
Glycerol induces G6pc in primary mouse hepatocytes and is
the preferred substrate for gluconeogenesis both in vitro and
in vivo
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Gluconeogenesis (GNG) is de novo production of glucose
from endogenous carbon sources. Although it is a commonly
studied pathway, particularly in disease, there is a lack of con-
sensus about substrate preference. Moreover, primary hepato-
cytes are the current gold standard for in vitro liver studies, but
no direct comparison of substrate preference at physiological
fasting concentrations has been performed. We show that
mouse primary hepatocytes prefer glycerol to pyruvate/lactate
in glucose production assays and 13C isotope tracing studies at
the high concentrations commonly used in the literature, as well
as at more relevant fasting, physiological concentrations. In
addition, when glycerol, pyruvate/lactate, and glutamine are all
present, glycerol is responsible for over 75% of all glucose car-
bons labeled. We also found that glycerol can induce a rate-
limiting enzyme of GNG, glucose-6-phosphatase. Lastly, we
suggest that glycerol is a better substrate than pyruvate to test in
vivo production of glucose in fasting mice. In conclusion, glyc-
erol is the major carbon source for GNG in vitro and in vivo and
should be compared with other substrates when studying GNG
in the context of metabolic disease states.

The liver maintains euglycemia during fasting by first releas-
ing glycogen stores and subsequently by inducing gluconeogen-
esis (GNG).2 More importantly, in diseases such as diabetes
mellitus (DM), dysregulated GNG is believed to be the major
cause of fasting hyperglycemia (1, 2). GNG is regulated by sev-
eral hormones, including glucagon, insulin, thyroid hormone,
and glucocorticoids, through changes in gluconeogenic enzyme
expression, activity as well as substrate availability. During fast-
ing, glucagon is secreted by pancreatic �-cells, binds to the glu-

cagon receptor, and activates protein kinase A (PKA) which
phosphorylates cAMP-response element– binding protein and
stimulates gluconeogenic enzyme expression. The most signif-
icant enzymes are PCK1, which converts oxaloacetate to phos-
phoenolpyruvate, and G6PC, which converts glucose-6-phos-
phate to glucose (3, 4). G6PC is the terminal enzyme in GNG,
and glucose-6-phosphate, regardless of how it was synthesized,
must be acted upon by G6PC to become glucose. G6pc expres-
sion is high in the liver and renal cortex, where glucose is pro-
duced, and absent in other tissues, such as muscle and fat,
where glucose is utilized (5). What remains unclear is if expres-
sion levels of these enzymes or others can explain the observed
increases in hepatic glucose production in certain diseases such
as DM (6, 7). Another important factor controlling gluconeo-
genesis is substrate availability. Biochemistry textbooks suggest
that the Cori Cycle generates pyruvate and lactate from glucose
metabolism in the periphery, which are then used by the liver
for GNG. Lactate is rapidly oxidized to pyruvate in the liver by
reducing NAD� to NADH (lactate dehydrogenase), which then
enters the mitochondrion and is carboxylated to oxaloacetate
by pyruvate carboxylase. After reduction to malate, the four-
carbon unit is transported to the cytoplasm and eventually
becomes glucose. Although the malate-aspartate shuttle gener-
ates NADH from NAD� in the mitochondrion, it regenerates
NAD� in the cytoplasm as malate is oxidized to oxaloacetate.
Rapid transport of malate to the cytoplasm at the beginning of
GNG is thought to limit its entry into the TCA cycle (8).

On the other hand, glycerol has a much shorter pathway to
generate glucose via GNG. In fasting, glycerol derived from
lipolysis of triglycerides in adipose tissue is released into the
circulation and then taken up by the liver to enter the GNG (9).
Hepatic glycerol kinase encoded by the X chromosome con-
verts glycerol to glycerol-3-phosphate (G3P), which requires
ATP for its phosphorylation. G3P is then oxidized to dihy-
droxyacetone phosphate, which enters the middle of GNG (10).

Although pyruvate and lactate have been suggested as the
most important sources of endogenous glucose production, the
importance of glycerol as a significant source of glucose is less
clear. For example, glycerol is elevated in T2DM and predicts
the worsening of hyperglycemia and insulin resistance (11–13).
Livers of diet-induced obese rats also show higher rate of GNG
from glycerol than from pyruvate and lactate (14), suggesting
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that glycerol may be a preferred substrate to pyruvate and lac-
tate under some conditions.

Another factor that could potentially alter glucose produc-
tion in primary hepatocytes is the presence of free fatty acids
(FFAs). FFA metabolism results in formation of acetyl-
CoA, which is a major regulator of pyruvate carboxylase (15).
Whether FFAs alter GNG in vitro remains a question as studies
have reported contradicting data (16, 17).

The majority of studies on substrate contribution to GNG
were done in the 1960s (18 –21). Although these were
extremely thorough for the tools available at the time, new
technologies have emerged that allow for a more sophisticated
analysis. Thus, we used mouse primary hepatocytes to system-
atically determine the substrate contribution of pyruvate/lac-
tate, glycerol, and glutamine in GNG using LC-MS measure-
ments of 13C isotope–labeled metabolites. Through extensive
study of primary hepatocytes, we show that glycerol is the pre-
ferred substrate for glucose production in all cases and is able to
induce expression of G6pc, the key terminal enzyme in GNG.
Our studies suggest that when investigating GNG in primary
hepatocytes, substrates delivered in the most appropriate con-
centrations are critical to obtain the most physiologically rele-
vant data. In addition, our in vivo mixed substrate tolerance test
in WT mice also showed that majority of glucose carbon label-
ing comes from glycerol. We propose that the traditionally used
pyruvate tolerance test is not be the most appropriate method
for studying GNG either in vitro or in vivo.

Results

Primary hepatocytes produce more glucose from glycerol than
from pyruvate and lactate

To compare glucose production from different gluconeo-
genic substrates, we isolated primary hepatocytes from age-
matched C57BL/6J-albino female mice fed a regular chow diet.
After a 24-h recovery in complete media, the cells were serum
starved for 3 h followed by a substrate challenge (Fig. 1A).
Hepatocytes were treated with either pyruvate/lactate (1:10
molar ratio) over a range of high concentrations (1 mM pyru-
vate/10 mM lactate to 5 mM pyruvate/50 mM lactate) or glycerol
(1 mM to 5 mM). Basal glucose production from amino acids
from the media as well as glutamine were subtracted from each
group based on substrate-free control group. Treatment with
pyruvate and lactate in a ratio of 1:10 was employed based on
physiological ratio of these substrates and their known, rapid
interconversion (22). Glycerol treatment at any concentration
resulted in significantly more glucose production compared
with various pyruvate/lactate concentrations (Fig. 1B). To con-
firm that the increased glucose production came primarily
from glycerol and not from the release of other sources such as
glycogen or amino acids, we treated cells with 13C3 glycerol or
13C3 pyruvate/13C3 lactate. Based on our glucose production
assays we first chose to use maximum concentrations for label-
ing studies of glucose production in vitro. We observed that
glycerol treatment produced significantly higher labeled car-
bon enrichment fraction compared with the pyruvate/lactate
treatment in both glucose (Fig. 1C) and glucose-6-phosphate
(Fig. 1F), even though approximately 10 times more 13C3 was

present in the pyruvate/lactate mixture. These results demon-
strated that about 60% of labeled glucose carbon was derived
from glycerol compared with 30% from pyruvate/lactate label-
ing, suggesting that glycerol is the preferred carbon source for
the generation of glucose in hepatocytes at high, nonphysi-
ological concentrations typically used in in vitro glucose pro-
duction assays.

13C3 labeling shows glycerol to be a direct source of glucose

We next examined the labeling pattern of glucose using 13C3-
labeled glycerol or pyruvate/lactate. 13C3-labeled pyruvate/lac-
tate showed a variety of labeling patterns in glucose, suggesting
carbon loss or exchange in other pathways such as the TCA
cycle (Fig. 1D, blue bars). In contrast, 13C3 glycerol produced
�80% labeling in glucose at m�3 and m�6 positions (Fig. 1E).
This suggests that the three-carbon glycerol is a direct carbon
source for glucose production without cycling within other
metabolic pathways such as TCA cycle. Labeling of glucose-6-
phosphate showed a similar pattern, with glycerol having over
80% m�3 and m�6 contribution and pyruvate/lactate a mixed
distribution of labeled carbons (Fig. 1, G and H). These results
suggested that glycerol is both a preferred as well as a direct
substrate for GNG in vitro compared with pyruvate and lactate.

Glycerol is the primary substrate for glucose production in the
presence of pyruvate, lactate, and glutamine

To determine whether glycerol is the preferred substrate in
the context of a more physiologically relevant experiment, pri-
mary hepatocytes were treated with overnight fasting serum
concentration of gluconeogenic substrates: glutamine (0.5 mM),
pyruvate (0.05 mM), lactate (2.5 mM), and glycerol (0.33 mM)
(23). Because glutamine is an essential component of cell cul-
ture media it was also investigated because of its potential to be
a gluconeogenic substrate entering through the TCA cycle. We
first characterized individually labeled substrates (glutamine,
pyruvate/lactate, or glycerol) at physiological fasting concen-
trations (Fig. 2, A–C). Glutamine and pyruvate/lactate showed
a variety of glucose carbon labeling (Fig. 2, A and B), whereas
glycerol produced a clear m�3 and m�6 carbon pattern in
glucose labeling (Fig. 2C) as previously observed in the higher
concentration treatments (Fig. 1E).

We next treated primary hepatocytes with fasting serum
physiological concentrations of all substrates, mimicking the
presence of all substrates in vivo (Fig. 2, D–F). In the first group,
we combined 13C5-labeled glutamine and nonlabeled pyruvate/
lactate and glycerol (Fig. 2D). The other two groups had 13C3-
labeled pyruvate/lactate (Fig. 2E) or 13C3-labeled glycerol along
with other nonlabeled substrates (Fig. 2F). We observed that
only about 10% of glucose was labeled by 13C5 glutamine (Fig.
2D) or 13C3-labeled pyruvate/lactate (Fig. 2E) when all sub-
strates are combined at physiological concentrations. Most
interestingly, however, when hepatocytes were treated with
13C3 glycerol along with other nonlabeled substrates, about 80%
of glucose was labeled, suggesting that glycerol is the dominant
substrate in glucose production in hepatocytes, even in the
presence of all known substrates (Fig. 2F). The carbon-labeling
pattern also showed the same m�3 and m�6 pattern reflecting

EDITORS’ PICK: Glycerol induces G6PC and is the preferred substrate

18018 J. Biol. Chem. (2019) 294(48) 18017–18028



Figure 1. Primary hepatocytes produce more glucose from glycerol than from pyruvate/lactate. A, primary hepatocytes were isolated from 3- to
4-month-old C57B6J-albino female mice. Hepatocytes were recovered for 24 h in Williams’ Media E supplemented with 10% FBS for 24 h. The following day, the
cells were serum starved in Williams’ Media E for 3 h. Glucose production assays were conducted over an 8-h period in glucose-free media supplemented with
the indicated substrate. B, cells were treated with pyruvate/lactate 1:10 mixture and glycerol over a range of concentration and adjusted for basal glucose
production. C and F, enrichment fraction of glucose and glucose-6-phosphate in cell extract was calculated from 5/50 mM

13C3 pyruvate/13C3 lactate and 5 mM
13C3 glycerol-treated cells. D and G, carbon label fraction pattern of glucose and glucose-6-phosphate after 5/50 mM

13C3 pyruvate/13C3 lactate treatment. E and
H, 5 mM

13C3 glycerol treatment from their cell extracts.
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incorporation of either one or two intact, labeled 13C3 glycerol
molecules.

Glycerol is directly incorporated into glucose whereas
pyruvate and lactate first circulate in the TCA cycle

To investigate further the metabolic fates of each substrate,
we used single-labeled substrates (Fig. 3, B and D) as well as
combination groups with individually labeled substrates (Fig. 3,
C and E). We tracked the metabolic fate of the labeled sub-
strates in GNG and the TCA cycle by looking at various inter-
mediates as shown (Fig. 3A). When examining the GNG
intermediates phosphoenolpyruvate, 3-phosphoglycerate, and
glucose-6-phosphate and glucose, we found that 13C3 glycerol
alone contributed on average �80% of labeled carbon to GNG
intermediates and glucose (Fig. 3B). In the presence of three
substrates, glycerol was also predominately used in GNG con-
tributing over 70% of labeled carbon to each of these interme-
diates and glucose (Fig. 3C). 13C5 glutamine and 13C3 pyruvate/
lactate, in contrast, labeled intermediates and glucose at a much
lower level, especially in the context of all three substrates (Fig.
3, B and C). Our second question focused on the amount of
labeled carbon entering the TCA cycle as reflected in labeling of
malate, citrate, fumarate, �-ketoglutarate and aconitate. We
observed that only 13C5 glutamine and 13C3 pyruvate/lactate
carbons contributed significantly to labeling TCA cycle inter-
mediates (Fig. 3, D and E). As expected, the high labeling was

derived from 13C5 glutamine because of its entry into the TCA
cycle directly through �-ketoglutarate (Fig. 3, D and E). Some-
what unexpectedly, 13C3 pyruvate/lactate also significantly
labeled TCA intermediates. These data suggest that glycerol is a
preferred substrate for GNG and directly contributes to glucose
production without generating TCA cycle intermediates.

Presence of FFAs does not alter glycerol’s contribution to
glucose carbon

Based on glucose production assays seen in Fig. 1A, we
treated primary hepatocytes with high concentrations of pyru-
vate/lactate (5/50 mM) and glycerol (5 mM) with or without
palmitate and oleate. No significant differences in glucose pro-
duction were observed after the addition of FFA (Fig. 4A). Next,
using the same experimental conditions as in Fig. 3, we treated
mouse primary hepatocytes with labeled substrate mixtures in
presence or absence of a mixture of 200 �M palmitate and 200
�M oleate conjugated to BSA (Fig. 4, B–D). We chose these
concentrations because FFA fasting serum concentrations
range between 300 and 600 �M (24 –28). We also observed no
significant differences in labeling fractions between these two
groups. Because FFAs were dissolved in ethanol prior to appli-
cation to primary cultures, we also determined the NADH/
NAD� and DHAP/G3P ratios, which could be artificially
altered by the presence of ethanol. No significant changes were
observed in either ratios, indicating that the residual ethanol in

Figure 2. In presence of substrates at physiological fasting concentration, glycerol is the main source of 13C-labeled glucose. A–F, glucose label fraction
from cellular extract after treatment with 13C5 glutamine alone and (D) 13C5 glutamine in presence of nonlabeled pyruvate/lactate and glycerol (B) glucose label
fraction from cellular extract after treatment with 13C3 pyruvate/lactate alone and (E) 13C3 pyruvate/lactate in presence of nonlabeled glutamine and glycerol
(C) glucose label fraction from cellular extract after treatment with 13C3 glycerol alone and (F) 13C3 glycerol in presence of nonlabeled glutamine and pyruvate/
lactate. Gln, glutamine; Pyr/Lac, pyruvate/lactate; Gro, glycerol.
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the tissue culture medium did not affect basic energy pathways
in the primary hepatocyte cultures (Fig. S1).

Next, we developed and validated a mathematical model for
primary mouse hepatocyte glucose production in the presence
of fasting concentrations of glycerol, pyruvate/lactate, and glu-
tamine (Fig. S3). Based on this model, we calculated the contri-
bution of each substrate to final glucose carbons. In presence of
all GNG substrates, 76% of glucose label was derived from glyc-
erol, 18% was from other substrates such as glycogen and amino
acids present in the medium, and only 6% was derived from

pyruvate/lactate (Fig. 4E). The presence of FFAs did not signif-
icantly alter these percentages (Fig. 4F).

To validate this method, we first compared the simulated and
observed labeling patterns of glucose, glucose-6-phosphate,
phosphoenolpyruvate, and pyruvate when 13C3 lactate or glyc-
erol was used as tracer (Fig. S4, A and B). The simulated and
observed patterns are consistent, suggesting a good estimation
of the fluxes based on this model. Because all the fluxes are
calculated using 13C3 glycerol and 13C3 lactate data, it is impor-
tant to know whether these fluxes also predict the labeling pat-

Figure 3. Glycerol carbon mainly produces gluconeogenic intermediates and enters the TCA cycle to a minimal extent. A, simplified overview of
substrate entry into gluconeogenesis and TCA cycle. B–E, gluconeogenic intermediates (phosphoenolpyruvate, 3-phosphoglycerate, glucose-6-phosphate
and glucose) and (D) TCA intermediates (malate, isocitrate, fumarate, �-ketoglutarate, aconitate) cellular extract enrichment fraction from single 13C-labeled
substrates at their physiological concentration (C) gluconeogenic and (E) TCA intermediates cellular extract enrichment fraction of all substrate groups with
first 13C5 glutamine in presence of unlabeled pyruvate/lactate and glycerol, then 13C3 pyruvate/lactate in presence of unlabeled glutamine and glycerol and
finally 13C3 glycerol in presence of unlabeled glutamine and pyruvate/lactate.
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terns from other tracers. Therefore, we simulated the labeling
patterns under 13C5 glutamine tracer and found that simulated
and observed patterns are consistent (Fig. S4C). Overall, these
data suggest our method can be used to accurately estimate
GNG fluxes in primary hepatocytes cultured with physiological
concentration of substrates.

Glycerol induces G6pc and reduces Pck1 expression in primary
hepatocytes

To investigate why glycerol is a preferred substrate in
GNG, we measured gene expression of key gluconeogenic

enzymes (G6pc and Pck1) after glycerol and pyruvate/lactate
treatment using RT-qPCR. A significant induction of G6pc
expression, the terminal enzyme in GNG, was observed after
an 8-h glycerol treatment in mouse primary hepatocytes
over a range of concentrations (Fig. 5A), plateauing around 2
mM. There was no significant change in gene expression after
pyruvate/lactate treatment compared with control base
media (Fig. 5B). We also confirmed the protein expression
for G6pc via Western Blotting. A 1.4 fold-change was
observed in the glycerol stimulated group compared to base
media (Fig. 5E). Next, we examined expression of Pck1, an

Figure 4. Presence of free fatty acids does not change the substrate preference for glycerol. A, glucose production with high concentrations of glycerol
(5 mM) and pyruvate/lactate (5/50 mM) in presence or absence of 200 �M palmitate and 200 �M oleate conjugated to BSA. B–D, glucose enrichment fraction
from physiological fasting concentrations of substrates with or without palmitate (200 �M) and oleate (200 �M) conjugated to BSA. B, 13C5 glutamine in
presence of unlabeled pyruvate/lactate and glycerol. C, 13C3 pyruvate/lactate in presence of unlabeled glutamine and glycerol. D, 13C3 glycerol in presence of
unlabeled glutamine and pyruvate/lactate. E and F, final glucose carbon contributions determined using the mathematical model without (E) and with (F) FFA
supplementation.
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enzyme in the early part of GNG that catalyzes the conver-
sion of oxaloacetate to phosphoenolpyruvate and is required
for glucose production from pyruvate/lactate. Interestingly,
glycerol suppressed the expression of Pck1 (Fig. 5C), whereas
pyruvate/lactate treatment did not alter Pck1 expression
compared with the control hepatocytes (Fig. 5D). We also
tested whether hormones such as insulin and glucagon
would affect gene expression. Insulin significantly reduced

G6pc and Pck1 expression in pyruvate/lactate–treated hepato-
cytes (Fig. S2, A and B). In the glycerol group, insulin only sig-
nificantly inhibited G6pc expression (Fig. S2, A and B). Gluca-
gon on the other hand, stimulated G6pc and Pck1 similarly in
the base media and pyruvate/lactate groups. Glycerol had a
much larger increase in G6pc expression and much smaller
response to Pck1 compared with the other groups (Fig. S2, C
and D).

Figure 5. Glycerol induces G6pc and suppresses Pck1 expression in primary mouse hepatocytes. A and B, G6pc mRNA expression after glycerol fold
substrate free base media (BM) and (B) pyruvate/lactate treatment over increasing concentrations. C and D, Pck1 mRNA expression after (C) glycerol and (D)
pyruvate/lactate treatment over increasing concentrations. E, Western blotting of G6pc protein in glycerol- (5 mM) and pyruvate/lactate– (5/50 mM) treated
samples. Values (arbitrary units) indicate expression of G6pc normalized to cyclophilin B.
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Glycerol becomes the dominant substrate for glucose
production in WT mice

Next, we wanted to study how glycerol would label glucose in
vivo after a bolus injection of a substrate mixture. Similar to our
experiment in Fig. 3, we set up the following combination
groups: 1) 1 mM 13C3 pyruvate–1 mM glycerol; 2) 0.1 mM/0.9
mM 13C3 pyruvate/13C3 lactate–1 mM glycerol, and 3) 1 mM

pyruvate–1 mM 13C3 glycerol. Traditionally, a pyruvate toler-
ance test is done at a 1 mM concentration; therefore, we wanted
to keep the substrates in that range and observe which would
dominate in a glucose production assay. Fifteen min post injec-
tion (Fig. 6A), we observed a similar pattern of label fractions as
seen in Fig. 3. Pyruvate and pyruvate/lactate mixture groups
showed a range of the labeled carbon whereas glycerol pri-
marily showed a m�3 and m�6 label. At 60 min (Fig. 6B),
pyruvate and pyruvate/lactate mixture groups stayed consis-
tent, whereas glycerol’s carbon label increased and other label-
ing patterns were observed. Next, we looked at the enrichment
fraction of glucose from these groups. We found that pyruvate
and pyruvate/lactate groups labeled only about 10% of glucose
at both time points (Fig. 6, C and D). Glycerol, however, labeled
almost 30% of glucose at 15 min and slightly more at 60 min
(Fig. 6E).

Discussion

It is conventionally accepted that pyruvate and lactate are the
main substrates for GNG, and these substrates are extensively
used to test hepatic glucose production both in vitro and in vivo
and are employed generally at supraphysiological concentra-
tions (29 –35). There are no studies, however, showing glucose
production using physiological fasting concentrations of sub-
strates or studies using a combination of substrates. In this
study we show: 1) glycerol is the main source of glucose carbon
by itself as well as in the presence of other GNG substrates, 2)
pyruvate and lactate contribute to TCA cycle intermediates, 3)
the presence of FFAs in media does not alter glycerol’s glucose
contribution, and 4) glycerol but not pyruvate/lactate induces
expression of G6PC and inhibits expression of PCK1.

Early studies suggested that pyruvate/lactate was the main
substrate for glucose production in the liver (36 –38). Based on
these and other observations, in vitro and in vivo pyruvate tests
have been used to measure hepatic glucose production (3, 39,
40). However, our analysis shows that glycerol alone, or in com-
bination with other major substrates, accounts for the majority
of the labeled glucose carbon in mouse primary hepatocytes.
We suggest that glycerol is a more powerful substrate than pre-
viously estimated. Previous work also supports a critical role for

Figure 6. Glycerol becomes the dominant substrate for glucose production in WT mice. A and B, label fraction of glucose (A) 15 min and (B) 60 min after
injection of a mixture of substrates in the following groups: 1 mM

13C3 pyruvate–1 mM glycerol; 0.1 mM/0.9 mM
13C3 pyruvate/13C3 lactate–1 mM glycerol; and

1 mM pyruvate–1 mM
13C3 glycerol. C–E, enrichment fraction of glucose in the same groups. n � 3 per group of overnight fasted WT males.
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glycerol. For example, elevated serum glycerol is found in obese
T2DM patients and predicts the development of hyperglycemia
(11, 25). Furthermore, glucose production from glycerol in
Type 2 DM subjects displays a 1.7-fold increase compared with
normal subjects (41); and glycerol incorporation into glucose
was reported to have a 3-fold increase in Type 2 DM compared
with controls (27).

Pyruvate enters GNG after conversion to oxaloacetate in the
mitochondrion, which is then transported to the cytosol for
glucose production via the malate shuttle (4, 42, 43). However,
our studies show similar labeling of TCA intermediates to that
observed from glutamine, a substrate that must label TCA
intermediates. Our findings suggest that a significant amount of
pyruvate in primary hepatocytes enters the TCA cycle prior to
GNG and this event could limit glucose production.

A factor normally absent in cell culture media that could
potentially alter substrate preference for glucose is FFA. Acetyl-
CoA is produced from �-oxidation of fatty acids and allosteri-
cally activates pyruvate carboxylase, which then promotes the
entry of pyruvate into the GNG pathway (15). For this reason,
we added oleic and palmitic acid conjugated to BSA to primary
hepatocyte media, and similar to Fig. 3, we measured the con-
tribution of each GNG substrate to glucose carbons. The addi-
tion of FFA did not increase glucose production or shift sub-
strate preference in primary hepatocytes, confirming that
hepatocytes prefer glycerol even in the presence of FFA. A
major concern with using FFAs in culture media is the presence
of ethanol solvent, which when metabolized could alter
NADH/NAD� ratios. We determined the NADH/NAD� and
DHAP/G3P ratio but did not observe any differences after FFA
treatment (Fig. S1).

Fatty acids are said to play a role in the development of insu-
lin resistance in muscle and liver (44), but the role of FFAs on
hepatic glucose production remains unclear. Collins et al. (16)
reported that oleate in concentrations ranging from 100 �M to
1.5 mM induces glucose production in primary hepatocytes. On
the other hand, a different study reported that oleate and palmi-
tate attenuated GNG in primary hepatocytes at 1 mM (45). One
of the hypotheses for glucose production involves generation of
succinate from free acetate produced by FFAs (17). Although
we observed elevated succinate levels in FFA-treated hepato-
cytes (data not shown), this elevation did not result in any alter-
ation in glucose carbon preference.

Another finding in this study is that glycerol metabolism
increases G6pc expression. Previously, glycerol was shown to
slightly increase levels of G6pc in a rat hepatoma cell line (46);
however, an effect in primary hepatocytes has not been
reported. The importance of elevated G6pc mRNA levels in
mediating hyperglycemia, however, is still unclear. Clore et al.
(25) reported that in morbidly obese patients with T2DM,
G6PC activity was significantly increased compared with con-
trols. The same phenomenon was observed in diabetic rats (47).
In another study, increased G6pc activity was correlated with
hyperglycemia (48). On the other hand, other work showed that
G6PC expression is not elevated in patients with T2DM (6). A
minimal glycerol concentration required for G6PC induction
and acute versus chronic exposure to glycerol could be other
reasons why data are conflicting in patients with T2DM. In this

study, we observed an �8-fold, concentration-dependent
increase in G6pc expression (Fig. 5) in primary mouse hepato-
cytes, which correlated with the marked increase in glucose
production we observed (Fig. 1).

In contrast to induction of G6pc expression, Pck1 expression
was inhibited by glycerol treatment. In fact, primary hepato-
cytes treated with glycerol showed a strong, concentration-de-
pendent inhibition in Pck1 expression. In obese humans, serum
and liver glycerol are significantly increased (11) and PCK1
expression is lower compared with controls (6). Intriguingly, it
has been shown that mice with a liver-specific knockout of Pck1
develop hepatic steatosis (49), whereas Pck1 overexpression in
skeletal muscle reduced weight gain and had a positive effect on
metabolism and energy in mice (50). Hepatic steatosis is found
in as many as 75% of individuals with T2DM (51), and our
studies suggest that glycerol inhibition of Pck1 might contrib-
ute to the development of fatty liver.

The activation of gluconeogenesis often results from gluca-
gon signaling. We observed that in hepatocytes treated with
both glucagon and glycerol, G6pc expression increased even
further compared with basal and pyruvate/lactate media (Fig.
S2C). Consistent with these results, T2DM patients have fasting
hyperglycemia because of inappropriate glucagon secretion
and increased GNG (2, 52). Interestingly, Pck1 expression was
lower in the glycerol group compared with basal and pyruvate/
lactate media. Although the mechanism of glycerol’s activation
of G6pc and suppression of Pck1 remains unanswered, these
data provide a direction for future mechanistic investigations.

Although our model primarily investigates the role of glyc-
erol in primary hepatocytes, we also observed that it applies to
in vivo physiology. In Fig. 6, we investigated substrate utiliza-
tion in GNG in overnight WT fasted mice. We tried to mimic a
traditional pyruvate tolerance test (PTT) but also used a com-
bination of substrates to observe which one would dominate
(similar to our in vitro experiment from Fig. 3). It is clear from
these studies that glycerol is the preferred in vivo substrate. A
PTT is commonly used to assess gluconeogenic capacity in a
number of mouse models (39). Our critical finding suggests that
compared with a traditionally PTT, glycerol might be a better
substrate for evaluating GNG in mice.

The primary hepatocyte system allows an investigation of
GNG without the contribution of the Cori cycle or the influ-
ence of serum hormones. Although there is an advantage to
studying pathways with this approach, it is of course limited.
Our findings are meant to better approximate but not recapit-
ulate in vivo metabolism. However, because of the feasibility
and popularity of using primary hepatocyte cultures as a model
system, we suggest that it is critical to the field to provide a more
physiologically valid in vitro model. We believe our findings
provide such a model.

We report a previously underestimated importance of glyc-
erol in glucose production in primary mouse hepatocytes as
well in in vivo glucose production assays. As a substrate for
GNG, glycerol is capable of producing more glucose than other
known substrates. It also induces the terminal enzymatic step in
the GNG pathway (G6pc) and inhibits an early GNG enzyme
(Pck1) that is critical for entry of pyruvate and substrates
metabolized to pyruvate into GNG. We believe that glycerol’s
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importance in GNG may be underappreciated, especially in the
context of current in vitro and in vivo assays used to measure
hepatic glucose production.

Experimental procedures

Animal experiments

All animal protocols were approved by the Institutional Ani-
mal Care and Use Committee of Rutgers University. B6(Cg)-
Tyrc-2j/J or B6 albino mice were obtained from The Jackson
Laboratory (Bar Harbor, ME). Mice were fed ad libitum stan-
dard chow and kept at 12 h light/12 h dark cycles.

Primary hepatocyte isolation

Age-matched C57/B6J albino females between 3 and 4
months were used for primary culture isolation. Mice were first
anesthetized using a ketamine/xylazine mixture (Henry Schein
Inc.). To obtain primary hepatocytes, the hepatic portal vein
was cannulated and perfused with Krebs-Ringer solution con-
taining EGTA for 10 min at 37 °C. After the first wash, a second
Krebs-Ringer wash containing CaCl and LiberaseTM (Roche)
was used for 10 min at 37 °C. Hepatocytes were filtered through
a gauze mesh and resuspended in plating media: Williams’
Media E (Sigma);10% FBS (Sigma); 200 nM dexamethasone
(Sigma); 5 ml penicillin/streptomycin (Fisher); and 2 mM L-glu-
tamine (Fisher). Cells were plated at a density of 0.3 � 106

on 6-well collagen-coated (Sigma) plate. Hepatocytes were
allowed to recover overnight and experiments were started 24 h
post isolation.

Glucose production assays

Prior to each glucose production assay, cells were serum
starved for 3 h. The assay was done in basal media, DMEM
(Gibco) containing no glucose or pyruvate but supplemented
with L-glutamine (2 mM) unless otherwise stated, HEPES (1.76
g), and penicillin/streptomycin (5 ml). For substrate glucose
production assays, basal media were supplemented with L-glu-
tamine, glycerol, or a sodium pyruvate/lactate mixture. For
labeled experiments, the same conditions were used but uni-
formly labeled stable isotope substrates were obtained from
Cambridge Isotopes: 13C-sodium pyruvate (CLM-2440), 13C-
sodium lactate (CLM-10768), 13C-L-glutamine (CLM-1822),
and 13C-glycerol (CLM-1510). Free fatty acids were dissolved in
ethanol and then conjugated with 2% BSA (0.3 mM). Glucose
measurements were done enzymatically with Glucose Assay Kit
(Abcam).

Real time qRT-PCR analysis

Total RNA was isolated from primary hepatocytes and
mouse livers using TRIzol method. cDNA was obtained using
iScript (Bio-Rad) and then subjected to qRT-PCR analysis using
SYBR Green (Bio-Rad) according to manufacturer’s protocol.
The primers used for the analysis were the following: G6pc,
forward 5�-CAGCAAGGTAGATCCGGGA-3�, reverse 5�-
AAAAAGCCAACGTATGGATTCCG-3�; Pck1, forward 5�-
AGCATTCAACGCCAGGTTC-3�, reverse 5�-CGAGTCTG-
TCAGTTCAATACCAA-3�; Actb, forward 5�-CCAGTTGGT-
AACAATGCCATG-3�, reverse 5�-GGCTGTATTCCCCTCC-
ATCG-3�.

Western blotting

Hepatocytes were lysed in Laemmli buffer with �-mercapto-
ethanol. Eight �l of cell lysate was run by a Bio-Rad Western
blotting protocol. G6pc antibody was generously provided by
Dr. Fabienne Rajas. Cyclophilin B was used as a loading con-
trol. Protein expression was normalized to its loading con-
trol and subsequently to -fold change of Base Media control.
Densitometric analysis was performed on ImageLab soft-
ware (Bio-Rad).

Metabolite extraction for LC-MS

Fresh primary hepatocytes were treated with 40:40:20 meth-
anol:acetonitrile:water solution with 0.1% formic acid, followed
by incubation on ice for 5 min, and neutralized by NH4HCO3

addition. Then they were centrifuged at 4 °C and 16,000 � g for
10 min. The supernatant was transferred to a clean tube and
stored at �80 °C until analysis.

Metabolite isotope tracing

Conditions were optimized on an HPLC-ESI-MS system fit-
ted with a Dionex UltiMate 3000 HPLC and a Thermo Scien-
tific Q Exactive Plus MS. The HPLC was fitted with a Waters
XBridge BEH Amide column (2.1 mm � 150 mm, 2.5 �m par-
ticle size, 130 Å pore size) coupled with a Waters XBridge BEH
XP VanGuard cartridge (2.1 mm x 5 mm, 2.5 �m particle size,
130 Å pore size) guard column. The column over temperature
was set to 25 °C. The solvent A consisted of water/acetonitrile
(95:5, v/v) with 20 mM NH3AC and 20 mM NH3OH at pH 9. The
solvent B consisted of acetonitrile/water (80:20, v/v) with 20
mM NH3AC and 20 mM NH3OH at pH 9 in the following sol-
vent B percentages over time: 0 min, 100%; 3 min, 100%; 3.2
min, 90%; 6.2 min, 90%; 6.5 min, 80%; 10.5 min, 80%; 10.7 min,
70%; 13.5 min, 70%; 13.7 min, 45%; 16 min, 45%; 16.5 min, 100%.
The flow rate was set to 300 �l/min with an injection volume 5
�l. The column temperature was set at 25 °C. MS scans were
obtained in negative ion mode with a resolution of 70,000 at
m/z 200, in addition to an automatic gain control target of 3 �
106 and m/z scan range of 72 to 1000. Metabolite data were
obtained using the MAVEN software package (56) with each
labeled isotope fraction (mass accuracy window 5 ppm). The
isotope natural abundance and tracer isotopic impurity were
corrected using AccuCor (57).

Quantification of gluconeogenic fluxes in primary hepatocytes

The gluconeogenic fluxes are calculated by elementary
metabolite unit– based methods (53–55). In brief, a simplified
flux network was constructed and is described in the support-
ing data.

Bolus injection study

Age-matched male mice were fasted overnight and immuno-
precipitate injected with the mixture of substrates in the
following groups: 1 mM 13C3 pyruvate–1 mM glycerol; 0.1
mM/0.9 mM 13C3 pyruvate/13C3 lactate–1 mM glycerol; and 1
mM pyruvate–1 mM 13C3 glycerol. Blood was sampled at 15 and
60 min and results were analyzed on the LC-MS.
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Statistics and analysis

All analysis and graphs were done on GraphPad Prism soft-
ware. Statistics involved a Student’s t test or analysis of variance
(ANOVA) as appropriate.
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