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Abstract: A novel radar high-resolution range profile (HRRP) target recognition method based
on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper.
As a key component of deep structure, the SAE does not only learn features by making use of data,
it also obtains feature expressions at different levels of data. However, with the deep structure,
it is hard to achieve good generalization performance with a fast learning speed. ELM, as a new
learning algorithm for single hidden layer feedforward neural networks (SLFNs), has attracted
great interest from various fields for its fast learning speed and good generalization performance.
However, ELM needs more hidden nodes than conventional tuning-based learning algorithms due to
the random set of input weights and hidden biases. In addition, the existing ELM methods cannot
utilize the class information of targets well. To solve this problem, a regularized ELM method based
on the class information of the target is proposed. In this paper, SAE and the regularized ELM
are combined to make full use of their advantages and make up for each of their shortcomings.
The effectiveness of the proposed method is demonstrated by experiments with measured radar
HRRP data. The experimental results show that the proposed method can achieve good performance
in the two aspects of real-time and accuracy, especially when only a few training samples are available.

Keywords: radar target recognition; high-resolution range profile; deep learning; extreme learning
machine; stacked autoencoder

1. Introduction

Radar target recognition based on high-resolution range profile (HRRP) has become a research
hotspot due to the acquisition and processing of HRRP data being relatively easy [1–7]. However,
the non-cooperative recognition [8,9] with limited training samples is a challenging task.
In the non-cooperative situation, such as at the battle with time, the amount of data under the
test is usually huge but the training data is limited. This is because the radar system cannot be
guaranteed to detect and track the non-cooperative targets for a long period of time, which will cause
HRRP data to be lost or not observed. Therefore, it is very important to study the generalization
performance of the recognition model and obtain good recognition performance under conditions of
fewer training samples.

It is generally known that feature extraction is a key step in radar target recognition. The quality of the
extracted features determines the performance of target recognition. Therefore, many scholars [3,6,10–15]
have spent a lot of effort studying the methods of HRRP feature extraction. In [3], the principal component
analysis (PCA) subspace model is utilized to minimize the reconstruction error. The multitask learning
truncated stick-breaking hidden Markov model (MTL TSB-HMM) proposed in [6] is used to characterize
the fast fourier transform (FFT) magnitude features of HRRP. Some other researchers [10,11] have used
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complicated statistic models to extract features from HRRP that have specific physical meaning, such as
the target size, the center of gravity, the number of peaks, and so on. By using the RELAX and other
super-resolution algorithms, the precise location and intensity information of radar HRRP scatterers can
be extracted [12,13]. Manifold learning is used in target recognition of radar HRRP to reduce the feature
dimensions [14]. Dictionary learning is adopted in [15] to extract the noise-robust and highly discriminative
features of the HRRPs. These methods can work well on some occasions, but all of them are shallow
architectures that cannot effectively characterize the radar HRRP. What is more, the features are mostly
artificially designed and they need to rely on the experience of the researchers. If we do not have sufficient
prior knowledge, the extracted features would be incomplete. Therefore, how to automatically extract the
deep abstract features that are beneficial for target recognition has become an important issue.

The deep learning [16] theory put forward by Hinton can effectively solve the above problem.
The essence of deep learning is to construct a neural network containing multiple hidden layers
to map the data in order to obtain the deep essential characteristics [17]. A deep belief network
is used in [18] to solve the non-cooperative target recognition with an imbalanced training dataset.
As an important component of the deep learning structure, the stacked autoencoder (SAE) plays
an important role in unsupervised learning and nonlinear feature extraction and it has also been
applied in many fields [19–22]. The discriminant deep autoencoders (DDAEs) proposed in [23] are
used to enhance the recognition performance where there are few training samples. Stacked corrective
autoencoders (SCAEs) are proposed in [24], which employ the average profile of each HRRP frame
as the correction term. In [25], a novel robust variational autoencoder model (RVAE) is proposed to
explore the latent representations of HRRP. In these applications, SAE is used for feature learning to
obtain the hierarchical abstract representation of the target. In addition, to implement recognition,
we need to add a classifier to the top encoding layer of SAE and softmax regression is usually chosen.
The last step of training is to fine-tune the parameters of all layers to achieve the desired recognition
performance. This process will take a lot of time. Replacing the softmax regression with the extreme
learning machine (ELM) as a classifier can improve the training speed.

ELM [26] is a new learning algorithm for single hidden layer feedforward neural networks
(SLFNs). Its network topology is the same as that of back propagation (BP) [27] neural networks.
It is also composed of an input layer, a hidden layer, and an output layer. Although the network
structure is the same, the training method of ELM is quite different from that of the BP [28–30]. The BP
network needs to use gradient descent algorithms to solve the network weights through multiple
iterations, while the ELM solves the output weights by randomly generating the input weights and
hidden biases. ELM has been widely studied by many scholars [31–36] because of its characteristics
of fewer training parameters, fast learning speed, and good generalization ability. The regularized
ELM is studied in [31], and the experimental results show that the addition of a regularization term
can enhance the robustness and generalization performance of ELM. An online sequential ELM
(OS-ELM) is proposed in [32], which can learn the training data one by one or chunk by chunk.
Error minimized extreme learning machine (EM-ELM) is studied in [33]. In [34], the researchers
extend the ELM algorithm from the real domain to the complex domain and propose a fully complex
ELM (C-ELM). The enhanced incremental extreme learning machine (EI-ELM) is also studied in [35].
ELM based on the kernel method [36] is faster and more generalized than the support vector machine
(SVM) [37]. Because of its own advantages, ELM has been widely used in many aspects, such as
image processing [38], clustering [39], traffic signal recognition [40], fault detection [41], and so
on. However, the existing ELM [31,32,34–38,41] does not make better use of the target category
information when dealing with the recognition tasks. To solve this problem, a regularized ELM based
on target class information is proposed in this paper. Besides, due to the random selection of input
weights and hidden biases, the ELM tends to need more hidden nodes to achieve better generalization
performance [29,39,42], which makes the network structure complex. In this paper, SAE is used to
optimize the input weights and hidden biases of ELM, which then achieves better results with fewer
hidden layer nodes. The features of the proposed method are summarized as follows:
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(a) The proposed model is “end to end”, the input is the original radar HRRP data, and the output
is the target class.

(b) This paper proposes a combination of SAE and regularized ELM, which can improve the
recognition performance by making full use of the advantages of SAE and ELM. Compared with the
shallow learning algorithms such as PCA [3], MTL TSB-HMMs [6], ELM [26], and so on, the proposed
algorithm can extract the inherent characteristics of the target. Since the network is not required to be
fine-tuned, the proposed algorithm is faster than the other deep learning models [18,23–25].

(c) The proposed method does not only improve the training speed but also gets good performance
when the training sample is small.

The rest of this paper is organized as follows: Section 2 introduces the relevant theoretical
knowledge of SAE and ELM. In Section 3, we present the regularized ELM, then we also introduce
the learning process of SAE-ELM. Experimental results are analyzed in Section 4, and in Section 5
the paper is summarized.

2. Theoretical Background

2.1. Description of HRRP

HRRP can be regarded as the amplitude of the coherent summations of the complex time returns
from target scatters in each range cell [3], which represents the projection of the complex returned
echoes from the target scattering centers onto the radar line-of-sight (LOS) [4]. The illustration of an
HRRP sample from a plane target is shown in Figure 1. Since HRRP contains the target-important
structural features such as target size and the distribution of scattering centers, etc., radar HRRP target
recognition has drawn much attention from the radar automatic target recognition community [3–7].

Sensors 2018, 18, 173  3 of 15 

 

results with fewer hidden layer nodes. The features of the proposed method are summarized as 
follows: 

(a) The proposed model is “end to end”, the input is the original radar HRRP data, and the 
output is the target class.  

(b) This paper proposes a combination of SAE and regularized ELM, which can improve the 
recognition performance by making full use of the advantages of SAE and ELM. Compared with the 
shallow learning algorithms such as PCA [3], MTL TSB-HMMs [6], ELM [26], and so on, the 
proposed algorithm can extract the inherent characteristics of the target. Since the network is not 
required to be fine-tuned, the proposed algorithm is faster than the other deep learning models 
[18,23–25].  

(c) The proposed method does not only improve the training speed but also gets good 
performance when the training sample is small. 

The rest of this paper is organized as follows: Section 2 introduces the relevant theoretical 
knowledge of SAE and ELM. In Section 3, we present the regularized ELM, then we also introduce 
the learning process of SAE-ELM. Experimental results are analyzed in Section 4 and in Section 5, 
the paper is summarized. 

2. Theoretical Background 

2.1. Description of HRRP 

HRRP can be regarded as the amplitude of the coherent summations of the complex time 
returns from target scatters in each range cell [3], which represents the projection of the complex 
returned echoes from the target scattering centers onto the radar line-of-sight (LOS) [4]. The 
illustration of an HRRP sample from a plane target is shown in Figure 1. Since HRRP contains the 
target-important structural features such as target size and the distribution of scattering centers, etc., 
radar HRRP target recognition has drawn much attention from the radar automatic target 
recognition community [3–7]. 

HRRP

Radar line-of-sight (LOS)

Target scattering 
center

 

Figure 1. Illustration of a high-resolution range profile (HRRP) sample from a plane target.  

2.2. Stacked Autoencoder 

An autoencoder (AE) is an unsupervised learning algorithm. Figure 2 shows a simple model 
structure for an AE: 

Figure 1. Illustration of a high-resolution range profile (HRRP) sample from a plane target.

2.2. Stacked Autoencoder

An autoencoder (AE) is an unsupervised learning algorithm. Figure 2 shows a simple model
structure for an AE:
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Given an unlabeled dataset
{

x(i)
}m

i=1
, each of its training data x(i) is encoded by an encoder and

the feature representation y(i) of the hidden layer can be obtained: y(i) = fθ(x(i)) = s(Wx(i) + b)
where θ = (W, b) is the network parameter, W is the weight matrix, b is the bias vector, and s(x) is the
activation function; the sigmoid function is selected here and s(x) = 1/(1 + e−x). Then, the feature
representation y(i) of the hidden layer is decoded by the decoder and the reconstruction vector z(i)

can be obtained: z(i) = gθ′(y(i)) = s(W′y(i) + b′), where θ′ = (W′, b′), W′ is the weight matrix
and W′ = WT . In fact, the optimization of the model parameters is to minimize the reconstruction
error [16]:

θ∗, θ′∗ = argminθ,θ′
m
∑

i=1
J(x(i), z(i))

= argminθ,θ′
m
∑

i=1
J(x(i), gθ′( fθ(x(i))))

(1)

where m is the sample number and J is the cost function. The expression for J is J(x, z) = 1
2‖z− x‖2.

For a dataset containing m samples, the total cost function is:

J1 = [
1
m
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where W(l)
ji is the connection weights between the i-th neurons of layer l and the j-th neurons of layer

l + 1; nl and sl indicate the number of network layers and the number of neurons of layer l, respectively.
The first part of Equation (2) is a mean squared error term and the second part is a weight decay
term, which can be seen as a way to compromise between the small weights and minimized cost
function [21]. The second term of Equation (2) is intended to prevent overfitting [19].

If the number of hidden layer nodes is large, and even more than the number of input layer nodes,
the sparsity constraint needs to be added on the hidden units [19]. Hidden units are constrained to
be zero most of the time when the activation function is selected as a sigmoid function [43]. This is
motivated by the structure of the brain in which most of the neurons are inactive most of the time.
By forcing the hidden units to have mostly zero activations/values, interesting representations can be
learned. Then, the overall cost function is expressed as follows:

Js = J1 + η
s2

∑
j=1

KL(ρ‖ρ̂j) (3)

where the second part of Equation (3) represents the sparse penalty term and the penalty term
used in this paper is based on Kullback-Leibler (KL) divergence [44]. KL indicates the relative
entropy [24] between the two Bernoulli random variables with the mean of ρ and the mean of ρ̂j, and

KL(ρ‖ρ̂j) = ρ log ρ
ρ̂j
+ (1− ρ) log 1−ρ

1−ρ̂j
. If ρ̂j = ρ, KL(ρ‖ρ̂j) reaches the minimum value of 0, and if ρ̂j

approaches 0 or 1, the KL(ρ‖ρ̂j) increases dramatically. s2 is the number of neurons in the hidden layer.
η is the weight of the sparsity penalty.
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SAE is a neural network consisting of multiple layers of autoencoders, and the structure of an SAE
is shown in Figure 3. We can use a greedy layer-wise training method to train SAE; that is, the output
of each layer is wired to the input of the successive layer. Then, the BP algorithm is used to fine-tune
the whole network.

Sensors 2018, 18, 173  5 of 15 

 

ˆ jρ  approaches 0 or 1, the ˆKL( )jρ ρ  increases dramatically. 2s  is the number of neurons in the 

hidden layer. η  is the weight of the sparsity penalty. 
SAE is a neural network consisting of multiple layers of autoencoders, and the structure of an 

SAE is shown in Figure 3. We can use a greedy layer-wise training method to train SAE; that is, the 
output of each layer is wired to the input of the successive layer. Then, the BP algorithm is used to 
fine-tune the whole network. 

1x

2x

3x

4x

5x

6x

1+

(1)
1h

(1)
2h

(1)
3h

(1)
4h

1+

1x̂

2x̂

3x̂

4x̂

5x̂

6x̂

Input FeaturesI Output

1x

2x

3x

4x

5x

6x

1+

(1)
1h

(1)
2h

(1)
3h

(1)
4h

1+

(2)
1h

(2)
2h

(2)
3h

1+

Input FeaturesI FeaturesII Output

(a) (b)

Figure 3. The structure of an AE and a stacked autoencoder (SAE). (a) A three-layer AE; (b) An SAE 
composed of two autoencoders. 

2.3. Extreme Learning Machine 

Given a set of N  training datasets ( , )i ix t  where 1,2, ,i N=  , [ ]1 2, , , T n
i i i inx x x x R= ∈ ，and 

[ ]1 2, , , T m
i i i imt t t t R= ∈ , ix  is an n-dimensional input vector and it  is the expected output. The 

output function of ELM with L  hidden nodes is represented as follows: 

1

( )      1,2, ,
L

i i j i j
i

g w x b o j Nβ
=

⋅ + = =   (4) 

where [ ]1 2, , , T n
i i i inw w w w R= ∈  is the weight vector of input nodes to hidden nodes and ib  is the 

bias of -thi  hidden node; 1 2[ , , , ] m
i i i im Rβ β β β= ∈  is the weight vector between hidden nodes and 

the output nodes; ( )g x  is the activation function of the hidden layer; and jo  is the output vector. 
If the SLFNs with L  hidden nodes can approximate the N  samples with zero error, we 

know that Equation (4) can be converted to the following formula [26,45]: 

1 1
1

1

( )

          

( )

L

i i i
i

L

i i N i N
i

g w x b t

g w x b t

β

β

=

=

 ⋅ + =



 ⋅ + =






  (5) 

The above equations can be written as:  

=Hβ T  (6) 

where 

Figure 3. The structure of an AE and a stacked autoencoder (SAE). (a) A three-layer AE; (b) An SAE
composed of two autoencoders.

2.3. Extreme Learning Machine

Given a set of N training datasets (xi, ti) where i = 1, 2, · · · , N, xi = [xi1, xi2, · · · , xin]
T ∈ Rn,

and ti = [ti1, ti2, · · · , tim]
T ∈ Rm, xi is an n-dimensional input vector and ti is the expected output.

The output function of ELM with L hidden nodes is represented as follows:

L

∑
i=1

βig(wi · xj + bi) = oj j = 1, 2, · · · , N (4)

where wi = [wi1, wi2, · · · , win]
T ∈ Rn is the weight vector of input nodes to hidden nodes and bi is the

bias of i-th hidden node; βi = [βi1, βi2, · · · , βim] ∈ Rm is the weight vector between hidden nodes and
the output nodes; g(x) is the activation function of the hidden layer; and oj is the output vector.

If the SLFNs with L hidden nodes can approximate the N samples with zero error, we know that
Equation (4) can be converted to the following formula [26,45]:

L
∑

i=1
βig(wi · x1 + bi) = t1

...
L
∑

i=1
βig(wi · xN + bi) = tN

(5)

The above equations can be written as:

Hβ = T (6)
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where
H(w1, · · · , wL, b1, · · · , bL, x1, · · · , xN) = g(w1 · x1 + b1) · · · g(wL · x1 + bL)

... · · ·
...

g(w1 · xN + b1) · · · g(wL · xN + bL)


N×L

(7)

β =

 βT
1
...

βT
L


L×m

T =

 tT
1
...

tT
N


N×m

(8)

So training the SLFNs corresponds to finding the norm least-squares solution β̂, which can be
shown as follows:

β̂ = H+T (9)

where H+ is the Moore–Penrose generalized inverse [46,47] of hidden layer output matrix H.
Then, Equation (9) can be converted to:

β =

{
( I

C + HTH)
−1

HTT, N > L

HT( I
C + HHT)

−1
T, N < L

(10)

where I is the unit matrix and C is the regularization coefficient.
ELM can also be explained using the optimization method. The ELM theory aims to reach the

smallest training error ‖Hβ− T‖2 and the smallest norm of the output weights ‖β‖ [28,31]. Then,
the solution of Equation (6) can be obtained by:

Minimize : LPELM = 1
2‖β‖

2 + C 1
2

N
∑

i=1
‖ξi‖2

Subject to : h(xi)β = tT
i − ξT

i , i = 1, · · · , N
(11)

where ξi is the training error vector of the m output nodes corresponding to training sample xi, and
h(xi) is the hidden layer output vector of i-th sample xi. According to the Karush–Kuhn–Tucker (KKT)
theorem [48], the same solution as Equation (10) can be obtained.

Thus, the learning steps of the ELM can be summarized as Algorithm 1:

Algorithm 1: ELM

Input: training sets {xi, ti}, (xi ∈ Rn, ti ∈ Rm, i = 1, 2, · · · , N), activation function g(x) and hidden nodes L.
Output: output weight vector β

(1): Set random values to the input weights wi and the hidden layer biases bi;
(2): Calculate the hidden layer output matrix H according to Equation (7);
(3): Calculate the output weight vector β according to Equation (9).

3. Stacked Autoencoder-Regularized Extreme Learning Machine

As we know the sample data has similar attributes and distribution features, we can use the
similar relationships to enhance the generalization performance of ELM. Therefore, in this section,
we propose a regularized ELM based on the class information of the target. Optimizing the output
weights by maximizing the within-class scatter degree and by minimizing the inter-class scatter degree
can make the ELM have better recognition and generalization ability. In addition, due to the random
selection of input weights and hidden biases, ELM tends to need more hidden nodes to achieve better
generalization performance, which makes the network structure complex. To address this issue, SAE is
used to optimize the input weights and hidden biases of ELM; this achieves better results with fewer
hidden layer nodes.
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3.1. Regularized ELM Based on the Class Information of the Target

Given a set of sample sets
{

x(j)
i ; j = 1, 2, · · · , c; i = 1, 2, · · · , nj

}
, the number of classes is c and

the ωj class contains nj samples. The inter-class scatter matrix of class ωj is defined as

S(j)
W =

1
nj

nj

∑
i=1

(x(j)
i −mj)(x(j)

i −mj)
T

, j = 1, 2, · · · , c (12)

where mj is the mean of ωj class samples and mj =
1
nj

nj

∑
i=1

x(j)
i , j = 1, 2, · · · , c.

The total inter-class scatter matrix is defined as

SW =
c

∑
j=1

nj

N
S(j)

W (13)

The within-class scatter matrix is defined as

SB =
c

∑
j=1

nj

N
(mj −m)(mj −m)T (14)

where m is the mean of all samples and m = 1
N

N
∑

i=1
xi.

To improve the recognition performance, we should maximize the within-class scatter matrix and
minimize the inter-class scatter matrix [49]. Therefore, we define the matrix S as shown below:

S =
SW
τSB

(0 < τ ≤ 1) (15)

Then, the optimization formula of regularized ELM can be written as:

Minimize : LPELM = 1
2 βTSβ + C 1

2

N
∑

i=1
‖ξi‖2

Subject to : h(xi)β = tT
i − ξT

i , i = 1, · · · , N
(16)

We can solve the above problem by defining the Lagrange function:

min : LELM =
1
2

βTSβ + C
1
2

N

∑
i=1
‖ξi‖2 −

N

∑
i=1

m

∑
j=1

αi,j(h(xi)β j − ti,j + ξi,j) (17)

then
∂LELM

∂β j
= 0→ βS = HTα

∂LELM
∂ξi

= 0→ αi = Cξi, i = 1, · · · , N
∂LELM

∂αi
= 0→ h(xi)β− tT

i + ξT
i = 0, i = 1, · · · , N

(18)

where αi = [αi,1, · · · , αi,m]
T and α = [α1, · · · , αN ]

T .
Then, the solution to Equation (16) is:

β =

{
( S

C + HTH)
−1

HTT, N > L

HT( S
C + HHT)

−1
T, N < L

(19)



Sensors 2018, 18, 173 8 of 15

Thus, the learning steps of the regularized ELM can be summarized as Algorithm 2:

Algorithm 2: Regularized ELM

Input: training sets {xi, ti}, (xi ∈ Rn, ti ∈ Rm, i = 1, 2, · · · , N), activation function g(x) and hidden nodes L.
Output: output weight vector β

(1): Calculate SW and SB, then calculate S according to Equation (15);
(2): Set random values to the input weights wi and the hidden layer biases bi;
(3): Calculate the hidden layer output matrix H according to Equation (7);
(4): Calculate the output weight vector β according to Equation (19).

3.2. SAE-ELM

In order to implement recognition, we need to add a classifier to the top encoding layer of SAE.
In this section, we propose that using ELM instead of softmax as a classifier can effectively improve the
network training speed. In addition, we can get the appropriate ELM network parameters by training
SAE. The SAE–ELM system architecture is shown in Figure 4, and the illustration of the structure is
shown in Figure 5. The learning process of SAE–ELM is as follows:
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(1) Establish the first layer of AE network and, as described in Section 2.2, use the gradient descent
method to train the network. Then, we can obtain the output H1 of the first hidden layer and the
network parameters θ1. H1 is the characteristic representation of the input data and θ1 = (W1, b1).

(2) Establish the second layer of the AE network. The first layer output H1 is input as the second
layer. We use the gradient descent method to train the network. Then, the output H2 of the second
hidden layer and the network parameters θ2 are available and θ2 = (W2, b2).

(3) Establish the third layer of the AE network to determine the parameters of ELM. ELM not only
has a faster learning speed than the traditional learning methods but it also has a good generalization
performance. However, ELM needs more hidden nodes than conventional tuning-based learning
algorithms due to the random set of input weights and hidden biases. Therefore, we establish the third
layer of the AE network to determine the input weights and hidden biases for ELM. Similar to step
(2), the output H3 of the third hidden layer and network parameters θ3 = (W3, b3) can be obtained.
We can utilize W3 as the input weights and b3 as the hidden biases of ELM, then the hidden layer
output matrix of ELM is H3.

(4) Establish the ELM network as a classifier. The input is H2, the input weights and hidden
biases are θ3 = (W3, b3), and the hidden layer output matrix is H3. Then, as described in Section 3.1,
the output weight vector β can be calculated according to Equation (19).

4. Experimental Results and Discussion

In this section, we will verify the effectiveness of the proposed algorithm. The experiments
were performed on an Intel(R) Core(TM) 3.60 GHz CPU with 8 GB of RAM and the MATLAB
R2013a environment.

In this section, we utilize measured radar HRRP data from three real airplanes that are measured
by a C-band radar with a center frequency of 5.52 GHz and a bandwidth of 400 MHz to validate the
effectiveness of the proposed method. The An-26 is a medium-sized propeller airplane, the Yark-42
is a large and medium-sized jet airplane, and the Citation business jet is a small-sized jet airplane.
The three aircraft models are shown in Figure 6. The detailed size of each airplane and the parameters
of the measured radar are listed in Table 1. In our experiments, each aircraft target has 26,000 HRRP
samples and the measured HRRP is a 256-dimensional vector.
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Table 1. Parameters of the airplanes and radar in the inverse synthetic aperture radar (ISAR) experiment.

Radar Parameters
Center Frequency 5520 MHz

Bandwidth 400 MHz

Airplane Length (m) Width (m) Height (m)
An-26 23.80 29.20 9.83

Yark-42 36.38 34.88 9.83
Citation business jet 14.40 15.90 4.57

In order to verify the validity of the algorithm proposed in this paper, we compared it with
the commonly used methods: PCA [3], MTL TSB-HMMS [6], ELM [26], SAE [21], and DDAEs [23].
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The activation function of the hidden layer of ELM is sigmoid and G(a, b, x) = 1/(1+ exp(−(a · x+ b))).
The regularization coefficient C is 0.2. The number of hidden nodes of ELM is 1500. Due to the sample
dimension being 256, we set the number of nodes in the visible layer of deep architecture to 256. It is
well known that a more abstract feature representation can be obtained with an increase in the network
depth. However, too many layers can make the network difficult to train effectively and brings in
more parameters to learn. Through the analysis of the experimental data and task requirements,
we found that three is a good choice for the number of hidden layers. Therefore, we set the number of
hidden layers to be three and the number of nodes in the hidden layers as 1500-500-50, respectively.
From Figure 7 we can see that the mean square error (MSE) of each layer reconstruction of the network
model decreases with an increase of iterations. When the number of iterations is 25, the MSE is less
than 0.003. Therefore, in order to speed up the training, we set the number of iterations in the network
to 25.
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Before network training, data pre-processing is needed to solve the amplitude-scale and time-shift
sensitivities. According to the previous study [3,5–7], we usually use the energy normalization method
and time-shift compensation algorithm to cope with the above issues.

Figure 8 shows the range profiles of pre-processed aircraft targets. In the non-cooperative situation,
such as at the battle with time, the amount of data under the test is usually huge, but the training data is
limited. This is because the radar system cannot be guaranteed to detect and track the non-cooperative
targets for a long period of time, which will cause HRRP data to be lost or not observed. Therefore,
it is very important to study the generalization performance of the model and obtain good recognition
performance under the conditions of fewer training samples.

As is shown in Figure 9, as the number of training samples increases, the classification accuracy of
different algorithms also increases. However, deep architecture algorithms (e.g., SAE, DDAEs, and the
proposed method) are more accurate than shallow architecture algorithms (e.g., PCA, MTL TSB-HMMS,
and ELM). The traditional recognition algorithms rely on the experience of the researchers and require
a complete set of training samples to ensure excellent recognition performance. Because of the shallow
architecture, these algorithms cannot effectively separate the intrinsic class information of the target
from some external factors in the feature space. The depth structure algorithms lose the inherent class
information of the target as little as possible while demodulating the coupling relationship between
various factors layer by layer. More intuitively, the low-level features in the deep network are usually
distributed and can be shared among different classes, while the high-level features are usually more
abstract and more separable. Therefore, better generalization performance is a great advantage of deep
networks. Due to the proposed method not only obtaining the deep feature representation of radar
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HRRP but also making better use of the target category information, the classification performance of
the proposed method is better than that of SAE and DDAEs. In addition, when the training sample
is smaller, the classification performance of the proposed method is better than the other algorithms,
which shows that the proposed method has better generalization performance. When the number of
training samples for each target is 3500, the classification accuracy of different algorithms is listed in
Table 2. It can be seen from the table that when the number of training samples is 3500, the accuracy of
the proposed algorithm reaches 95.01%, which is 0.22% higher than that of the DDAE algorithm, and
1.5% higher than that of the SAE. The accuracy of the shallow structure algorithms is not more than
90%. It can be concluded that the proposed method can obtain better classification performance when
there is only a small amount of training samples available.
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Table 2. The classification accuracy comparison of different methods.

Method Classification Accuracy (%)

PCA 74.38
MTL TSB-HMMS 86.87

ELM 89.01
SAE 93.51

DDAEs 94.79
Proposed method 95.01
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As shown in Table 3, the training time of SAE, DDAEs, and the proposed method are compared.
The proposed method is almost five times faster than SAE in training time; that is because we need to
add the softmax regression classifier to the top encoding layer of SAE, and the last step of training is to
fine-tune the parameters of all layers to achieve the desired classification performance. This process
will take a lot of time. The proposed method adds ELM with faster learning speed and less required
tuning parameters to the top layer of SAE as a classifier. The proposed method does not need to
fine-tune the parameters of all layers, thus reducing the network training steps and training time.
SAE and DDAEs are similar in training time because their network structures are the same.

Table 3. The training time of the different methods.

Method Training Time (s)

SAE 624.73
DDAEs 625.14

Proposed method 106.67

It can be seen from Figure 10 that the classification accuracy of ELM becomes much better as
the hidden nodes increase. When the number of hidden nodes is 1500, the classification accuracy is
89.01%. When the number of hidden nodes increases to 4000, ELM reaches an accuracy of 90.01%.
After that, the value is almost unchanged all the time because the ELM is in an over-fitting state.
Therefore, we know that in order to get a better classification effect, ELM needs more hidden nodes,
which will make the network structure more complex. As we know from Table 2, only 50 hidden nodes
are required to obtain an accuracy of 95.01% when the proposed method uses regularized ELM for
classification. Therefore, the proposed method can effectively reduce the hidden nodes of ELM and
simplify the network structure.
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5. Conclusions

In this paper, we have proposed a novel radar HRRP target recognition method based on SAE
and regularized ELM. SAE, as an important component of the deep learning structure, can extract
deep features and mine the essential information of radar HRRP, which has a beneficial effect
on recognition. ELM is also useful for recognition because of its fast learning speed and good
generalization performance. Experimental results show that the proposed method does not only
reduce the network training time but also makes the ELM achieve high recognition accuracy under the
condition of using fewer hidden nodes. In addition, when there is only a small amount of training
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samples available, the proposed method can also obtain good recognition performance. However,
we also know that in real situations the training samples are usually obtained under the condition
of high signal-to-noise ratio (SNR) via some cooperative measurement experiments, while the test
samples are usually achieved in the non-cooperative circumstance where the high SNR cannot be
guaranteed due to the severe measurement conditions. Thus, it is important to optimize the proposed
method to match the noise level of the received test samples in the recognition stage. Stacked denoising
sparse autoencoder (sDSAE) can effectively eliminate the influence of noise. Therefore, in the near
future, we will consider combining sDSAE with ELM to solve this problem.
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