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Abstract The aim of this article was to compare gene

expression programming (GEP) method with three types of

neural networks in the prediction of adverse events of

radical hysterectomy in cervical cancer patients. One-

hundred and seven patients treated by radical hysterectomy

were analyzed. Each record representing a single patient

consisted of 10 parameters. The occurrence and lack of

perioperative complications imposed a two-class classifi-

cation problem. In the simulations, GEP algorithm was

compared to a multilayer perceptron (MLP), a radial basis

function network neural, and a probabilistic neural net-

work. The generalization ability of the models was asses-

sed on the basis of their accuracy, the sensitivity, the

specificity, and the area under the receiver operating

characteristic curve (AUROC). The GEP classifier pro-

vided best results in the prediction of the adverse events

with the accuracy of 71.96 %. Comparable but slightly

worse outcomes were obtained using MLP, i.e., 71.87 %.

For each of measured indices: accuracy, sensitivity, spec-

ificity, and the AUROC, the standard deviation was the

smallest for the models generated by GEP classifier.

Keywords Cervical cancer � Radical hysterectomy �
Perioperative complications � Gene expression �
Programming � Neural networks

1 Introduction

Cervical cancer is the third most common malignant neo-

plasm of female reproductive organs. The estimated inci-

dence is approximately 530,000 new cases yearly [27].

Operative methods, irradiation, and combined treatment

consisting of surgical techniques, radiotherapy, and most

recently chemotherapy are applied in the management of

cervical cancers. The treatment choice is dependent first of

all on the disease advancement. Advanced stages of cer-

vical cancer are treated with radio-chemotherapy, but yet in

the early developmental stages of cervical cancer, primary

surgical treatment is preferred. In FIGO stages 0–IA1, the

surgical treatment has limited spectrum (conization, cer-

vical amputation, simple hysterectomy, or radical trache-

lectomy) [50]. Radical hysterectomy (i.e., removal of

uterus along with suspensory ligamentous apparatus and

vaginal cuff) with pelvic lymphadenectomy is the treat-

ment of choice for cervical cancer in FIGO stages IA2–IIA

(and some FIGO IIB cases) [25, 28]. This operative

method, as a very extensive surgical procedure, is burdened

with significant risk of complications ranging from 8 % up

to 88 %, according to data from the literature [5, 26, 34, 47,

61]. In considerable part, these are non-onerous defecation

dysfunctions, urinary tract infections, or transient urinary

bladder atony [31, 34, 61]. However, in up to 6.6 % of

cases, damage of urinary bladder comes about [31], and in

2.6 % of operated patients, iatrogenic damages of ureters

occur [49]. Pulmonary artery embolism is a life-threatening

complication, which occurs with approximately 1–1.5 %

incidence [31, 49]. Adverse events of radical hysterectomy

performed in cervical cancer are also pregnant with effects

from other considerations. They constitute an additional

burden to female patient, who is already in psychologically

and often physically ill condition due to a neoplastic
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disease. Intraoperative complications often extort ending

the surgical procedure before reaching sufficient range of

tissue excision. Lack of oncological radicality in turn is the

reason for implementation of adjuvant radiotherapy, which

could be avoided at least in some patients successfully

treated by surgery. Thus, adjuvant radiotherapy is often

delayed till the time of complete recovery from perioper-

ative complications, which is not without the influence on

patients’ survival time. Moreover, complications following

primary surgical treatment with subsequent radiotherapy

are greater than those following primary radical radio-

therapy [4] to which the patient could be initially scheduled

if potentially threatening complications had been foresee-

able. Factors influencing the occurrence of adverse events

in gynecologic oncology were described well enough.

Algorithm assessing the risk of complications pertaining to

operative management in these patients was also elaborated

[32]. Yet, in females with cervical cancer, the algorithm

has limited application, because it does not take into

account the neoplasm staging, which has the fundamental

influence on the degree of difficulty of planned surgery.

The aim of the study was to create the prediction model

which, by the use the AI methods, allows to anticipate the

occurrence of complications of radical hysterectomy in

patients with FIGO IA2–IIB cervical cancer.

2 Methods

2.1 Study group

The prospective cohort study included 107 patients with

cervical carcinoma, who were treated surgically at the State

Hospital in Rzeszow during 1998–2001. The patients’ age

range was 29–73 (median age was 48.60, with standard

deviation r = 9.88). A majority of them (71 patients) were

in the reproductive period. The postmenopausal status was

found in 36 patients. The mean value for the body mass

index (BMI) in the study group was 26.09 kg/m2

(r = 4.99). The clinical progression of cancer was assessed

according to the FIGO criteria. The distribution of the

cervical carcinoma stages in the study group is presented in

Table 1. Histopathological diagnosis was based on directed

cervical biopsy and fractionated abrasion. In disputable

cases (17 patients), cervical conization was performed. The

prevailing type was squamous cell carcinoma (89.72 %).

Other histological forms were found in 11 patients

(10.28 %). Concomitant diseases were found in 36 women

(Table 1), while more than one accompanying disease

occurred simultaneously in 5 patients. Some of the subjects

(27 women) had received surgical treatment within the

abdominal cavity in the past. Adverse events (perioperative

complications) were assessed prospectively during the

operation (intraoperative complications) and within 30 days

following the surgery (postoperative complications).

2.2 Artificial intelligence methods applied

In the simulations, gene expression programming (GEP)

algorithm was compared to three feedforward neural net-

works: the multilayer perceptron (MLP), the radial basis

function neural network (RBFNN), and the probabilistic

neural network (PNN). GEP algorithm and both radial

basis function-based neural networks were simulated by

DTREG software [51], while the MLP was trained using

Statistica Data Miner [53].

2.2.1 Gene expression programming

GEP algorithm is an algorithm which, emulating biological

evolution, creates and evolves computer programs. GEP

was introduced by Ferreira [17] with the assumption of

being, in some way, an extension of genetic programming

(GP) [33] preserving few properties of genetic algorithms

(GA) [21]. In contrast to GP, the chromosomes in GEP are

not represented as trees, but as linear strings of fixed

length, this, in turn, is the feature taken from GA. In GEP,

Table 1 Preoperative data in the study group (n = 107)

Number of patients 107

Age (mean/r) 48.60/9.88

Hormonal status

Premenopausal 71

Postmenopausal 36

Body mass index (mean/r) 26.09/4.99

Concomitant diseases

Hypertension 26

Diabetes mellitus 3

Ischemic heart disease 9

Other 3

Previous abdominal surgeries 27

FIGO stage

IA2 17 (15.89 %)

IB1 52 (48.60 %)

IB2 8 (7.48 %)

IIA 8 (7.48 %)

IIB 22 (20.56 %)

Histological type

Squamous 96 (89.72 %)

Non-squamous 11 (10.28 %)

Grading

G1 23 (21.50 %)

G2 64 (59.81 %)

G3 20 (18.69 %)
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the programs (individuals) are encoded by the chromo-

somes, which are composed of the genes structurally

organized in the head and the tail. The length of genes is an

open choice and depends on the head size. When the rep-

resentation of each gene is given, the genotype is estab-

lished. It is then converted to the phenotype—the

expression tree (ET). In order to construct the chromo-

some, the genes are linked with each other by means of the

linking function. Assumed number of these individuals

forms the sample population which undergoes evolution by

computing the expression from each chromosome, apply-

ing predefined genetic operators and calculating the fitness.

The type of the fitness function is dependent upon the

considered problem. Diverse genetic operators are used

both within and between the chromosomes. The evolution

continues until a termination criterion is satisfied [18].

For the cervical cancer complication prediction model,

the GEP’s settings are shown in Table 2. In all simulations,

the number of chromosomes in population was set to 30.

For genetic computations, we used 10 random floating

point constants per gene, from the range [-1,000, 1,000].

Evolution was performed until 1,000 generations were

reached.

2.2.2 Multilayer perceptron

MLP is the type of a neural network where the input signal

is fed forward through a number of layers [48]. One can

distinguish three types of layers in MLP: an input layer, at

least one hidden layer, and an output layer. The input layer

is composed of the elements, which are the features of an

input pattern. The hidden layer consists of a predefined

number of nodes called neurons. A particular hidden

neuron adds all the values of input data variables multi-

plied by the weights and uses this weighted sum as its

input. Such a signal is used as the argument of a transfer

function of a hidden neuron. The output of each hidden

neuron is distributed to all elements in the next layer. The

output layer is composed of the neurons, which determine

the final response of the model. This response is computed

in the same way as the neuron’s output in the preceding

layer. In the analysis, MLP composed of one or two hidden

layers was used. The hidden and output layers were acti-

vated by the transfer functions from the set: {linear,

hyperbolic tangent, logistic, exponential}. The number of

hidden layer neurons was optimized in order to minimize

the network error. Three MLP training algorithms were

used: Broyden–Fletcher–Goldfarb–Shanno [6], a scaled

conjugate gradient [41], and a traditional gradient descent

algorithm.

2.2.3 Radial basis function neural network

RBFNN is a model in which the input signal is transmitted

forward to the output node [10]. RBFNN consists of three

layers: an input layer, a radial basis hidden layer and a

linear output layer. In the input layer, there is one neuron

for each predictor variable. The hidden layer is composed

of n neurons of a radial basis functions centered on an input

vector. The n number of neurons is determined during the

training process. In this work, an evolutionary approach

proposed by Chen et al. [12] was used to find an optimal

n. The signal computed by the hidden layer is transmitted

forward to the next linear layer. The linear layer calculates

the weighted sum of the hidden layer outputs. For the

classification problems, there are two nodes in the output

layer, which represent a target category. The second layer

weights are determined using ridge regression.

2.2.4 Probabilistic neural network

PNN is a feedforward model proposed by Specht [52],

which is a direct implementation of Bayes classifier. In

contrast to MLP and RBFNN, PNN is composed of four

layers: an input layer, a pattern layer, a summation layer,

and an output layer. In the input layer, there is one neuron

for each data attribute. The pattern layer consists of the

number of neurons equal to the cardinality of the training

data set. Each neuron in this layer computes the Euclidean

distance between the training pattern and the test case, and

the resulting value undergoes the activation by the radial

Table 2 The head size, the number of genes within each chromo-

some, the linking functions between genes, the computing functions

in the head, the fitness functions and the genetic operators utilized for

GEP model

Head size 2, 3, 4, 5, 6, 7, 8

Number of genes 1; 2; . . .; 15

Linking function Addition, multiplication, logical OR

Computing functions ?, -, �, /, -x, 1/x

sinðax� bÞ; cosðax� bÞ

b=ð1þ expðaxÞÞ; exp �ðx� aÞ2=ð2b2Þ
� �

Fitness function Sensitivity/specificity

Number of hits with precision

Number of hits with penalty

Mean squared error

Genetic operators Mutation = 0.044

Inversion = 0.1

IS transposition = 0.1

RIS transposition = 0.1

Gene transposition = 0.1

One-point recombination = 0.3

Two-point recombination = 0.3

Gene recombination = 0.1
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basis function. The signals coming from the pattern nodes,

which belong to the class c, are summed and create single

cth neuron in the summation layer. Thus, there are C neu-

rons in the summation layer, where C denotes the number

of classes. In the output layer, a decision is made on a final

target for a test case. It is based on the largest value

between the signals determined among all summation

neurons. In the simulations, single smoothing parameter for

each predictor variable is used. The parameter is computed

using the conjugate gradient method [24].

3 Results

The prediction ability of tested models was determined by

computing the accuracy (Acc), the sensitivity (Sen), the

specificity (Spe), and the area under the receiver operating

characteristic curve (AUROC) [23] for the compared mod-

els: GEP, MLP, RBFNN, and PNN. All the performance

indices were measured on the independent data subsets

randomly extracted from the entire database, which com-

prise the following: 10, 20, and 30 % of the total number of

patterns. It is worth to note that all the indices were computed

for different parameters of the particular models.

Perioperative complications occurred in 47 patients:

intraoperatively in 4 cases and postoperatively in remained

43 cases. Majority of these were mild or medium degree

complications that did not pose a threat to the patient’s

health or life. Severe perioperative complications (bleeding

from the inferior vena cava, pulmonary embolism, gastric

ulcer rupture, genitourinary fistulae) were found in 7

patients (Table 3). In the simulations, a binary classification

was considered, i.e., occurrence or lack of complications.

On the basis of considered input data, it was possible to

find the models, which predict the occurrence of periop-

erative complications of radical hysterectomy in patients

with cervical cancer.

In Tables 4, 5, 6, and 7, the values of the performance

indices: Acc, Sen, Spe, and AUROC are presented for all

investigated classifiers. Due to the fact that these indices

were computed for different training and test subsets, their

values need to be averaged (we use ð�Þ symbol for arith-

metic means). Furthermore, for the particular classifiers, it

is necessary to calculate the standard deviations r(�). The

last rows in all tables provide the ‘‘minimal indices’’ values

which make the classifier acceptable as the predictive

model. Below, we present the conclusions.

Table 3 Complications in the study group (n = 107)

Complications Number of

patients

Incidence

(%)

Intraoperative complications

Urinary tract injury 2 1.87

Vena cava inferior injury 2 1.87

Total 4 3.74

Postoperative complications

Acute cardiopulmonary symptoms 2 1.87

Femoral nerve injury 1 0.93

Abdominal wound infection or hematoma 5 4.67

Genitourinary fistula 3 2.80

Duodenal ulceration requiring surgery 1 0.93

Acute digestive symptoms 2 1.87

Asymptomatic lymphocele 3 2.80

Fever 10 9.35

Pulmonary embolism 1 0.93

Urinary retention 15 14.02

Total 43 40.19

Table 4 Accuracy computed for GEP, MLP, PNN, and RBFNN

Test size (%) Acc (%)

GEP MLP PNN RBFNN

10 80.00 90.00 63.64 54.55

20 76.19 80.95 61.91 66.67

30 71.88 71.87 62.50 65.63

Acc 76.02 80.94 62.68 62.28

rAcc 4.06 9.07 0.88 6.72

Acc� rAcc 71.96 71.87 61.80 55.57

Table 5 Sensitivity computed for GEP, MLP, PNN, and RBFNN

Test size (%) Sen (%)

GEP MLP PNN RBFNN

10 80.00 100.00 60.00 40.00

20 77.78 85.71 33.33 66.67

30 71.43 69.23 35.71 64.28

Sen 76.40 84.98 43.01 56.98

rSen 4.45 15.40 14.76 14.76

Sen� rSen 71.95 69.58 28.25 42.23

Table 6 Specificity computed for GEP, MLP, PNN, and RBFNN

Test size (%) Spe (%)

GEP MLP PNN RBFNN

10 80.00 83.33 66.67 66.67

20 75.00 78.57 83.33 66.67

30 72.22 73.68 83.33 66.67

Spe 75.74 78.53 77.78 66.67

rSpe 3.94 4.83 9.62 0.00

Spe� rSpe 71.80 73.70 68.16 66.67
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3.1 Accuracy

As shown in Table 4, the highest accuracy out of all compared

models was found for the MLP classifier: Acc ¼ 80:94 %.

However, the standard deviation for this classification method

is high: rAcc = 9.07 %, therefore ðAcc� rAccÞMLP ¼
71:87 %. Hence, the ‘‘minimal accuracy’’ of MLP models is

smaller than the one obtained for GEP classifiers:

ðAcc� rAccÞGEP ¼ 71:96 %, despite the fact, that the average

accuracy in case of GEP equals 76.02 %. That is because the

standard deviation for GEP models is low: rAcc = 4.06 %.

Thus, considering the accuracy measure, GEP and MLP

methods generate similar models, which are much better than

the remaining neural networks. The minimal values of accu-

racy determined for GEP, MLP, PNN, and RBFNN are

illustrated in the form of the bar charts in Fig. 1.

3.2 Sensitivity, specificity, and area under receiver

operating characteristics

On the basis of Table 5, we infer that in case of sensitivity

index, MLP procedure generates networks with a very high

standard deviation: rSen = 15.40 %, which is the largest

among all tested models. Therefore, the ‘‘minimal sensi-

tivity’’ for these networks equals ðSen� rSenÞMLP ¼

69:58 %: For GEP models, we obtain a better outcome

since the ‘‘minimal sensitivity’’ for these classifiers equals

71.95 %, which is a result of low standard deviation

rSen = 4.45 %. The sensitivity values of both radial basis

function-based neural networks (PNN and RBFNN) are

very low what utterly disqualifies these models.

As presented in Table 6, the ‘‘minimal specificity’’ of all

models reaches similar values. For MLP networks, both

average and ‘‘minimal specificity’’ are the highest.

The results in Table 7 show that both the average and

the ‘‘minimal value’’ under the receiver operating charac-

teristic are the highest for GEP models.

It is also worth to note that for each of measured indices:

Acc, Sen, Spe, and AUROC, the standard deviation is

smaller for the models generated by GEP classifier in

comparison with MLP networks.

The results of ‘‘minimal values’’ of Sen, Spe, and AU-

ROC for all tested models are summarized in Fig. 1. On the

basis of the above analysis, we infer that the GEP classifier

provides the best results in the prediction of the adverse

events in cervical cancer patients treated by radical hys-

terectomy. Slightly worse outcomes are obtained using

MLP neural network [30].

3.3 Mathematical expression generated by GEP

classifier

The results achieved by GEP, which are presented in

Tables 4, 5, 6, and 7, are not the only outcome obtained by

this algorithm. This evolutionary computation method gen-

erates a mathematical expression (a function), which fits the

data with the accuracy obtained after the evolution process.

Since in our investigation the ‘‘minimal prediction accu-

racy’’ of GEP equals 71.96 %, we provide the formula of

such an expression found for Acc = 71.88 % where the

training and test set sizes are equal 70 and 30 %, respec-

tively. The mathematical function following from the Karva

language expression [18] that solves the prediction problem

takes the form:

f ðx1; x2; x3; x4; x5Þ ¼
7:98

1þ expð7:98� x1Þ

� 1

1þ expð�15:95� x1Þ
þ x2 � 11:74

þ 1

2
� x3

1þ expðx3 � x4Þ
� x5; ð1Þ

where x1 is a binary representation of the BMI such that:

x1 ¼
1; if BMI is from the class ‘‘underweight’’

0; otherwise

�
;

x2 is a binary representation of the FIGO stage and:
Fig. 1 The ‘‘minimal values’’ of Acc, Sen, Spe, and AUROC in the

prediction of adverse events in patients with cervical cancer

Table 7 The area under receiver operating characteristic curve

computed for GEP, MLP, PNN, and RBFNN

Test size (%) AUROC

GEP MLP PNN RBFNN

10 0.82 0.78 0.57 0.47

20 0.76 0.74 0.61 0.62

30 0.72 0.67 0.66 0.58

AUROC 0.77 0.73 0.61 0.56

rAUROC 0.05 0.06 0.05 0.08

AUROC� rAUROC 0.72 0.67 0.56 0.48
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x2 ¼
1; if FIGO stage is from the class IB2

0; otherwise

�
;

x3 is an integer number from the set f29; . . .; 73g which

denotes an age of a patient, and x4 is a binary

representation of the BMI such that:

x4 ¼
1; if BMI is from the class ‘‘obesity II’’

0; otherwise

�
;

x5 is a binary representation of the FIGO stage and:

x5 ¼
1; if FIGO stage is from the class IB1

0; otherwise

�
:

The function presented in (1) depends on five input

variables and provides the expression for the occurrence of

radical hysterectomy complications in patients with

cervical cancer with the prediction accuracy of 71.88 %.

If the value of f ð�Þ[ 0, then the occurrence of

complications takes place, and there is no adverse events

when f ð�Þ 6 0. The method of complication occurrence

verification is straightforward. Suppose, in our test set,

there are two records representing the input measured

features of two patients (case 1 and case 2, respectively)

shown in Table 8.

Then, for cases 1 and 2, we obtain the following results:

fcase 1 ¼ f ð0; 0; 33; 0; 0Þ ¼ �1:495;

fcase 2 ¼ f ð0; 0; 62; 0; 0Þ ¼ 5:755:

As shown, fcase 1\0 and fcase 2 [ 0, therefore, for the case

1, GEP model predicts lack of complications, while for the

case 2, the adverse events will occur. In both cases, this

prediction is assessed with the accuracy 71.88 %. It is

worth to notice that the above-predicted results correspond

to the real output values. This simple example confirms our

belief that we obtain the partially interpretable model.

From the mathematical point of view, this model is unique

and readable. However, GEP method does not provide the

set of simple ‘‘if-then’’ rules, which could be read by a

specialist using a medical language. Thus, the received

model can be regarded as a gray box.

4 Discussion

Despite the achievements of theoretical sciences and rapid

technological progress, undesirable occurrences still

accompany modern medical procedures. According to the

latest analyses, the frequency rate for complications in

patients treated for gynecologic neoplasms falls in the

range 26–54 % [19, 32]. As more and more attention is

paid to the issue of patients’ life quality [11], the preven-

tion of undesirable occurrences becomes one of the prior-

ities of proceedings [16].

It was believed for a long time that in order to avoid

complications it was sufficient to eliminate potential risk

factors. The known risk factors for morbidity and mortality

related to surgical treatment include inter alia, patient’s old

age, duration and type of surgical procedure, occurrence of

accompanying diseases, or obesity [32]. Unfortunately,

these factors are not subject to modification (e.g., age,

concomitant chronic diseases), or as in the case of con-

siderable loss of body weight, they require longer time.

There is no doubt that the postponement of oncological

procedures until the proper BMI value is reached may have

an adverse effect on the prognosis.

Therefore, the only effective way seems to involve the

reliable identification of the risk factors and choosing such

a therapeutic option that would minimize the risk of

undesirable occurrences. It is important since, according to

the literature data, a considerable part of iatrogenic com-

plications can be prevented [3, 57]. Such hypothesis has

been confirmed in surgery, where within 10 years of the

introduction of the risk assessment system, the percentage

of complications was reduced by 27–45 % [29]. An

attempt was made to establish a similar risk model taking

into account patients with ovarian carcinoma [1, 2], but it

was not widely approved [32]. It also turned out that the

model deriving from general surgery cannot be effectively

applied in women with genital neoplasms [15]. As a

response to the above situation, Kondalsamy–Chennake-

savan et al. [32] developed a risk assessment system in

gynecologic oncology. This model makes it possible to

estimate the probability rate for undesirable occurrences in

the general population of patients with genital neoplasms;

yet, it does not allow for distinguishing various types of

risk related to complications in particular types of cancer

with more accuracy. This system does not account for the

progression of neoplastic disease either, which may con-

siderably increase the difficulty of a procedure and have an

Table 8 Two real medical cases with all input variables and an

output class

Input variable Case 1 Case 2

Age 33 62

Height (cm) 164 164

Weight (kg) 63 60

Body mass index (type) Normal Normal

Concomitant diseases 0 0

Previous abdominal surgeries No Yes

Hormonal status Premenopausal Postmenopausal

Histological type Squamous Squamous

FIGO stage IA2 IIB

Grading 2 3

Complications No Yes
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impact on the risk of complications. The tumor stage, as

one of the input parameters of the perioperative prediction

model, was firstly considered by our research team.

Neural networks are more and more widely used in

medical sciences [37, 42, 45, 54, 60]. In cardiology, they

are used, inter alia, to assess the status of cardiovascular

system [43], to predict the risk of coronary heart disease

[35] in ECG analysis [36, 56] or echocardiography [59]. In

neurology, neural networks are used to predict a response

to pharmacological treatment in Alzheimer’s disease [39].

In radiology, neural networks are effectively used to sup-

port the diagnosis of breast tumors [58], lung tumors [22],

or liver tumors [38]. Automatic cytological screening of

cervical carcinoma is a flagship example of the application

of neural networks [8]. Neural networks were also used to

predict complications following some medical procedures,

e.g., percutaneous endoscopic gastrostomy [55], gastrec-

tomy in patients with gastric carcinoma [14], laparoscopic

cholecystectomy [20], or the mortality rate after cardio-

surgical procedures [44]. The results of studies using the

artificial intelligence methods in biomedical sciences are

varied. Much better results are obtained in research using

objective measurement data, e.g., the parameters of mam-

mographic image [58], CT image [13], or results of labo-

ratory tests [40]. In situations with the participation of the

so-called human factor, the obtained results are slightly

worse. The sensitivity and specificity of the ANN model in

predicting conversion to laparotomy in patients who

received laparoscopic cholecystectomy were 67 and 99 %,

respectively [20]. The accuracy of ANN in predicting

postoperative complications in patients receiving operative

treatment because of gastric carcinoma was 84.16 % [14].

In the study investigating the possibilities of predicting

pathologic pressure drop in patients under general anes-

thesia, the sensitivity and specificity of the ANN model

were 74.4 and 85.6 %, respectively, with the accuracy of

82.3 % [2].

In general, our results do not differ from above-cited

works. The more detailed comparative analysis is impos-

sible to perform, because similar reports regarding the

prediction of perioperative complications of cervical can-

cer treatment have not been published yet.

Evolutionary computation methods have also been

applied in medical domains. Pena-Reyes and Sipper [46]

provide an overview of evolutionary algorithms such as

GAs, GP or evolution strategies in medical diagnosis,

prognosis, imaging, signal processing, planning, and

scheduling. Artificial neural networks were confronted to

GP algorithm in medical data mining problem by Brameier

and Banzhaf [9], who compared the models in the classi-

fication of six repository data sets. On the basis of a GP

system, an evolutionary predictive model was built, which

can be applied to diagnose a chest pain [7]. However, to the

best knowledge of the authors, the applications of gene

expression programming in medicine domain have not

been proposed yet.

The weakness of this study is a small number of data

examples. However, it is necessary to emphasize that the

collection of a significantly greater material is difficult

nowadays, because of a decline in the overall incidence of

cervical cancer. Population-based screening programs have

improved detection of the preinvasive and early stages of

cancer, what have led up to decline in the incidence of

advanced disease. Nonetheless, the verification of the

presented results on the basis of a greater material is by all

means justified. Undoubtedly, the advantage of this con-

tribution is its prospective form and the homogeneity of the

material. In comparison with the repository databases, the

presented results are derived from the single institution,

which represent coherent therapeutic concept for the cer-

vical cancer treatment. An experienced team of gyneco-

logical surgeons, applying the rules of established

operating school, eliminates the risk of randomness of the

results and enhances their reliability.
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