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Marker genes that are less conserved in
their sequences are useful for predicting
genome-wide similarity levels between
closely related prokaryotic strains
Yemin Lan1, Gail Rosen2† and Ruth Hershberg3*†

Abstract

Background: The 16s rRNA gene is so far the most widely used marker for taxonomical classification and separation of
prokaryotes. Since it is universally conserved among prokaryotes, it is possible to use this gene to classify a broad range
of prokaryotic organisms. At the same time, it has often been noted that the 16s rRNA gene is too conserved to
separate between prokaryotes at finer taxonomic levels.

Results: In this paper, we examine how well levels of similarity of 16s rRNA and 73 additional universal or nearly
universal marker genes correlate with genome-wide levels of gene sequence similarity. We demonstrate that the
percent identity of 16s rRNA predicts genome-wide levels of similarity very well for distantly related prokaryotes,
but not for closely related ones. In closely related prokaryotes, we find that there are many other marker genes
for which levels of similarity are much more predictive of genome-wide levels of gene sequence similarity. Finally,
we show that the identities of the markers that are most useful for predicting genome-wide levels of similarity
within closely related prokaryotic lineages vary greatly between lineages. However, the most useful markers are
always those that are least conserved in their sequences within each lineage.

Conclusions: Our results show that by choosing markers that are less conserved in their sequences within a
lineage of interest, it is possible to better predict genome-wide gene sequence similarity between closely related
prokaryotes than is possible using the 16s rRNA gene. We point readers towards a database we have created
(POGO-DB) that can be used to easily establish which markers show lowest levels of sequence conservation
within different prokaryotic lineages.
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Background
One key aim of microbiome studies is to characterize
the genomic diversity of prokaryotic species present within
environments of interest. However, addressing the genomic
diversity can be highly challenging for several reasons.
These reasons include technical limitations, such as short
read length of high-throughput sequencing, as well as

biological challenges that result from prevalent horizontal
gene transfer and variation in rates of evolution between
different genomes, and within genomes between different
genes [1].
In studies where resolving the taxonomical composition

of a microbiome is the main goal, it is common practice
to amplify and sequence a marker gene and infer the
microbiome composition based on its sequence. In most
such studies, the 16s rRNA gene serves as the marker of
choice [2–5]. The 16s rRNA gene is universally present in
prokaryotes and is rarely affected by horizontal gene
transfer (HGT) [6, 7]. The 16s rRNA gene contains several
hyper-variable regions, allowing for the distinction of
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different prokaryotes [8]. At the same time, outside of
the hyper-variable regions, the sequence of 16s rRNA is
relatively very highly conserved across prokaryotes.
This allows for the design of universal primers that can
be used to amplify 16s rRNA from a very large fraction
of prokaryotes. These special characteristics of the 16s
rRNA gene make it a useful marker for taxonomical
classification and separation, giving rise to various 16s
identification tools such as the Ribosomal Database
Project [9], Greengenes [10], and SILVA [11].
While 16s rRNA has been demonstrated to be highly

useful for taxonomical classification and separation in a
great number of microbiome studies, its limitations have
also been noted [12, 13]. Despite its hyper-variable regions,
the sequence of 16s rRNA tends to be relatively conserved.
This makes this gene very useful for studying levels of vari-
ation between distantly related prokaryotes. However, it
may make 16s rRNA less useful for distinguishing between
closely related prokaryotes. In a recent attempt to evaluate
species-level identification using the 16s rRNA gene, it was
shown that the trade-off between precision and recall could
not be well balanced [14]. More recently, oligotyping has
been introduced as a method to detect closely related
lineages using the 16s rRNA gene [15]. While the method
provides finer taxonomic breakdown of the sequenced
microbiomes, it provides little information to resolve the
relationship between taxa. It was also shown that the 16s
rRNA gene has variable explanatory power between
prokaryotic lineages, explaining as little as 28 % of the
variance among Enterobacteria genomes and as much
as 70 % of the variance among Bacteroidetes [16]. Add-
itionally, some studies suggest that, contrary to previous
assumptions, the 16s rRNA gene can be horizontally
transferred [17]. Finally, the 16s rRNA gene has varying
number of copies in approximately 80 % of all fully se-
quenced prokaryotic genomes, which may greatly skew
estimates of the prokaryotic abundances in a community.
To overcome these limitations, the use of alternative

marker genes has been suggested. In several studies, an
essential housekeeping gene, such as rpoB, amoA, pmoA,
nirS, nirK, nosZ, and pufM, was used to determine taxo-
nomical relationships for lineages of interest [12, 18–22].
For example, the recA gene was used to provide unam-
biguous identification of Lactobacillus strains [21]. The
rpoB gene was used to estimate biodiversity in a soil
sample [12] and reconstruct taxonomical relationships
among strains belonging to the Halobacteriales lineage
[19]. The rpoB gene was also shown to be more useful
than 16s rRNA at discriminating closely related organ-
isms [20]. The chaperonin-60 universal target was shown
to be a particularly useful marker as it was demonstrated
to predict similar bacterial genome relatedness to whole
genome sequence alignments over a broad range of taxa
[22]. More recently, taxonomical inference dependent

on whole genome sequencing and combined use of a
variety of markers has been repeatedly proposed, where
the definition of markers ranged from housekeeping
genes to representative homologous gene groups and ex-
clusive genetic episodes [23–26]. In these studies, house-
keeping genes have been suggested to be useful for
discriminating lineages, as they are a major component
of the core genes for a lineage [25] and are thought to
be subject to less environmental pressure than other
genes [27]. Wu et al. identified 31 housekeeping genes
from 100 genomes that can be used to classify and sep-
arate prokaryotes [23]. These markers have been used
to speed up the taxonomic classification based on metage-
nomic shotgun data [24]. Ciccarelli et al. have used a con-
catenation of 31 marker genes to reconstruct the tree of
life for 191 species with their whole genome sequenced at
the time [28]. Another comprehensive study has surveyed
32 protein-coding genes that are widely distributed among
bacterial genomes and demonstrated the usefulness of
single-gene alignments in predicting genome relatedness
in specific lineages [29].
In the meantime, whole genome sequencing (WGS)

has become more feasible and more prevalent in micro-
biome studies [30–32]. In comparison with the sequen-
cing of a single marker gene, WGS uncovers both the
microbial composition and functional composition of the
microbiomes of interest. Hence, various tools are devel-
oped over the past few years to facilitate analysis of WGS
data, such as WGSQuikr [33] and MetaPhlAn [34]. In
addition to taking advantage of the full microbiome se-
quenced from WGS, some approaches resort to a small
subset of widely conserved marker genes mined from
WGS data, such as PhyloSift [35], AMPHORA2 [36],
MetaPhyler [24], EMIRGE [37], and PhylOTU [38]. Con-
sequently, in various scenarios, many widely conserved
genes other than the 16s rRNA gene have proven valuable
towards better assessment of interspecies relationships
[19–21, 24, 26, 39]. While WGS has become cheaper and
more popular in microbiome studies, use of a single
marker gene similar to that of the 16s rRNA gene still
has its advantage in effectiveness and efficiency. Despite
the well-understood benefits of utilizing marker genes
for classifying and separating prokaryotes, a major chal-
lenge remains in determining which marker genes are
most useful for different lineages and various scenarios.
Therefore, a systematic analysis of the utility of different
marker genes and the development of criteria for choosing
the correct marker genes should yet prove beneficial.
Here, we conducted genome-wide comparisons of levels

of gene similarity of ~2000 fully sequenced genomes. For
each genome pair compared, we also estimated levels of
similarity of the 16s rRNA gene as well as of 73 additional
marker genes that are each present within at least 90 % of
all prokaryotes. We show that levels of similarity of 16s
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rRNA are very good predictors of genome-wide levels
of similarity for distantly related prokaryotes. At the
same time, many other marker genes are much more
useful than 16s rRNA for predicting genome-wide
levels of similarity for more closely related prokaryotes.
The identity of the most useful markers varies between
prokaryotic lineages. However, within each lineage, the
markers that are most useful for predicting genome-
wide levels of similarity are those markers that have the
lowest levels of sequence conservation within that
lineage. Our results indicate that it should be possible
to obtain far better separation of closely related strains
in lineage-specific prokaryotic studies by using markers
that are less conserved in their sequences.

Methods
Extracting whole genome and 16s rRNA gene sequences
The complete genomes of 2013 prokaryotic strains were
downloaded from the NCBI database (in July, 2012).
Genes annotated as “16s rRNA gene” were extracted
from each strain. A total of 1897 genomes were retained
with 16s rRNA genes of legitimate length from 1000- to
1800-bp nucleotides [8].

Identification of universal or nearly universal marker
genes
Single-copy and universally distributed genes in the
COG database [40] were considered as potential markers
(Additional file 1: Table S1). Copies of these genes in
each genome were recognized from BLAST reciprocal
best hits, using the copies of these genes in Escherichia
coli K12 W3110 (NCBI Genome unique ID 161931) as
references. Each of the 73 potential markers was found
to be present in more than 90 % of the prokaryotic ge-
nomes. A total of 1204 genomes harbor all marker
genes.

Calculating marker gene percent identity
For each pair of genomes, all 16s rRNA gene copies
were pairwise-aligned using the Needleman-Wunsch al-
gorithm [41]. The maximal 16s rRNA identity was re-
corded for each genome pair. Likewise, the percent
identity of each marker gene between a pair of genomes
was obtained by aligning the nucleotide sequences using
the pairwise Needleman-Wunsch alignment algorithm.

Calculating average AAI
The average amino acid identity (AAI) was computed
for all genome pairs whose maximal 16s rRNA gene
identity was at least 80 %. Towards this end, protein-
coding sequences in each genome were obtained from
the NCBI Genome database [42]. Homologs between a
pair of genomes were identified by reciprocal BLAST
comparisons [43] and re-aligned using the Smith-

Waterman algorithm [44]. To be defined as homologs,
proteins had to be aligned over at least 70 % of the
shorter sequence and the AAI had to be above 30 %
[45]. The average AAI was computed using all identified
homologs between two genomes, if they had at least 200
homologs (out of 717,861 pairwise comparisons, 2556
were discarded because less than 200 homologs were
identified).

Average ranking of marker genes
Focusing only on genomes that contain all 74 marker
genes (including the 16s rRNA gene), we calculated for
each genome pair the relative rank of each marker gene
by their percent identities within that genome pair. The
marker gene that was least similar between the two ge-
nomes (i.e., had the lowest percent identity) received a
rank of 74, and the marker gene that was most similar
(i.e., had the highest percent identity) received a rank of
1. The average ranking of a gene within a certain lineage
was then calculated based on its ranking for each pair of
genomes from that lineage. At the end of this process,
lower ranks (closer to 1) correspond to more conserved
genes.

Generating trees based on average AAIs and based on
marker gene percent identities
Trees were generated using the Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) algorithm,
where the pairwise distance matrix values were one
minus the AAIs or one minus the percent identities of a
specific marker gene. Split distance (equivalent to the
Robinson-Foulds distance) between trees was calculated
using TOPD/FMTS software [46].

Results and discussion
The 16s rRNA gene is an ambiguous marker for inferring
extent of similarity of closely related prokaryotes
The percent identity of the 16s rRNA gene is considered
to be indicative of the taxonomical relationship between
prokaryotes. For example, sequences with a percent
identity of 97 % or higher are considered by many as
coming from the same species [47] and a percent iden-
tity of 94 % or higher is thought to indicate that the
sampled prokaryotes belong to the same genus [16].
However, as is discovered often and especially at finer
taxonomic levels, relying on the 16s rRNA alone may
give faulty inferences [12, 13].
To systematically address this issue, we examined the

relationship between the percent identity of the 16s
rRNA gene and taxonomical relationship, according to
NCBI classifications (Fig. 1). As expected, a general
trend holds that higher 16s rRNA identity is indicative
of closer taxonomic relationships. However, the infer-
ence of the level of taxonomic relatedness based on 16s
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percent identities is difficult, as the range of 16s identity
overlaps between different taxonomic relationships. For
example, sequences from the same species can be less
than 94 % identical while sequences from different clas-
ses can be 97 % identical. It is of note though that due
to missing taxa, inconsistent taxonomy, and the presence
of numerous informal names, the fact that we use NCBI
taxonomy may also contribute to the observed noisiness.
To overcome the limitations of the NCBI taxonomic

classifications, we used an alternative approach for es-
timating the evolutionary distance between different
prokaryotes. Namely, we calculated the average AAI
between genomes using all homologous protein-coding
genes they shared. Calculating AAI is computationally
expensive and possible only for fully sequenced ge-
nomes. However, we assume that it is more accurate to
estimate the evolutionary distance between two genomes
based on all homologs, rather than based on a single locus
such as the 16s rRNA gene. AAI likely does not provide a
perfect estimation of relatedness, as it can also be some-
what affected by HGT. However, because it combines in-
formation across a very large number of loci, AAI likely
provides us with the most reliable available estimation of
the extent of relatedness of two genomes.
We compared every two genomes with a 16s identity

higher than 80 %, and a total of 717,861 pairs of ge-
nomes were analyzed. In general, as expected, the per-
cent identity of the 16s rRNA gene correlates well with
AAI (rho = 0.7487 and p value ≪0.0001, according to a

Spearman test, Fig. 2a). However, as the 16s rRNA genes
get more similar, the range of AAI becomes broader
(Fig. 2a). In other words, the percent identity of the 16s
rRNA gene becomes more ambiguous at predicting AAI
when genomes are more closely related.
The analysis described above was carried out by com-

paring all genomes to each other in a pairwise manner.
Due to this, Fig. 2a might be greatly affected by individ-
ual genome outliers. For example, it is possible that one
genome has mutated abnormally faster than other ge-
nomes of its species but retained the almost identical
16s rRNA gene. This may result in many data points
with high 16s identity but low AAI, while the cause is
merely one outlier genome. To reduce the impact of ab-
normal data points caused by individual outlier genomes,
we performed 20 random samplings of 100 genome pairs
and calculated the 95 % confidence intervals for AAI. In
these samplings, a genome could only be selected once.
This was done for each 16s rRNA gene identity level with
an interval of 2 %. The result is shown in Fig. 2b, where
the range of confidence interval increases as genomes
become more similar. For example, genome pairs with
80–82 % 16s rRNA identity are 95 % likely to have an
AAI between 40 and 46 %. In comparison, genome pairs
with a 98–100 % 16s rRNA identity can have an AAI
anywhere between 70 and 100 %. This again shows
that 16s rRNA gene percent identities become more
ambiguous predictors of AAI as genome pairs become
more similar.
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Fig. 1 Box and whisker plot of 16s rRNA percent identities between genomes of the same taxa (species/genus/etc.). The whiskers represent
boundaries within 1.5 interquartile range of the lower and upper quartiles. Although the 16s rRNA genes are more similar at finer taxonomic
levels, there are still large overlaps between taxonomic classification levels and outliers within each level. Therefore, the 16s rRNA gene is
sometimes an ambiguous marker in taxonomic classification
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When considering closely related prokaryotes, the percent
identity of many marker genes better predicts AAI than the
percent identity of 16s rRNA
The ambiguity of 16s rRNA in predicting genome-wide
levels of similarity (as measured by AAI), especially for
closely related prokaryotes, led to the question of whether
other housekeeping genes might be more useful for this
purpose. To find a potentially better marker gene, we
started with the genes that were common to all genomes
in the COG database and trimmed them down to 73 that

were present in over 90 % of fully sequenced prokaryote
genomes (“Methods” section, Additional file 1: Figure S1).
Figure 3 shows the Spearman correlation between the

percent identity of each marker gene and AAI, for
genome pairs with AAI values lower or greater than
95 % (see Additional file 1: Figure S2 for Spearman’s
correlation between each marker gene and AAI for all
genomes altogether). For the more distantly related
genomes with AAIs lower than 95 %, the 16s rRNA
percent identity correlates very well with AAI. In fact,

a

b

Fig. 2 The 16s rRNA percent identity compared with the average AAI for all pairs of genomes (a) and with random samplings (b). The latter shows
the 95 % confidence interval of AAI for each 2 % range of 16s rRNA percent identity, based on 20 random samplings of 100 genome pairs to assure
that no genome was considered twice. While there is a general trend that higher 16s rRNA similarity indicates higher AAI, the range of AAI becomes
broader for prokaryotes with more similar 16s rRNA sequences. For example, pairs of prokaryotes with 98 % 16s rRNA identity can have an AAI
of anywhere between 50 and 100 %. The range of average AAI values for each bin is plotted in red, with the 95 % confidence interval upper
and lower boundaries plotted in black
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there is only one other marker gene (rplP) that yields
a slightly better correlation than 16s rRNA for these
genome pairs. However, when it comes to closely related
genomes, with AAIs over 95 %, most markers outperform
16s rRNA (Fig. 3). Among the markers whose percent
identities correlate better with AAI, for genomes with AAI
over 95 %, is rplP. This means that rplP provides better
correlations with AAI for both closely and distantly re-
lated genomes. It is interesting to note that rpoB and recA
are among the many marker genes that outperform 16s
rRNA for closely related genomes. This likely explains
why these markers were previously shown to be more use-
ful for classifying strains within specific lineages [19–21].
It is also worth noting the groL gene (often referred to
as groEL or cpn60 (see Additional file 1: Table S2 for al-
ternative names of surveyed marker genes)). Fitting with
previous suggestions that groL may be a particularly well-
performing marker [48, 49], we found that the percent
identity of groL correlates equally well with AAI for both
closely and distantly related prokaryotes (Fig. 3).
The better correlation with AAI observed for the per-

cent identities of various marker genes suggests that some
of them should be more useful than the 16s rRNA gene in
classifying and separating strains within closely related lin-
eages. While we cannot know the true species trees of any
bacterial lineage, we again relied on an assumption that
the best trees available to us will be generated by consider-
ing levels of similarity between all shared orthologs or, in
other words, by considering AAI. We therefore recon-
structed predicted species trees of three bacterial lineages,
using AAI or each of the 74 marker genes including 16s
rRNA. The three bacterial lineages for which we recon-
structed such trees were Escherichia/Shigella (Additional
file 1: Figure S3), Streptococcus (Additional file 1:
Figure S4), and Bacillus (Additional file 1: Figure S5).
The trees reconstructed based on each of the marker
genes (including the 16s rRNA gene) were compared
by how well they resemble the tree reconstructed
based on AAI (Additional file 1: Table S3).

Manual examination of the AAI-generated trees and
of trees generated using 16s rRNA results in a number
of examples in which the tree generated using 16s rRNA
does not provide accurate separation between strains. For
example, the Escherichia/Shigella tree generated based on
AAI (Fig. 4a) well separates the E. coli O157:H7 strains
and E. coli O55:H7 strains, which were mixed in the tree
generated from 16s rRNA identities (Fig. 4b). In addition,
the 16s tree failed to show an immediate common ances-
tor for Shigella dysenteriae and Escherichia coli O157:H7
[50], while this is clearly seen in the AAI tree. In contrast,
the trees generated based on several marker genes were
able to capture these separations (Additional file 1:
Figure S3). Similar results can also be seen for the
Streptococcus and Bacillus lineages (Additional file 1:
Figures S4 and S5).
To quantify the usefulness of the marker genes in recon-

structing similar relationships between strains to those ob-
served using genome-wide information, we computed the
split distance between each marker gene tree and the AAI
tree (Additional file 1: Table S3, “Methods” section). For all
three lineages, many marker genes outperformed the 16s
rRNA gene. In fact, out of 74 marker genes (including 16s
rRNA), the 16s rRNA gene was only the 48th, 64th, and
31st best-performing gene in reconstructing the AAI tree
of Escherichia/Shigella, Bacillus, and Streptococcus, respect-
ively. The top 10 marker genes that best reconstructed each
lineage are listed in Table 1. The genes that were most use-
ful for reconstruction of the AAI-based tree vary between
lineages, suggesting that marker genes need to be individu-
ally selected for each specific lineage of interest.

Marker genes that are least conserved in their sequences
within a lineage can be used to generate trees most
similar to that inferred using AAI within that lineage
The above finding that different marker genes seem to
be most useful for reconstructing the AAI-based tree of
different bacterial lineages raises the question of how to
choose the correct marker genes for examining a lineage
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Fig. 3 Spearman’s correlation between each marker gene and the average AAI for distantly related prokaryotes whose AAIs are lower than 95 % and
closely related prokaryotes whose AAIs are greater than 95 %. Genes are ordered by decreasing correlation coefficient for closely
related prokaryotes
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a

b

Fig. 4 Trees of the Escherichia/Shigella lineage generated a based on AAI and b based on 16s rRNA percent identity. The latter fails to separate
some major divisions of this lineage and poorly reconstitutes the genome-wise similarity relationship
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of interest. We hypothesized that genes that are less
conserved in their sequences within a lineage should be
more capable of capturing the evolutionary differences
between its members and therefore should allow for the
reconstruction of better trees. To test this hypothesis,
we ranked the different marker genes according to their
percent identities within the three examined lineages
(“Methods” section). Genes with higher ranks (closer to
74) have lower percent identities (are less conserved in
their sequences). At the same time, genes with lower
ranks (closer to 1) have higher levels of sequence conser-
vation. As is shown in Fig. 5, the rank of genes strongly
correlates with their AAI-based tree reconstruction per-
formance, for the three lineages examined (p values ≪0.001
according to the Spearman correlation test). This means
that marker genes that are the least conserved in their se-
quences within each lineage can be used to better recon-
struct the AAI-based tree for the given lineage.
An example of this trend can be seen when considering

the marker gene with the lowest levels of sequence con-
servation for the Bacillus lineage, coaE. The correlation
observed between AAI and the percent identity of coaE is
much better than that observed between AAI and the per-
cent identity of the 16s rRNA gene (Fig. 6a). Furthermore,
coaE reconstructs a tree that is much more similar to the
one obtained using AAI (Fig. 6b). Specifically, when we
used the 16s rRNA gene to reconstruct the Bacillus tree,
we could not distinguish between closely related genomes.
However, when we used coaE, such closely related ge-
nomes could be clustered as they were in the AAI-derived
tree (Fig. 6b).
It was previously suggested that Bacillus anthracis (the

causative agent of anthrax), Bacillus cereus, and Bacillus
thuringiensis are genetically one species in spite of their
widely different phenotypes and pathogenic effects. In
agreement with previous studies into Bacillus [51], the
trees we reconstruct for Bacillus using AAI or coaE both
show that Bacillus has two major clades, with B. anthracis

forming a monophyletic branch in one of the clades
(Fig. 6b). In contrast, the 16s rRNA reconstructed tree
does not capture the two-clade division and also does not
capture the monophyletic branch of B. anthracis. This is
noteworthy because it demonstrates that by using marker
genes, individually chosen to best separate particular line-
ages of interest, we may in some cases be able to separate
pathogens (e.g., anthrax) from less pathogenic members of
their lineage.
Combined, our results suggest that the relative levels of

sequence conservation of marker genes provide a useful
metric for the selection of the best markers to use to infer
degrees of genome-wide similarity within specific lineages
of interest.

Conclusions
The 16s rRNA gene was used in many microbiome stud-
ies in which it was demonstrated that fluctuations in
microbiome structure correlate with ailments such as
obesity [52, 53], caries and periodontal disease [54, 55],
gastrointestinal disease [56, 57], and urinary tract infec-
tions [58]. At the same time, as we show here and others
have shown before us, 16s rRNA is not very useful when
it comes to inferring the degree of genome-wide similar-
ity of closely related prokaryotic strains. Understanding
whether and how fluctuations in specific species abun-
dances contribute to the observed correlations may thus
require separation of strains at higher resolution than pos-
sible using 16s rRNA. For example, in microbiome studies
that aim to separate certain members from a lineage such
as the pathogenic ones, or revisit a classification scheme, a
marker that can better distinguish between closely related
genomes may be required.
Here, we present an analysis quantifying the extent to

which 16s rRNA similarity predicts genome-wide similar-
ity between both closely and distantly related prokaryotes.
We showed that 16s rRNA is one of the best marker genes
for inferring genome-wide gene sequence similarity (as
estimated using AAI) for distantly related genomes. At
the same time, many marker genes can be more useful
than 16s rRNA, when it comes to estimating genome-
wide levels of gene sequence similarity, for closely related
prokaryotes. Finally, we show that the marker genes that
are least conserved in their sequences within a lineage of
interest are the most useful in inferring trees that resem-
ble those constructed based on genome-wide similarity
information (as measured using AAI).
We show that less sequence-conserved markers are less

useful than 16s rRNA and other more sequence-conserved
markers for inferring genome-wide levels of gene sequence
similarity between distantly related prokaryotes. At the
same time, less sequence-conserved markers are more
useful for inferring similarity of closely related prokary-
otes. Why is this the case? Less conserved genes are

Table 1 The identity of the top 10 best performing markers
differs between the three examined lineages

Escherichia/Shigella Streptococcus Bacillus

argS nrdA cdsA

glnS serS glyA

ileS dnaN hisS

valS cpsG leuS

infB fusA pheT

fusA proS tmk

topA pyrG infB

Ffh tyrS ksgA

proS ftsY pheS

Tmk glnS topA
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Fig. 5 Trees generated using less sequence-conserved marker genes better reconstitute the tree generated using AAI, for three lineages: a Escherichia/
Shigella, b Streptococcus, and c Bacillus. The percent identity rank of each gene represents its relative sequence conservation within the lineage.
The split distance represents the resemblance between the tree generated using each marker gene and the tree generated using AAI. Spearman
correlation coefficients and p values are shown, and a linear trend line is drawn that minimizes the squared error
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ones that have, per definition, acquired more changes
in their sequences. These changes can include indels
and multiple hits at the same exact sites, which will
make alignments and subsequent quantification of levels
of similarity less reliable at larger evolutionary distances.
For such distantly related genomes, levels of similarity
between more sequence-conserved markers, such as
16s rRNA, will result in better inference of genome-
wide levels of similarity. At the same time, the fact that
less sequence-conserved markers accumulate more sub-
stitutions gives them more power to detect differences
between closely related strains. This makes them more
useful for predicting genome-wide similarity at short
distances.
Prokaryotic genomes tend to undergo substantial hori-

zontal gene transfer (HGT). Such HGT can greatly dilute
any signal pertaining to the relationship between strains
and lead to false inferences. This is true no matter what
method of inference is used, be it 16s rRNA-based,
based on other markers, or even based on whole micro-
biome or whole genome data (such as AAI). While whole
genome (AAI)-based classification can therefore also be
quite noisy, it nevertheless provides us with the best

possible inference of the extent of similarity between ge-
nomes, since they utilize data from all available loci, rather
than from a specific gene alone. Using data from entire ge-
nomes is not, however, always feasible, especially not in
microbiome studies in which most bacteria cannot be cul-
tured. Shotgun metagenome studies allow one to combine
information from large number of loci, but in a much
more complex way, since rarely will multiple loci be se-
quenced from exactly the same strain of prokaryote. Add-
itionally, such studies are often beyond the budget of
many researchers. This is why 16s rRNA has become so
useful for microbiome studies, and this is also why other
marker genes may be useful. However, a concern was
raised that markers other than 16s rRNA may be less use-
ful, because they may undergo more HGT than 16s rRNA
[28]. Here we show that even under the potential impact
of HGT, some less sequence-conserved markers outper-
form 16s rRNA, in predicting genome-wide levels of gene
similarity (as estimated using genome-wide AAI data), for
closely related bacterial lineages. This in turn may suggest
that as a group, these markers do not undergo more HGT
than 16s rRNA within the lineages in which they outper-
form 16s rRNA.
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Fig. 6 Comparison of the 16s rRNA gene and the coaE gene within the Bacillus lineage, for a the gene identity of 16s rRNA or coaE vs. the average
AAI and b tree reconstructed from 16s rRNA or coaE gene in comparison with the tree reconstructed from AAI. As the least sequence-conserved
marker gene within the Bacillus lineage, coaE correlates well with the AAI in percent identities and is able to reconstruct the tree resembling that
reconstructed from AAI
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We find that markers that provide the best resolution,
for a specific lineage, are those that are least conserved
in their sequences within that lineage. Therefore, less
sequence-conserved markers can be chosen for specific
lineages of interest that would provide more accurate re-
construction of the diversity in ecosystems and allow for
higher resolution microbiome studies. In order to facili-
tate easy marker choice, we have built the POGO data-
base (Database of Pairwise-comparisons Of Genomes
and conserved Orthologous genes) [59]. POGO-DB al-
lows users to rank markers according to their relative
levels of sequence conservation within a lineage of inter-
est and also allows users to compare the percent identity
of different markers to AAI for the same lineage. There-
fore, users can use POGO-DB to verify whether the 16s
rRNA gene has good correlation to the AAI within their
lineages of interest or to select the best alternative
markers for the lineages in which they are interested, in
an informed manner.
An advantage of using 16s rRNA has been that its

conservation is such that universal primers can be de-
signed to amplify its sequence across all prokaryotes.
This is likely not possible for most other marker
genes and especially not for the ones that are least
conserved in their sequences. However, as we demon-
strate, the less sequence-conserved marker genes are
most useful for inferring finer grained strain differ-
ences for particular lineages of interest. Therefore, in
order to utilize these markers, where they are most
useful, it is only necessary to design primers that can
recognize areas of the marker genes’ sequences that
are conserved within a lineage of interest. To demon-
strate the feasibility of designing such primers, we de-
signed 10 primer sets for the 10 marker genes that
are least conserved in their sequences in the Escheri-
chia/Shigella lineage (Additional file 1: Table S4).
These primer sets were designed to allow for the
amplification of these 10 markers across all sequenced
Escherichia and Shigella strains. For 7 of the 10
markers, the designed primers enable the amplifica-
tion of over 70 % of the full gene length. In order to
assist researchers in designing lineage-specific primers
for markers of interest, we have added a feature to
POGO-DB that allows users to download the se-
quences of a marker gene from a list of specified ge-
nomes. These sequences can then be aligned to
identify regions that are conserved within the lineage
of interest and that can be used to design primers that
will amplify the gene within that lineage.
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