major obstacle facing onchocerciasis research and, particu-

larly that concerned with vaccine development, has been the

absence of good animal models. Use of mice was limited because

they are unable to support cyclical development of filariae species.

All rodents are strictly non-permissive to O. volvulus, which can

develop only in primates, and thus studies of protective immunity

in mice involve implantation of infective stage larvae (L3) into

subcutaneous chambers [14]. Mice are somewhat more permissive

to Brugia species (causative agents of lymphatic filariasis) but still do

not allow natural tissue migration or development of circulating

microfilariae. Patent infections with circulating microfilariae can

be established in the Mongolian gerbil (Meriones unguiculatus) with

Brugia species and Acanthocheilonema viteae; however, the absence of

reagents places serious restrictions on immunological investigation.

Nonetheless, despite limitations, these models have made signif-

icant contributions to our knowledge of filarial infections (reviewed

in [14–16]) and provided a basis of more recent investigations

using two new models.

The first is Litomosoides sigmodontis (Table 1), a natural parasite of

the cotton rat (Sigmodon hispidus) that in the early 1990s was found

to undergo complete development in BALB/c mice and produce
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patent infections with circulating microfilariae within 55–60 days

post-infection [17]. Development of L. sigmodontis in other inbred

strains is restricted. For example, in C57BL/6 mice, filariae are

progressively killed and never produce a patent infection. It is now

possible to utilise the full power of murine immunology to study

the interaction of filarial parasites with their hosts at all stages of

the parasite’s development from migration of infective larvae to

the production of microfilariae. The ability of L. sigmodontis to

achieve patency allows a comparison to human studies not possible

in other murine models. The data thus far show a striking

similarity to human studies, particularly in the context of

regulation (discussed below); thus, through experimental manip-

ulation, this model can provide mechanistic explanations of

susceptibility and resistance not possible in any other system.

The second model is Onchocerca ochengi in cattle (Table 1;

Figure 3). This is the closest known relative of the human parasite

and is also transmitted by the blackfly, Simulium damnosum sensu lato.

O. ochengi is confined to Africa and combines many important

features of the human infection [18]. Most importantly, O. ochengi

forms nodules that closely resemble those of O. volvulus and which

can be enumerated non-invasively or removed for analysis during

immunological or chemotherapeutic studies. Furthermore, puta-

tive immune animals exist naturally in endemic areas and exhibit

demonstrable resistance to infection [19]. The O. ochengi model

thus provides the unique opportunity to undertake controlled

experiments, both laboratory-based and under natural challenge

in the field, that are not possible in humans.

The main drawback to both of these model systems is that they

do not allow the investigation of disease pathology relevant to

human onchocerciasis. This work will continue to rely on either

human field studies or experimental exposure of mice to Onchocerca

antigens in a model of ocular disease [20].

Figure 1. Life cycle of Onchocerca volvulus and Onchocerca ochengi. Adult female worms initiate the formation of nodules in the skin
(onchocercomas) (see Figures 2 and 3) in which their highly coiled bodies can reach a length of approximately 25 cm, while the males are a little over
1/10th that length. Transverse sections of adult female worms in the onchocercoma are shown in (A). Following mating, embryos develop inside the
female, which gives birth to motile L1 larvae that are known as microfilaria (MF). A transverse section of an adult female with MF in utero is shown in
(B); Wolbachia in lateral hypodermal chords (*) of the adult female and uterine microfilaria (arrows) are stained red. MF migrate into the dermis
(shown in [C]), where they are available for transmission to the simuliid blackfly vector (shown in [D]). Within the fly, MF develop further as L1 larvae
and molt into second-stage larvae, which molt again to become the infective L3 larvae (7 days). The L3 enter the skin through the wound caused by
the feeding fly. The blackfly requires fast moving water to breed and thus infection occurs adjacent to rivers. Adult female worms live for several years
and individuals (people or cattle) can remain microfilaraemic for their entire lives if repeatedly exposed to infection. (Photo credits: M. Boussinesq, S.
Spetch, J. Allen, O Bain, S. Wanji, S. Uni)
doi:10.1371/journal.pntd.0000217.g001
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Mechanisms of Parasite Killing

In the L. sigmodontis model, innate responses at the inoculation site

are associated with destruction of a majority of L3s in the

subcutaneous tissue within 2 days post-infection. However, about

one-third of L3 larvae avoid this attack by entering lymphatic vessels

[21,22], a strategy characteristic of many human filariae [23,24].

The number of larvae that survive this early stage varies depending

on sex and strain of the host [25], but is unaffected by the size of the

initial inoculum [26]. From Day 4 post-inoculation, surviving L3

begin to appear in the pleural cavity of L. sigmodontis–infected mice.

Differences in the pattern of development of the parasites in resistant

C57BL/6 and susceptible BALB/c mice appear early and get

progressively more apparent [25]. By 30 days post-infection, about

one-third of the population in C57BL/6 mice are still at the L4 stage;

this contrasts with ,15% in susceptible BALB/c mice [27].

Furthermore, worms recovered from the C57BL/6 mice are smaller

than those from BALB/c mice. Analysis of cytokine production at

this time shows mixed T helper cell type 1 (Th1)-Th2 response in the

C57BL/6 mice reminiscent of that observed in putative immune

human patients [28]. In BALB/c mice, the cytokine response is more

biased towards Th2 (see Box 1).

The ability of filarial parasites to induce Th2-type immune

responses is well documented, but whether this bias is detrimental

or beneficial for the parasite is not always clear. However,

infection of IL-4–deficient C57BL/6 mice leads to full parasite

development and patency, indicating that a Th2 response is the

key determinant of resistance in these non-permissive mice [29].

Consistent with a role for type 2 immunity in parasite killing,

partially resistant 129/SvJ mice with a genetic deficiency in either

major basic protein or eosinophil peroxidase were found to

harbour several times more adult worms than their wild-type

littermates [30]. Further, BALB/c mice deficient in IL-4, IL-5, or

IL-4Ra (unable to respond to IL-4 or IL-13) present with levels of

microfilariae 100 times higher than wild-type controls [31,32].

This evidence that type 2 cytokines can control microfilarial levels

is consistent with studies on Brugia species [33].

Although the data began to build a convincing argument for

Th2 control of filarial infections, the picture that emerged proved

more complex. The BALB/c IL-4Ra–deficient mice presented a

paradox, for although the mice had enormously increased

numbers of circulating microfilaria relative to wild-type mice,

death of the adult parasites was accelerated. Examination of the

effector cells at the site of infection demonstrated that the mice had

converted to a Th1 phenotype suggesting that a pro-inflammatory

Figure 2. Subcutaneous Nodules on a Child in Ghana. Photo
credit: P. Soboslay.
doi:10.1371/journal.pntd.0000217.g002

Table 1. General Features of the Biology of O. volvulus, O. ochengi, and L. sigmodontis

Filariae Vector
Time to
Patency Adult Mf Disadvantages Advantages

O. volvulus Blackfly, Simulium spp. 250–375 days Subcutaneous nodules Skin Experimentation not
possible

The target organism

O. ochengi Blackfly, Simulium spp. From 250 days Intradermal nodules Skin Outbred animals, no
pathology

–Very closely related to O. volvulus

–Experimentation under natural challenge

–Infection quantifiable

L. sigmodontis Tropical rat mite,
Ornithonyssus bacoti

,50 days Thoracic cavity Blood Not skin dwelling, no
pathology

–All stages of the life cycle accessible for
experimentation

–Power of murine immunology

–Protective immunity evoked by
vaccination

doi:10.1371/journal.pntd.0000217.t001

Figure 3. Intradermal Nodules Containing Adult Onchocerca
ochengi on Ventral Hide of a Naturally Infected Cow (Bos
indicus) in Cameroon. Photo credit: A. J. Trees.
doi:10.1371/journal.pntd.0000217.g003
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type 1 response was capable of killing the adult parasite (J. Allen

and M. G. Nair, unpublished data). Consistent with this, more

adult worms are recovered from mice genetically deficient in the

type 1 cytokine, IFN-c [34,35] Indeed, IFN-c and IL5 appear to

act synergistically to destroy adult parasites [34,36]. Thus,

although Th2 responses seem capable of mediating destruction

of the larval stages, both Th1 and Th2 may be needed to contain

the more resilient adult stage.

Induction of a Th1 response may be a consequence of the

presence of the endosymbiont bacterium Wolbachia found in most

human-pathogenic filariae [37]. Filarial-infected humans, cattle, and

mice demonstrate significant immune responses to the major surface

protein (WSP) of the bacteria [38,39] (B. Makepeace and A. Trees,

unpublished data). Further, WSP as well as the bacteria in total have

been shown to stimulate a typical TLR-dependent inflammatory

response with induction of IL-6, TNF, etc. by macrophages [40–42]

and exhibit potent chemotactic activity for neutrophils [41]. Mice

with a natural mutation of TLR4 (C3H/HeJ) show a higher degree

of susceptibility to L. sigmodontis infection [43]. This is consistent with

protection studies in the O. volvulus mouse chamber model that

identified a TLR4-dependent larval killing mechanism, albeit with

no evidence for Wolbachia involvement [44]. The costs and benefits of

symbiosis with Wolbachia for filariae in terms of manipulation of host

immune responses have yet to be investigated in depth. However,

elimination of Wolbachia from O. ochengi leads to a profound reduction

in local neutrophilia in the nodule and a marked infiltration of

eosinophils, which degranulate on the cuticle of adult worms prior to

parasite death [45]. This is compatible with a potential role for

Wolbachia in modulating the anti-nematode response.

Regulation

Although a clearer picture of how mammalian hosts can kill

filarial nematodes is emerging, in a successful infection these

mechanisms fail. Human studies have long since demonstrated

that filarial parasites induce a state of hypo-responsiveness in the

host that is associated with the presence of circulating microfilaria

[46]. Both the L. sigmodontis and O. ochengi models can mimic this,

with Th1 and Th2 cytokines down-regulated coincident with the

onset of patency [47,48]. Intrinsic defects in T cell responses in

human filarial infection are linked with expression of the T cell–

inhibiting receptor, CTLA-4 [49], and neutralisation of CTLA-4

in mice results in enhanced L. sigmodontis killing [50]. In addition to

this intrinsic T cell hypo-responsiveness, T cell responses in

humans can be dampened by suppressive antigen-presenting cells

[51]. Both mechanisms are operative in the L. sigmodontis model

where macrophages that block proliferation of T cells are present

at the site of infection prior to patency but become apparent in the

draining lymph nodes only following patency [52]. Studies in

susceptible BALB/c mice have now directly demonstrated that L.

sigmodontis survival is dependent on the induction of a regulatory T

cell population that induces hypo-responsiveness [48]. This

corroborates the data from human field studies demonstrating

that T regulatory (Treg) cells can be isolated from onchocerciasis

patients [53], and generalised onchocerciasis is associated with

antigen-specific Treg cells that can be found in nodules [54].

These studies demonstrate the utility of the L. sigmodontis model to

reveal details of protective and regulatory mechanisms that can

help explain observations made in human infections.

The importance of immune regulation in parasite survival is

also illustrated by the study of mechanisms that determine

microfilarial survival. Different inbred strains of mice differ widely

in their capacity to eliminate circulating microfilariae, and these

genetically determined differences can be attributed to a single

gene locus [55]. However, irrespective of host genetic background,

microfilarial density is regulated by the adult female [56]. An

immune regulatory environment with interleukin 10 (IL-10) as a

key player is induced by the female parasite to facilitate the

survival and persistence of her offspring [56]. In the absence of IL-

4, normally resistant C57BL/6 mice develop patent infection, but

the additional knock-out of IL-10 reverts mice back to a resistant

phenotype [57]. This suggests that IL-10 is inhibiting an anti-

worm effector response that is redundant when a full Th2 response

is in place. In this scenario, wild-type C57BL/6 are non-permissive

because Th2 immunity prevents worm development and patency.

Box 1. Th1 & Th2 Immunity
Helminth parasites are typically associated with the
induction of CD4+ T helper 2 (Th2) cells, while microbial
pathogens induce Th1 responses. Filarial parasites consti-
tute a unique stimulus to the immune system, as they are
worms that (in most cases) contain endosymbiotic bacteria
(Wolbachia). The Th1 response functions to activate
macrophages to be more efficient at microbial destruction
and is essential to survive infection with many intracellular
pathogens such as Mycobacteria and Salmonella. The Th2
response is involved in expelling worms from the
intestines as well as encapsulating and destroying
multicellular parasites. The Th2 response also plays a key
role in wound healing and allergic reactions. Macrophages
are mediators of both Th1 and Th2 immunity but exhibit
different functions. Mast cells and eosinophils are depen-
dent on Th2 cytokines for expansion and recruitment. Th1
and Th2 responses are also associated with differing
antibody isotype profiles, with Th1 cytokines promoting
cytophilic antibodies while Th2 responses promote anti-
bodies involved in allergic-type responses such as IgE. In
addition to T helper cells, T regulatory subsets exist that
function primarily to prevent host damage caused by
overactive effector responses. These are associated with
the production of TGF-b and/or IL-10. Neutrophils, not
pictured here, are phagocytic cells of the innate immune
system that may become activated prior to Th1/Th2
polarisation, but are also strongly associated with a fourth
CD4+ T helper subset: Th17 cells. Th17 cells are strongly
pro-inflammatory and have roles in mediating autoim-
mune disease as well as protection against extracellular
bacteria and may exacerbate pathology during helminth
infection (for a review of T helper subsets in helminth
infection, see Dı́az and Allen [87]).
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In the absence of IL-4, patency occurs because Th2-dependent

mechanisms are absent but IL-10 is present, suppressing

alternative, potentially innate, effector responses. In the absence

of both cytokines, IL-10 restraint of innate mechanisms is lifted

and once again worms are targeted by the immune response.

Consistent with a role for IL-10 in suppressing effector responses,

transgenic overexpression of IL-10 in macrophages in genetically

resistant FVB mice leads to patency [36]. Design of effective

vaccines must take into account that destruction of each parasite

stage may require activation of distinct effector pathways and that

the parasites themselves induce powerful regulatory networks to

modulate these pathways.

Vaccine-Mediated Immunity

The ability of irradiated L3 to generate protection in naı̈ve

animals challenged experimentally with normal larvae has been

demonstrated in numerous models of filariasis [14,58], including

both the L. sigmodontis [21,58,59] and O. ochengi models [19]. The

protective efficacy of irradiated L3 has been successfully translated

into a field trial using O. ochengi in cattle in which significantly lower

worm burdens were observed in vaccinated animals compared to

controls after almost 2 years of continuous exposure to intense

natural challenge from infected Simulium [19]. This success contrasts

with the failure of cattle to develop immunity after drug-abbreviated

infections. When naı̈ve, infection-free calves were exposed to

sustained and intensive levels of natural challenge, monthly or 3-

monthly prophylaxis with macrocyclic lactones completely prevent-

ed the development of adult worms. However, when chemotherapy

ended but exposure continued, these animals were found to be more

susceptible to infection than previously unexposed controls [60] both

in terms of adult numbers and microfilarial levels. Similarly,

following successful macrofilaricidal treatment of pre-existing patent

infections with melarsomine [19] or oxytetracycline [61], cattle were

fully susceptible to re-infection. These data suggest that parasite

death is an insufficient stimulus for the induction of protective

immunity and highlight the importance of defining the mechanisms

by which irradiated L3 induce protection.

The L. sigmodontis system allows the careful study of vaccine-

mediated protection, including larval migration as early as 6 hours

post-infection or challenge, as well as the impact on subsequent

development and ability to develop patent infection. Immune

protection generated by irradiated L. sigmodontis larvae leads to

rapid destruction of the challenge larvae in the subcutaneous tissue

[21,62] and protection is long-lived [63]. Studies with gene-

deficient mice showed that vaccination success depends on IL-5

and antibody [22,59], and this is consistent with observations made

using the O. volvulus mouse chamber model [64]. Evidence suggests

that the pattern of migration of irradiated L3 does not differ from

that of untreated L3 in the first 2 weeks of infection [62]. Further,

in normal infections a high proportion of incoming larvae die and

yet this does not afford protection to re-infection. These findings

argue against protection as a consequence of premature parasite

death or aberrant migration. L3 larvae of filarial parasites are

known to induce regulatory pathways [65], and irradiated L3 may

be failing to produce molecules that initiate downregulatory

pathways in the host. Conversely (but not mutually exclusive)

irradiated larvae may be failing to shut down the expression of

early genes and thus potentially overexpress immunogenic

molecules. Powerful genomic and proteomic tools are now

available to address this question and to this end, extensive

expressed sequence tag (EST) analysis of L. sigmodontis stage-specific

genes is well underway [66,67], which will help to identify both

targets of immunity as well as potential immune regulators.

Because disease is associated with the microfilarial stage in

onchocerciasis and because this stage is the key to transmission, an

anti-microfilarial vaccine also needs to be considered. Indeed,

vaccination with microfilariae of O. lienalis in a bovine system was

shown some years ago to enhance the clearance of microfilariae

subsequently transplanted into the same animal [68]. Moreover, in

natural infections of cattle with O. ochengi, skin microfilarial density

falls with age in spite of increasing numbers of fecund female

worms, which suggests a level of stage-specific microfilarial

immunity may develop [69]. Similar experiments using mice as

a surrogate host of O. volvulus demonstrated that microfilariae of

the human parasite are vulnerable to immune killing and that

these responses can be evoked by related species; in this case, O.

lienalis [70]. However, what is also clear is that female worms can

and do modulate these protective responses [56], and that for any

anti-microfilarial vaccine to be effective it must target these

parasite regulatory molecules as well as the microfilarial antigens.

While there are many reports identifying potential regulatory

molecules [71], the search is by no means over. Identification of

both parasite-derived immunomodulators and the relevant

microfilarial-specific targets is now being facilitated by the filarial

genome project [72] and L. sigmodontis EST analysis [66]. The L.

sigmodontis and O. ochengi models offer powerful complementary

systems to test these candidates in carefully controlled laboratory

settings and field settings under natural challenge.

Alternative Treatments Targeting Wolbachia

Control of onchocerciasis in Africa relies on mass distribution of

microfilaricidal ivermectin. Given the impossibility of onchocer-

ciasis eradication with ivermectin alone [2] and rising concerns

about resistance to this drug [9–13], there is a more pressing need

to identify complementary therapy using existing drugs. The

development of a new drug, apart from the enormous costs, would

take 15 years or more to be completed.

Attention has focused on Wolbachia, the bacterial endosymbionts

found in most filarial species, as a potential target [73,74]. Studies

with L. sigmodontis have established that both rifampicin [75] and

tetracyclines cause growth retardation and sterilisation of adult

worms, but in the latter case daily treatment for at least for 4 weeks

is required [76]. In cattle, long-term, intermittent antibiotic

chemotherapy with oxytetracycline is macrofilaricidal and worm

death is preceded by a considerable reduction in Wolbachia [77]. In

contrast, short-term, intensive treatment (daily therapy for 2

weeks) induces only transient and inconsequential effects on

Wolbachia numbers and is not macrofilaricidal [78]. In humans, 6

weeks of treatment with 100 mg per day of doxycycline has

resulted in a complete inhibition of embryogenesis from between

18 [74,79,80] and 24 months [73]. Logistical considerations and

compliance will demand shorter regimes if tetracyclines are to find

their way into routine use against onchocerciasis. One approach

will be to identify combination therapies. Given that an added

benefit of long-lasting sterilisation of female worms will be

interruption of transmission, research in this area should be

considered a priority. Importantly, the most recent results show

that increasing the dose of doxycycline to 200 mg also exhibits a

strong macrofilaricidal effect in human onchocerciasis [81,82].

However, it must also be recognised that there are restrictions on

use of this class of antibiotics in young persons and pregnant

women. Nevertheless, these observations have intensified

strategies to exploit the Wolbachia genomes for improved antibiotic

targeting [83]. In addition, for final local elimination, e.g., in

foci in the Americas, anti-wolbachial chemotherapy is being

considered [81].
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Targeting Wolbachia may also resolve the problem of ivermectin

use in areas where onchocerciasis and loiasis are co-endemic and

where mass treatment is often discouraged because of severe

adverse reactions that result from the rapid destruction of Loa loa

microfilariae in the central nervous system [84,85]. L. loa does not

possess endosymbiont Wolbachia [86], and therefore a therapy that

targets the bacteria in O. volvulus should have no effect on L. loa.

Targeting Wolbachia is arguably the only approach currently

available (apart from suramin treatment in a hospital) to treat

potentially resistant strains of O. volvulus.

Conclusions

Ten years ago, the mechanisms by which filarial nematodes are

killed by the mammalian host were largely unknown. Although

fine detail of these processes remain to be determined, the animal

models have now allowed us to determine conclusively that Th2

responses drive protective immunity against L3 larvae as well as

the microfilarial stage. Bigger weaponry that includes a Th1 pro-

inflammatory component may be needed to tackle the adult stage.

However, in successful infections all these mechanisms fail because

of the ability of the parasite to initiate regulatory pathways.

Bypassing this regulation may be the key to development of a

vaccine and future disease control. This will require a thorough

understanding of how the parasite induces regulation and

identification of the targets and processes that mediate a protective

but non-pathological response. In the meantime, the prospect of

developing new drug regimes using antibiotics to complement

ivermectin treatment and to achieve a macrofilaricidal activity

may mitigate against problems of emerging drug resistance and

offer new therapy in cases where ivermectin is contra-indicated.
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