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Abstract: Prior carburization of semi-finished steel sheets is a new process variant in hot stamping to
manufacture parts with tailored properties. Compared to conventional hot stamping processes, a
complex phase typed steel alloy is used instead of 22MnB5. Yet recent investigations focused on final
mechanical properties rather than microstructural mechanisms cause an increase in strength. Thus,
the influence of additional carburization on the microstructural evolution during hot stamping of a
complex phase steel CP-W®800 is investigated within this work. The phase transformation behavior,
as well as the grain growth during austenitization, is evaluated by in-situ measurements employing
a laser-ultrasound sensor. The results are correlated with additional hardness measurements in as-
quenched condition and supplementary micrographs. The experiments reveal that the carburization
process significantly improves the hardenability of the CP-W®800. However, even at quenching rates
of 70 K/s no fully martensitic microstructure was achievable. Still, the resulting hardness of the
carburized samples might exceed the fully martensitic hardness of 22MnB5 derived from literature.
Furthermore, the carburization process has no adverse effect on the fine grain stability of the complex
phase steel. This makes it more robust in terms of grain size than the conventional hot stamping
steel 22MnB5.

Keywords: hot stamping; phase transformation; quenching; grain growth; carburization

1. Introduction

Today’s automotive industry faces various challenges. One of the biggest drivers of
innovations is the desire to lower pollutant emissions by either reducing fuel consump-
tion or by establishing new propulsion concepts. Within the last decade, especially the
lightweight design of car body parts was a common approach to reach this goal. Besides
conventional lightweight materials such as aluminum or fiber-reinforced plastics, steel is
still utilized, in particular when considering costs [1] and life cycle assessment (LCA) [2].
In this context, the application of ultra-high strength steels is of high interest primarily
concerning safety-relevant components, such as b-pillars or front bumpers [3]. Against
this backdrop, hot stamping of boron-manganese steels has developed to a state-of-the-
art process within recent years. This process consists out of a full austenitization of the
sheets above AC3 temperature subsequently followed by immediate combined forming
and quenching. By exceeding the material-specific critical cooling rate, a fully martensitic
microstructure is achieved, which results in tensile strength above 1500 MPa [4]. There are
several process variants to manufacture parts with tailored properties by hot stamping [5].
Most of them aim to improve the ductility of the final components, which can be beneficial
regarding crash behavior since energy absorbance can be improved [6]. Examples for
these state-of-the-art process adaptions are specific heating strategies with only localized
austenitization [7] or partial quenching to reduce the cooling rate in particular areas [8].
However, with several limitations regarding the flexibility of these processes [9] as well as
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other disadvantages such as longer process chains [5] or thermal distortions [10], the devel-
opment of an alternative approach is reasonable. The concept of tailored carburization is a
new process variant, which aims to adjust the mechanical properties by locally increasing
the carbon content [11]. Contrary to the other process variations, local strengthening is
desired rather than improved ductility. For instance, this can be advantageous in terms of
battery electric vehicles, where the battery housing is often referred to as a non-deformation
zone and highest structural integrity is mandatory to prevent even small damage [12].

In the process of tailored carburization, the sheets are locally coated with carbonic
material. During several hours of heat treatment, the carbon atoms diffuse in the base
material. Depending on the heat treatment parameters, a specific hardness gradient is
developed [13]. After carburization, a semi-finished part with a distinct carbon distribution
is present, which can be conventionally hot stamped afterward. Recent investigations
focused on a complex phase steel CP-W®800 as a base material since it meets the two
requirements for this process. Firstly, it is press hardenable and its carbon content in
as-delivered condition allows a further increase in strength by carburization.

Compared to the conventional hot stamping steel 22MnB5 or state-of-the-art process
variants, hot stamping of a locally carburized complex phase steel exhibits higher flexibility.
The mechanical properties can be adjusted in a wide range, which is not bound to any
tool modifications or adjustments regarding the oven technology. The same applies to the
geometrical design of the zones with different tailored properties. However, the required
time for the additional heat treatment for carburization might be obstructive in terms of
a large-scale industrial application. As concluded in a previous study [13], the process
of combined carburization and hot stamping might be suitable especially for small batch
size productions and prototyping, where high flexibility is crucial. Since these types of
manufacturing are often associated with a lower degree of automation, small fluctuations of
individual process steps cannot be precluded. This is especially related to the heat treatment
procedure. Therefore, a robust material behavior during austenitization is advantageous.
To enable a suitable process design, as well as in terms of process control, it is necessary to
investigate the microstructural evolution during the hot stamping process.

Regarding the complex phase steel, several studies on the phase transformation were
already undertaken. Hairer et al. [14] investigated the influence of different quenching rates
between 0.6 K/s and 120 K/s. Their experiments revealed, that a mixed microstructure
is present at each of their analyzed cooling rate. They concluded that faster quenching
increases the martensitic phase fraction in favor of ferrite. As stated by the authors, the
martensite gets auto-tempered at high cooling rates, which makes it hardly distinguishable
from bainite. Comparable results can be found in the study of Kang et al. [15]. While
the overall hardness of as-quenched samples is lower compared to Hairer et al. [14], the
determined phase transformation behavior is similar. Furthermore, Kang et al. [15] also
notice the formation of auto-tempered martensite.

As summarized by Nanda et al. [16], there are several more studies on the phase
transformation behavior of complex phase-type steels. However, most of their chemical
composition is different from the CP-W®800 investigated within this publication. Therefore,
a more detailed discussion on these references is not provided.

While different studies already indicate the phase transformation behavior of the
conventional CP-W®800 during quenching, the influence of the various carbon content
after carburization is unknown. Previous investigations on the process combination of
carburization and hot stamping mainly concentrated on the final mechanical properties.
The mechanisms for the increase in strength are not yet analyzed in detail. In this context,
especially the effect of additional carbon content on the hardenability during quenching and
the impact on the hardness of martensite is of interest. Further focus lies on the evaluation
of the grain growth behavior. Although complex phase steels have good fine-grain stability
due to microalloying [16], the carburization process might influence grain coarsening since
the carbon content is linked to the solubility of microalloying precipitates [17].
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Therefore, in this study, the phase transformation during hot stamping of a complex
phase steel in carburized, as well as in as-delivered condition, is investigated. The results
are correlated with hardness measurements and additional micrographs. The second part
of this study focuses on the analysis of the grain growth behavior since grain size can
significantly influence the mechanical properties as known from the Hall–Petch relationship.
The measurement of the grain size and the determination of phase transformation are
conducted by employing a laser-ultrasound sensor, which allows for the in-situ evaluation
of microstructural changes.

2. Materials and Methods
2.1. Methodology

This investigation focuses on the microstructural changes during the hot stamping
process of a carburized complex phase steel. This refers to the grain growth behavior
during austenitization as well as to the phase transformation during quenching. The
influence of the additional carburization process is assessed by analyzing carburized
and non-carburized samples of the respective steel alloy. To enable an overall process
evaluation regarding the microstructural evolution of the carburized complex phase steel
during hot stamping, the results are compared to the material behavior of the conventional
hot stamping steel 22MnB5.

The chosen methodology within this study is shown in Figure 1. The hot stamping
process is replicated with a thermophysical simulator. During the heat treatment, the
grain growth behavior, as well as the phase transformation, are analyzed by employing
a laser-ultrasound sensor. In terms of the phase transformation, the influence of various
quenching rates will be taken into account. The results from the ultrasonic testing during
simulated hot stamping is correlated with complementary investigations on secondary
samples, which refers to hardness measurements and metallographic analysis.
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Figure 1. Methodology used to investigate the microstructural evolution during hot stamping of a carburized complex
phase steel.

The experiments on the phase transformation behavior are limited to the carburized
and non-carburized complex phase steel since phase transformation data of 22MnB5 is
broadly available in the literature. Regarding the grain growth during austenitization, the
tests are done with 22MnB5 as well.
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2.2. Materials
2.2.1. Investigated Materials

The base material in this study is the complex phase steel CP-W®800 (Thyssenkrupp
AG, Essen, Germany) with a sheet thickness of 1.6 mm. As already mentioned in the
introduction, this steel grade is press hardenable and its carbon content in the as-delivered
condition is significantly lower compared to the conventional hot stamping steel 22MnB5.
The exact chemical compositions are shown in Table 1. Since 22MnB5 is the most common
steel grade for hot stamping, the results of CP-W®800 are compared to those of 22MnB5.
While phase transformation data is broadly available for 22MnB5, continuous grain growth
behavior is not. Several studies might have analyzed prior austenite grain size depending
on different austenitization parameters, however, a continuous evaluation of the grain
size during holding above AC3 is nonexistent. Therefore, the experiments with the laser-
ultrasound sensor for the in-situ characterization of the grain size is done for 22MnB5 as
well for comparison.

Table 1. Chemical composition of CP-W®800 [18] and 22MnB5 [19] in wt.%.

Material C Si Mn P S Al Ti + Nb Cr + Mo V B

CP-W®800 0.14 1.00 2.20 0.080 0.015 0.015–2.0 0.25 1.00 0.20 0.005
22MnB5 0.25 0.40 1.4 0.025 0.010 0.015 – 0.50 – 0.005

Within this work, three different material conditions of CP-W®800 are investigated.
The first one is the as-delivered condition. This is also referred to as the non-carburized
condition and the conventional hot stamping process. To assess the influence of the
additional carburization process, specimens with two different carburization treatments
are tested as well. While the carburization temperature of these both conditions amounts
to 900 ◦C, their respective carburization time is 3 h and 6 h. The parameter combinations
were chosen based on previous investigations [13]. After a carburization treatment of
3 h, a distinct carbon gradient is present, while 6 h of carburization results in a more
homogeneous distribution. Analyzing two material conditions with a different degree
of carburization helps to improve process understanding in terms of the influence of the
additional carburization on the microstructural evolution during hot stamping.

2.2.2. Mechanical Properties of Carburized Complex Phase Steel

Regarding the complex phase steel, three different material conditions are investigated
within this study. As described in the introduction section, the carburization process leads
to a carbon gradient along the sheet thickness which can be visualized through the hardness
distribution. Contrary to that, the samples being hot stamped from the as-delivered
condition exhibit homogeneous material properties. One part of this investigation focuses
on the analysis of the hardness of as-quenched samples as a function of the different
material conditions and various quenching rates. For assessing the resulting hardness, it is
necessary to set up a benchmark for each material condition. For this purpose, the hardness
of carburized and non-carburized samples after imitated hot stamping is shown in Figure 2.
Each of these samples underwent austenitization for 4 min at 900 ◦C. To simulate the
hardening step in hot stamping, the sheets were water quenched after austenitization.
Since specimens without carburization do not exhibit a hardness gradient, the values
are presented as a horizontal line. In the as-quenched condition, the hardness of non-
carburized specimens amounts to around 420 HV0.2. This is in good agreement with a
previous study from Merklein and Svec [20], where a suitable process window for the
austenitization of CP-W®800 was defined on basis of hot stamping experiments. In their
work, the authors used a special quenching tool for their experiments. Since the hardness
of water-quenched and tool-quenched samples are coincident, the approach with water
cooling for simulated hot stamping is suitable.
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Due to the symmetry of the carbon diffusion process, the hardness profile of the
carburized samples presented in Figure 2 is only shown from the mid-section (x = 0 mm)
to the edge (x = 0.8 mm). It can be seen that after 6 h at 900 ◦C that the hardness gradient is
a significantly smaller compared to the treatment of 3 h so that the hardness distribution is
more homogeneous. This can also be seen through the carburization depth, which is often
referred to as the distance from the surface, where a hardness of 550 HV is achieved [21]. In
the case of the 3 h at 900 ◦C, the carburization depth amounts to 0.4 mm and in the case of
6 h, nearly complete through hardening is reached with respect to the standard deviation.
The resulting hardness ranges between 480 HV0.2 and 620 HV0.2 after 3 h of carburization
and from 520 HV0.2 to 580 HV0.2 after 6 h of carburization.

2.3. Experimental Methods
2.3.1. Simulation of the Thermal Treatment during the Hot Stamping Process

The experiments for the investigation of the microstructural evolution are done in a
thermophysical simulator Gleeble 3500 GTC from Dynamic Systems Inc. (Poestenkill, NY,
USA). to simulate the actual hot stamping process. The sheets are heated with a heating rate
of 15 K/s to a temperature of 900 ◦C and held for 4 min. To replicate the in-die quenching
step of conventional hot stamping processes, the samples are cooled with compressed
air after austenitization. To investigate the cooling rate dependent phase transformation
behavior, nominal quenching rates of 10 K/s, 30 K/s, 50 K/s, 70 K/s, and 100 K/s are
applied. The temperature is controlled using point welded thermocouples type K. The
nominal cooling rate is constant upon the beginning of phase transformation. Due to latent
heat during phase transformation, the effective quenching rate is lower. The resulting
average quenching rates in the temperature range between 800 ◦C and 250 ◦C are listed
in Table 2. To reduce any oxidation of the samples, which significantly influences the
signal-to-noise ratio during laser-ultrasonic testing, the experiments are done in a vacuum.
To improve the significance of the experimental results, each parameter combination is
tested three times as indicated in any figure by n = 3.
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Table 2. Average quenching rates between 800 ◦C and 250 ◦C.

Nominal Quenching Rate
·
Tnom in K/s

10 30 50 70 100

Non-carburized
+ simulated hot stamping 10.0 30.0 ± 0.1 49.7 ± 0.3 62.8 ± 1.5 69.8 ± 1.5

Carburized, t = 3 h
+ simulated hot stamping 10.0 29.9 47.8 ± 0.5 60.6 ± 0.5 67.9 ± 0.9

Carburized, t = 6 h
+ simulated hot stamping 10.0 29.9 47.8 ± 0.2 61.2 ± 0.3 69.3 ± 0.9

Besides this described process sequence, additional tests are done with longer holding
times up to 6 min to estimate the sensitivity of the grain size to fluctuations of the dwell time.
These supplementary tests are done with carburized samples and with the conventional
hot stamping steel grade 22MnB5 for comparison.

2.3.2. In-Situ Analysis of the Microstructure by Laser-Ultrasonics

The evaluation of the microstructural changes during the simulated heat treatment of
the hot stamping process is done using a laser-ultrasonic technique. This measurement
principle is based on the interaction between a laser-generated ultrasound impulse and
the sample material [22]. For this purpose, a LUMet system from Dynamic Systems Inc.
(Poestenkill, NY, USA) and Tecnar (Saint-Bruno-de-Montarville, Canada) is used, which is
directly coupled to the thermomechanical simulator Gleeble 3500-GTC (Dynamic Systems
Inc., Poestenkill, NY, USA). The system utilizes a frequency-doubled Nd:YAG laser pulse
to vaporize a small amount of material on the sample’s surface. The vaporization depth is
only in the order of around 10 nm [23]. The thermomechanical pressure on the surface due
to the ablation process generates an ultrasonic pulse in the sample. This impulse travels
through the sample and is reflected on the rear side. The incoming echo on the front is
then detected by a laser interferometer. This happens not only for the first but also for the
consecutive echoes. The measured ultrasound signal represents the average characteristics
of the measuring volume, which consists out of the laser spot with a diameter of around
2 mm times the sample’s thickness. The experimental setup is shown in Figure 3.
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The determined ultrasound signal has two measurands that can be used for the char-
acterization of the material’s properties. The ultrasonic velocity is influenced by the elastic
moduli [24], which is itself affected by other factors such as temperature, alloying and
phase transformation [25]. In their review on the correlation between ultrasonic properties
and microstructural evolution, Toozandehjani et al. [22] presented several empirical formu-
las for the relationship between the elastic constants and the ultrasonic velocity. During
ultrasonic testing, the velocity is identified from two consecutive echoes of one ultrasound
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signal. From the temporal delay between those echoes and the known sample thickness,
which corresponds to the covered distance, the velocity can be calculated. Since other
factors such as alloying are constant during experiments or can be directly measured like
temperature, the velocity can be used to detect phase transformations. The applicability
of this method was already validated by several studies. In the investigation of Militzer
et al. [26], the results from ultrasonic testing show good agreement with conventional
dilatometry. Dubois et al. [25] validated the mathematical relationship by comparing the
measured velocity with calculated values. Kruger and Damm [27] investigated different
steels with various carbon content and concluded that the carbon content of the alloy has
only a negligible effect on the velocity. However, in a further study, Kruger et al. [28]
also noticed a deviation between dilatometry and laser ultrasonics during an isothermal
phase transformation into bainite. The authors refer to this behavior as a possible carbon
enrichment of austenite, which influences elastic constants [29].

The second measurand is the attenuation of the amplitude between consecutive echoes,
which is caused by scattering, diffraction, absorption, and reflection. In polycrystalline
materials, the dominant mechanism scatters at grain boundaries. Depending on the ratio
between the acoustic wavelength and the grain size, the relationship between grain size
and attenuation is either a direct or an indirect proportional [30]. The evaluation of the
ultrasound signal is done with the related software CTOME® (V2.31.03, 2021, CTOME
Software & Consulting Inc., Vancouver, Canada). Compared to conventional methods,
such as a contact dilatometer and metallographic analysis, laser-ultrasonics has several ad-
vantages. Especially in systems with resistance heating, a temperature gradient influences
the measurement of phase transformation. This phenomenon is even more apparent when
using a contact linear variable differential transducer (LVDT), where air-cooled quartz rods
are in contact with the heated sample. On the contrary, laser-ultrasonics is based on a small
measuring volume, where constant temperature can easily be achieved. Regarding the
evaluation of grain size, it is possible to do continuous in-situ measurements at elevated
temperatures with up to 50 Hz. Conventional metallographic analysis would require a
significant amount of sample preparation work to get a fraction of measurement density.
This measuring principle was already used and validated for several applications. Garcin
et al. [31] investigated the influence of prior austenitic grain size and phase on the growth
during reheating. In their work, Militzer et al. [26] measured inter alia the phase trans-
formation and grain development during the simulation of a dual torch welding process.
While these studies focus on steel, also other materials can be evaluated, as seen with
titanium by Shinbine et al. [23] or superalloys by Garcin et al. [32].

2.3.3. Supplementary Experiments

After the simulated hot stamping process in the thermophysical simulator Gleeble
GTC (Dynamic Systems Inc., Poestenkill, NY, USA), secondary samples are taken from
the heat-treated specimens for further investigations. This includes microhardness mea-
surements using a Fischerscope HM2000 (Helmut Fischer GmbH, Sindelfingen, Germany)
and metallographic analysis. Regarding the microscopy work, the samples are etched with
3% Nital for the qualitative identification of different phases as well as with the etchant
“Grün QT” from Schmitz Metallographie GmbH (Herzogenrath, Germany) to make prior
austenitic grain boundaries visible.

3. Results and Discussion
3.1. Phase Transformation during Hot Stamping
3.1.1. Procedure for the Evaluation of the Testing Results

The first part of the results section focuses on the phase transformation during hot
stamping depending on various quenching rates and material conditions. This is done
by comparing the temperature-dependent decomposition of the austenitic phase, as well
as by determining the beginning and end of the phase transformation. The calculation of
the transformed fraction ξ is done from the resulting data from the ultrasound evaluation
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computed in the CTOME® software. In Figure 4a, the development of the ultrasonic
velocity during the simulation of the hot stamping process in the Gleeble is depicted.
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Figure 4. (a) Results from the measured ultrasonic velocity and (b) calculation of the transformed fraction.

The system continuously measures the velocity from 75 ◦C up to 900 ◦C during heating
and austenitization and until 100 ◦C during quenching. From this data, two important
aspects are visible. During heating, the change in velocity is non-linear. Furthermore,
there is a distinctive change in slope at a temperature of around 770 ◦C, which is equal
to the Curie temperature of the α-phase. For higher temperatures, the velocity of α

changes linearly. For the austenitic phase, the linear correlation between temperature and
velocity is valid for all temperatures. Since the velocity of the γ-phase and the α-phase
only exhibit minor differences above the Currie temperature of α and both vary linearly,
phase transformations are barely detectable in this temperature range [27]. This has to
be taken into account when trying to investigate phase transformations. Since previous
investigations from Hairer et al. [14] and Kang et al. [15] on the current CP-W®800 suggest
that the onset of phase transformation is at around 700 ◦C, the ultrasonic measurement
method is applicable.

Another conclusion that can be derived from the change in slope of the ultrasonic
velocity above TCurie is that the classical lever rule with two tangents cannot be applied,
since the velocity of the α-phase shows a non-linear dependence. Therefore, an approach
proposed by Militzer et al. [26] is used, where a lever rule between the tangent of the
linear varying austenitic phase and the non-linear varying α phase, measured during
heating, is applied. As presented in Figure 4b, a tangent is fitted in the high-temperature
range before the onset of phase transformation of the ultrasonic velocity curve during
quenching as in conventional dilatometry. This corresponds to the ultrasonic velocity of
the austenite vaust(T). To account for the non-linearity of the α-phase, the measured curve
upon heating is shifted to match the ultrasonic velocity curve measured during quenching
in the low-temperature range. The transformed fraction ξ is calculated according to the
lever rule shown in Figure 4b.

3.1.2. Phase Transformation of Non-Carburized CP-W®800 during Conventional
Hot Stamping

Figure 5 shows the decomposition of the austenitic phase during the quenching
of non-carburized samples. Nominal cooling rates between 10 K/s and 100 K/s were
applied. An increase in cooling speed reduces the onset of phase transformation. For
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10 K/s, the decomposition of austenite begins roughly at 675 ◦C. For higher quenching
rates above 30 K/s, only a minor effect can be seen, which is not significant due to the
standard deviation.
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Figure 5. Decomposition of the austenitic phase during quenching of non-carburized samples.

Another difference is visible regarding the slope of the decomposition curve. For
10 K/s, 30 K/s, and 50 K/s the curve progression is very similar, where the respective
graphs exhibit a nearly constant shift in temperature between each other. Comparing
50 K/s and 70 K/s, different behavior is observable. In the high-temperature range at the
beginning of the transformation, the graph for 70 K/s is shifted to lower temperatures, as
already seen for quenching rates between 10 K/s and 50 K/s. At around 50% transformed
fraction, the slope in the decomposition curve increases for a cooling rate of 70 K/s, so that
the transformation is finished at a higher temperature. This progress is even more apparent
for a quenching rate of 100 K/s, where the change in slope already begins at a transformed
fraction of around 0.3. These differences regarding the transformation rate might be an
indication of significant changes regarding the phase composition.

Various authors already analyzed the transformation behavior of complex phase steels,
as seen in the review of Nanda et al. [16]. When comparing the results of these investi-
gations to the current study, varying phase compositions have to be taken into account,
especially since the exact alloying system is not listed completed in any case. Furthermore,
differences regarding the heat treatment have an additional influence. However, quite
similar material behavior can be seen. In the work of Hairer et al. [14], quenching rates
from 0.6 to >80 K/s were investigated. The onset of phase transformation is slightly higher
compared to the current results but it is in the same range of approx. 600 ◦C to 700 ◦C and
shows the same trend. A very good agreement can be observed with the results published
by Kang et al. [15]. This relates to the decrease in temperature regarding the onset of phase
transformation as well as the transformation rate.

3.1.3. Comparison of Start and End Temperatures of the Phase Transformation of
Carburized and Non-Carburized Semi-Finished Parts during Simulated Hot Stamping

For a more quantitative analysis, the beginning and end of the phase transformation
were calculated from the decomposition curves for non-carburized as well as carburized
samples. Figure 6 shows the respective values, whereby the start of phase transformation
equals a transformed fraction of 5% and the end of transformation equals 95%. There is
no significant effect of the material condition in terms of the beginning of phase trans-
formation. For all three tested conditions, the onset of phase transformation is shifted to
lower temperatures with an increasing quenching rate. However, the difference in the start
temperature amounts to less than 75 ◦C between cooling rates of 10 K/s and 100 K/s. The
overall high start temperatures are an indication, that a ferritic phase fraction is present for
all three material conditions.
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Figure 6. (a) Start and (b) end temperature of the austenite decomposition.

Regarding the conventional hot stamping alloy 22MnB5, different studies suggest
that a comparatively low quenching rate is sufficient to prevent the formation of ferrite.
Aranda et al. [33] presented a CCT (continuous cooling transformation) diagram, which
indicates a necessary cooling rate of 10 K/s to have a solely bainitic and martensitic phase
composition. In their work, Nikravesh et al. [34] identified a cooling rate of 16 K/s to
prevent the formation of ferrite during quenching of non-deformed 22MnB5. Comparable
results can be found in the investigation of Horn et al. [35]. While the transformation
curves upon quenching with 10 K/s exhibit a ferritic transformation, those with a cooling
rate of 20 K/s do not. The significantly bigger driving force for ferrite formation in CP-
W®800 can be explained by the differences in Si content. Silicon boosts the nucleation rate
of ferrite since it enhances the carbon diffusivity in austenite by preventing the formation
of carbides [36].

Regarding the end of phase transformation, which equals a transformed fraction
of 0.95 in this case, there are more pronounced differences between the respective mate-
rial conditions. Within the investigated cooling rates, the carburized samples exhibit a
decreasing finish temperature with increasing quenching rates.

Between nominal rates of 70 K/s and 100 K/s, the change in Tend is not significant due
to the standard deviation, which can be linked to the low differences regarding the effective
cooling rate shown in Table 2. For all cooling rates, samples with 6 h of carburization
exhibit the lowest finish temperature for phase transformation. Under consideration of the
standard deviation, the lowest value of around 300 ◦C is already reached at a quenching
rate of 50 K/s. In the case of semi-finished parts with three h of carburization, the descent
to the minimum of Tend takes until a cooling rate of 70 K/s.

Finish temperatures below 400 ◦C are normally associated with the formation of
martensitic phase fractions. Therefore, in the case of carburized samples, martensite is
expectable for quenching rates of at least 50 K/s. However, it must be considered, that the
measured phase transformation behavior is an average of the measuring volume. In the
case of the carburized samples, this refers to different sections with various carbon content.
A more detailed analysis of this is done through the hardness measurements in Section 3.2.

Regarding the hot stamped samples from the as-delivered condition, at a cooling rate
of 10 K/s, the phase transformation ends at a significantly higher temperature compared to
the carburized material condition. With an increasing quenching rate, this end temperature
decreases to a minimum at a cooling rate of 50 K/s and goes up again for further increase
in the quenching rate. In the case of cooling rates of 30 K/s and 50 K/s, the phase
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transformation finishes at a temperature, which is even below the end temperature of
samples with prior carburization of 3 h.

As previously stated, low finish temperatures are normally associated with the for-
mation of martensite. However, the significant increase in Tend for cooling rates above
50 K/s suggests something else. Moreover, as later results from hardness measurements
and metallographic analysis will show, no martensitic phase fractions are detectable in the
as-quenched condition of as-delivered samples. Therefore, the drop in phase transforma-
tion finish temperature is linked to another factor than martensitic transformation. More
likely than this is carbon enrichment during the ferrite transformation, which increases the
carbon content of the remaining austenite. Due to the higher carbon content, the formation
of subsequent phases such as bainite is shifted to lower temperatures [37]. This effect is
present at low cooling speeds, where a significant amount of ferrite is likely to form. With
higher cooling rates, the amount of ferrite is expected to decrease and therefore, the effect
of the carbon enrichment decreases. As a result, the transformation process is shifted back
to higher temperatures [38]. Kang et al. [15] as well as Hairer et al. [14] also observe carbon
enrichment in their investigations on the transformation behavior on complex phase typed
steel alloys.

In this section, the influence of the additional carburization on the start and end
temperatures of phase transformation during hot stamping was shown. The measurement
data revealed, that the carburization process does not have an impact on the start tempera-
ture, while the end temperature is significantly lowered. Compared to the non-carburized
samples, the lowering of the end temperature was associated with a shift of the phase
composition towards harder fractions rather than carbon enrichment. For a more detailed
analysis, it is necessary to evaluate not only the start and end temperature but also the
whole progress of the decomposition of austenite.

3.1.4. Comparison of the Austenitic Decomposition of Carburized and Non-Carburized
Semi-Finished Parts during Simulated Hot Stamping

Besides the start and end temperatures of the phase transformation, also the curvature
of the fraction transformed shows clear differences between the three material conditions.
Figure 7 exemplarily shows the development of the austenite decomposition depending on
two different quenching rates.
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Figure 7. Decomposition of the austenitic phase at a quenching rate of (a) 30 K/s and (b) 70 K/s for all three different
material conditions.

While the beginning of the phase transformation is nearly identical for all three
semi-finished parts and both quenching rates, the transformation curve is shifted to lower
temperatures. Due to the additional carburization process and the increased carbon content,
the austenitic phase is thermally stabilized [39]. In the case of a quenching rate of 30 K/s,
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there were only minor differences between the material conditions regarding Tend. After
3 h of carburization, the shift of the transformation curves is only small and no changes
in the curvature are observable. Regarding samples with 6 h of carburization, the shift
is more pronounced. Furthermore, the phase transformation activity is only small above
600 ◦C. This can be associated with the formation of less ferrite compared to the other two
material conditions.

While the differences between the curves are mainly limited to the beginning of the
phase transformation at 30 K/s, the whole curvature is affected at a quenching rate of
70 K/s. Again, the expected ferrite transformation above temperatures of 550 ◦C is less
pronounced for the carburized samples. The subsequent formation of bainite presumably
ends at a transformed fraction of 0.6. This is linked to a distinct change in the curvature at
a temperature of around 380 ◦C. Considering the resulting hardness values in Figure 8, this
can be associated with the martensite start temperature.
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As might have been indicated from the results in Figure 7, the carburized samples
exhibit a cyclic behavior. At a quenching rate of 10 K/s, the decomposition of the austenitic
phase is similar for both carburization times. With increasing cooling rates, both curves
diverge from each other first but then converge again. This can be traced back to the
pronounced gradient in carbon content due to insufficient carburization time after three
h. As presented in Figure 2, especially in the mid-section of the samples, the hardness
difference between conventionally hot stamped specimens and those being additionally
carburized for three h amounts to only 50 HV. The transformation behavior of these only
slightly carburized areas is more like the behavior of the as-delivered material condition,
while the outer areas with higher carbon content exhibit different behavior.

At a low quenching rate of 10 K/s, the hardenability of neither the mid-section nor
the outer area is sufficient for a significant variation in the transformation behavior. With
a faster cooling rate of 30 K/s, a higher degree of carburization leads to a change in the
decomposition of the austenitic phase. In the case of specimens being carburized for 3 h,
this applies only to the edge region with more elevated carbon content, so that there is
a gradient regarding the transformation kinetics. The measurement principle of laser-
ultrasonics delivers an average value of the measuring volume, which includes areas with
a low and high degree of carburization. As a result, the calculated decomposition of the
austenitic phase of these samples is approximately an average between the as-delivered
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condition and the fully carburized condition after a heat treatment of 6 h. At even higher
cooling rates, the degree of carburization in the mid-section of samples being carburized
for three h is then sufficient to change the transformation behavior as well. Therefore,
with increasing quenching speed, the respective curves of both carburized conditions
converge again.

For a suitable classification of the phase transformation behavior of the carburized
and the as-delivered CP-W®800, the conventional hot stamping steel 22MnB5 is used
as a reference. Its transformation behavior was already widely investigated by various
authors, such as Naderi [40], Barcellona et al. [41], and Nikravesh et al. [42]. Compared
to the data available in the literature for the 22MnB5, the experimentally determined
phase transformation curves in this study indicate a significantly lower hardenability of
CP-W®800, both in as-delivered and carburized condition. The critical quenching rate for
22MnB5 amounts to approximately 27 K/s [33] for a fully martensitic microstructure.

The respective martensite start temperature is around 400 ◦C [43]. While the transfor-
mation curves of the conventionally hot stamped CP-W®800 did not exhibit any signs of
martensitic transformation, the martensite start temperature of carburized samples was
in a comparable temperature range. However, within the investigated quenching rates,
the onset of phase transformation for all material conditions was above 600 ◦C, which
is associated with the existence of ferritic phase fractions. Therefore, the results of the
transformation curves indicate, that a fully martensitic microstructure was not achievable
for the complex phase steel within the given range of cooling rates, neither in as-delivered
condition nor after additional carburization.

Through the decomposition of the austenitic phase, it was shown, that the additional
carburization process leads to a shift of the phase transformation behavior towards lower
temperatures and therefore probably harder phases. The results revealed that the effect is
more pronounced for longer carburization times. This was justified with a higher degree
of carburization. In this context, the increased stability of the austenitic phase due to the
elevated carbon content has to be mentioned. By means of the two decomposition curves of
the carburized samples in Figure 7, it could be seen that the additional stability of austenite
lowers the phase transformation temperatures. However, a more detailed analysis of this
behavior is rather challenging on basis of the present experimental data, since none of
these samples exhibits a homogeneous carbon content. The measured ultrasonic velocity
corresponds to an average value of the measuring volume. Therefore, different layers
with various carbon content are included in this data. Moreover, possible effects of carbon
enrichment on the ultrasonic velocity are neglected within this analysis. While Kruger and
Damm [27] concluded that the carbon content of the respective alloy only has a negligible
effect, Kruger et al. [28] noticed a possible influence of carbon enrichment during isothermal
phase transformation. In future investigations, the effect of additional carbon enrichment
could be taken into account, i.e., by adapting the approach suggested by Kop et al. [44].

3.2. Hardness of As-Quenched Samples

After quenching, secondary samples were taken from the heat-treated samples and
the hardness of the hot stamped specimens was measured. To account for the variable
hardness gradient along the sheet thickness of carburized samples, the hardness was
evaluated in the mid-section and 200 µm below the surface. The results are depicted in
Figure 8, whereby the cooling rates on the x-axis correspond to the effective values and
not to the nominal rates. For a suitable comparison of CP-W®800 to the conventional
hot stamping steel 22MnB5, its hardness values in as-quenched conditions derived from
literature are included as well. In this context, it is noteworthy, that the hardness values in
the mid-section and near the surface are the same for 22MnB5 since no hardness gradient
is existent.

There are distinct differences regarding the condition of the semi-finished parts and in
terms of the measurement area of CP-W®800. Within the investigated cooling rates, there is
only a small effect on the resulting hardness of as-quenched samples from the as-delivered
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condition. While there is an increase of 20 HV0.2 between cooling rates of 30 K/s and
50 K/s, for faster quenching rates, the hardness remains around 270 HV0.2 to 275 HV0.2.
This is in good agreement with previous findings from Figure 5, where the decomposition
of the austenitic phase showed only minor differences for nominal quenching rates between
50 K/s and 100 K/s. Moreover, the drop in transformation finish temperature at 50 K/s was
explained with carbon enrichment rather than the formation of martensite. The hardness
values do support this since the formation of martensitic phase fractions would significantly
increase the hardness. Considering the average quenching rates between 800 ◦C and 250 ◦C,
the results are in good accordance with the measured values from Kang et al. [15]. However,
after being heat-treated with the described parameters, the samples have a lower hardness
compared to the water quenched samples, as well as in the as-delivered condition shown
in Figure 2.

Contrary to these samples, previously carburized semi-finished parts exhibit a strong
influence on the quenching rate. Within this context, it must be distinguished between both
measurement areas, especially for samples being heat-treated for 3 h. At the measuring
spot 200 µm below the surface, the hardness shows higher values compared to the mid-
section. This can easily be attributed to the increased carbon content in this area since
carbon diffusion is directed from the surface to the mid-section. The hardness increases
more rapidly above averaged quenching rates of 60 K/s, which corresponds to the nominal
quenching rates of 70 K/s and 100 K/s. This is in good agreement with the results from the
ultrasonic phase transformation measurements, where the transformation curves indicated
the formation of martensitic phase fractions. Increasing the holding time for carburization
from 3 h to 6 h, a homogeneous carbon distribution is present in the material. As a result,
the hardness and influence of the quenching rate are identical in the mid-section and near
the surface. Contrary to that, after 3 h of carburization, the mid-section has a significantly
lower carbon content, which ranges between the as-delivered condition and the six-hour
carburization condition. Still, the increase in carbon by additional carburization is sufficient
to improve hardenability. In the case of the samples in the as-delivered condition, the
transformation curves indicated a mainly ferritic phase composition with small amounts
of bainite, which is in good agreement with the resulting hardness. Due to the prior
carburization of three h at 900 ◦C, the phase transformation is shifted towards harder
phases. As a result, the increase in hardness with a rising quenching rate is significantly
more pronounced in the case of the carburized samples. However, the carbon content in the
mid-section for these samples is insufficient for the formation of martensite. While samples
with 6 h of carburization exhibit a pronounced increase in hardness in the mid-section
for an averaged quenching rate above 60 K/s, the ones with 3 h of carburization run
into a plateau.

The resulting hardness of the samples in as-quenched condition show, that the hard-
enability of the complex phase steel can be significantly improved by prior carburization.
Still, the phase transformation curves shown in Section 3.1.4 indicated that an average
quenching rate of up to 70 K/s is insufficient for a complete martensitic microstructure.
Compared to the conventional hot stamping steel 22MnB5, the overall hardenability is
lower. At a quenching rate of 10 K/s, the hardness of 22MnB5 is in the same range as the
hardness below the surface of the carburized CP-W®800. Increasing the quenching rate to
20 K/s and further to 30 K/s significantly improves the hardness of 22MnB5, while only
a slow rise can be seen in the case of the carburized complex phase steel. This is directly
linked to the growth of the martensitic phase fraction of 22MnB5 after hot stamping [35].
Further acceleration of the quenching process does not entail an additional enhancement of
the hardness, as shown in Figure 8. In contrast to this, the carburized complex phase steel
shows a continuous increase in hardness with rising cooling speed. A sufficient quench-
ing rate assumed that after 6 h of carburization at 900 ◦C the hardness of the complex
phase steel exhibits values of around 530 HV0.2 near the surface and 460 HV0.2 in the
mid-section. This hardness is achieved, although a mixed microstructure is present. This
can be explained by the fact that an increase in carbon not only improves the hardenability
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in terms of the transformation kinetics but also increases the hardness of the martensite as
well [45]. As a result, the as-quenched hardness of the carburized complex phase steel is
comparable to the hardness of the fully martensitic 22MnB5 even though other phases like
ferrite and bainite are coexistent in CP-W®800.

Especially in the case of carburized samples with 6 h of heat treatment, the devel-
opment of the hardness suggests, that even higher values are achievable with a further
increase of the quenching rate. The hardness values of water quenched samples shown in
Figure 2, which can be seen as the benchmark in terms of the achievable hardness, confirm
this assumption. At a measuring spot of 200 µm below the surface, carburized samples
exhibit a hardness of around 615 HV and approximately 580 HV. This is slightly higher
compared to the results from Figure 8 with controlled cooling rates between 10 K/s and
70 K/s. Regarding the hardness in the mid-section, the differences are bigger. After water
quenching, the resulting hardness of carburized samples is 130 HV0.2 and 60 HV0.2 higher
compared to the values in Figure 8. In the case of the as-delivered material condition, the
increase in hardness after water quenching is even more pronounced. While the maximum
hardness amounts to around 260 HV0.2 in Figure 8, values of 420 HV0.2 are presented in
Figure 2. It can be derived from the results in Figures 2 and 8 that a further acceleration
of the cooling process will increase the hardness beyond the values identified within the
conducted experiments. However, due to latent heat, it was not possible to investigate
higher average quenching rates under controlled test conditions within this study.

3.3. Metallographic Analysis

After analyzing the hardness of carburized and non-carburized samples after quench-
ing, a qualitative evaluation of the microstructure is conducted. Figure 9 shows the
micrographs after etching with Nital. Three different nominal quenching rates of 30 K/s,
50 K/s, and 70 K/s are depicted. To enable a suitable classification of the results, the
decomposition of the austenitic phase is depicted as well for each cooling rate. To improve
readability, no standard deviation is shown. However, the repeatability of the experimental
results is in the same range as apparent from Figure 7.

As expected, there are distinctive differences between the three material conditions
and the various quenching rates. Regarding the samples being hot stamped from the
as-delivered condition, only small changes in the microstructure are visible. As derived
from the phase transformation curves and the hardness measurements, the microstructure
is mainly composed of ferrite (F). Increasing the quenching rate, areas with bainite (B) also
occur. Martensitic phase fractions are not detectable, which is in good agreement with
previous findings. Before hot stamping, the as-delivered samples exhibited a mixture of
bainite, tempered martensite and ferrite [46]. The lack of martensite also explains the fact
that the hardness in the as-quenched condition of these samples is below the hardness in
as-delivered condition before hot stamping, depicted in Figure 2.

For samples being carburized for 3 h before hot stamping, the microstructure also
exhibits a lot of ferrite for a nominal quenching rate of 30 K/s. Since these micrographs
were taken in the mid-section of the samples, this was expectable from the hardness values.
In the case of the sheets with 6 h of carburization, the amount of the bainitic phase fraction
is significantly higher. These findings are in good agreement with the assumptions derived
from Figure 7. For a cooling rate of 50 K/s, the amount of ferrite decreases in favor of
bainite (B) and possibly tempered martensite, which is hardly distinguishable [47]. As
expected from the transformation curves in Figure 7, the micrographs of the carburized
sheets in Figure 9 show martensitic structures for a nominal quenching rate of 70 K/s.

As already derived from the phase transformation curves and the hardness values,
the micrographs also confirm the decreased hardenability of the complex phase steel in
comparison with 22MnB5. For all presented micrographs, a mixed microstructure with
soft phases like ferrite is present. In contrast, the 22MnB5 exhibits a fully martensitic
microstructure for cooling rates of at least 27 K/s [33].
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3.4. Assessment of Grain Growth

Besides the phase composition, the grain size must be considered in terms of a mi-
crostructural analysis. This is even more apparent regarding the carburization process
lasting for hours and its influence on the austenitization process. Within this work, espe-
cially the grain growth during the hot stamping process is evaluated. For this purpose, the
laser-ultrasound sensor is utilized as well. The grain growth is assessed through ultrasonic
attenuation. The attenuation of an ultrasound signal traveling through the material is
caused by either grain scattering, diffraction, or internal friction [48]. Depending on the
ratio between grain size and ultrasonic wavelength, the scattering of the ultrasonic signal
can be associated with one of three different regimes, which influences the relationship be-
tween the attenuation coefficient and the grain size [49]. A more detailed description of the
procedure for evaluating the grain scattering associated attenuation from raw data under
consideration of other sources for attenuation can be found in [32]. The calculated grain
size from ultrasonic measurement data corresponds to the average value of the cylindrical
measuring volume with the laser spot as base area and the sheet thickness as height.
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Figure 10 shows the grain size development of the three different material conditions
during the austenitization phase of the preceding quenching test. For a qualitative valida-
tion of the grain size, micrographs of etched samples are included in the depiction. A time
of 0 s corresponds to the beginning of the holding time, after heating to the austenitization
temperature of 900 ◦C.
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There is no grain growth neither in the as-delivered nor in the carburized condition.
This can be attributed to the microalloying elements like vanadium, titanium, or niobium.
These alloys retard grain growth due to the solute drag and Zener-drag effect [50]. Es-
pecially the formation of carbides such as NbC exerts a pinning pressure on the grain
boundaries, as concluded in various studies such as [51] or [52]. The measured grain size
during austenitization is in good agreement with the results from Militzer et al. [53]. In
their study, the grain size of the investigated complex phase typed steel was on a constant
level of around 5 µm during 15 min of holding at 900 ◦C.

While the overall grain size of the carburized samples is higher, neither a distinct
influence of the carburization time nor an influence of the austenitization time is observable.
Even though grain growth appears during the several hours of carburization, the grain
size is in the range of 10 ± 2 µm throughout the whole austenitization process. This can
be linked to a grain refinement during the α→µ transformation upon heating [54]. The
austenite grains primarily form at previous austenitic grain boundaries [55] and packet
and block boundaries within martensite [56]. Regarding the micrographs of the etched
samples included in Figure 10, the results determined from the laser-ultrasound sensor are
in good agreement. Especially the grain size of the carburized samples is predicted with
good quality. In terms of the as-delivered condition, the grain size appears to be slightly
overestimated with around 4 µm. Other investigations such as from Heibel et al. [46]
suggest a grain size below 2 µm, which would be in a better agreement with the micrograph.
However, since this grain size is on the absolute lower detection limit on the sensor, the
results are still satisfactory.

While the grain size stability of the CP-W®800 is well known due to the alloy com-
position, the results indicate a sufficient grain size stability in the case of prior carburized
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material as well. To put the result in context, additional experiments are carried out with
the conventional hot stamping steel 22MnB5. To demonstrate the advantages of the car-
burized complex phase steel, the holding time is increased to 6 min. Considering the
additional time for the heating process, the overall heat treatment process is slightly longer
than conventional austenitization procedures at 900 ◦C with around 6 min [57] in total.
However, minor incidents in the production cycle could result in a prolongation of the
furnace lead time. Therefore, the investigation of holding times above conventional dwell
times is expedient to evaluate the robustness of the respective alloys in terms of grain size.
Since previous findings from Figure 10 suggest that the carburization time has no influence
on the grain growth behavior during reaustenitization, only samples being carburized for
three h are taken for the comparison. The respective results as well as two exemplarily
micrographs are shown in Figure 11. To improve the visibility of the measurement data, no
standard deviation is shown in the depiction. In the case of 22MnB5, the average standard
deviation is 6.8 µm and in the case of the carburized CP-W®800 2.5 µm.
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It can be seen, that the 22MnB5 exhibits a significantly more pronounced grain growth
behavior compared to the carburized complex phase steel. Upon reaching the austenitiza-
tion temperature of 900 ◦C the grain size is in the same range of around five to ten microns.
While the grain size stays around 10 µm in the case of the carburized sample, it significantly
increases for the 22MnB5 up to around 30 µm. These results are in good agreement with
the micrographs depicted. Regarding the grain size of 22MnB5, the investigations of Cai
et al. [58] additionally confirm the measurement data in Figure 11. In their study, the
authors identify a grain size of 23 µm after an austenitization time of 5 min at 900 ◦C.
This is slightly lower compared to the depicted values in Figure 11 but lies within the
range of the average standard deviation of ±6.8 µm. In principle, the 22MnB5 exhibits
more scattering regarding the standard deviation, which can be traced back to single large
grains that influence the measurement [53], as visible from the micrograph. Based on these
results, it can be stated, that 22MnB5 is more prone to grain growth, even at a comparable
low austenitization temperature of 900 ◦C. The grain size does not only influence the
mechanical properties but also the phase transformation during quenching [59]. Therefore,
improving fine grain stability is one of the current research trends in hot stamping [60].
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4. Conclusions

In this study, the influence of additional carburization of semi-finished sheets of a
complex phase steel before hot stamping on the microstructural evolution during austeniti-
zation and quenching was investigated. The results lead to the following conclusions:

• Additional carburization enhances the hardenability of the CP-W®800 steel sheets.
For a given quenching rate, the phase transformation is shifted to lower temperatures,
which is accompanied by the formation of harder phases.

• Due to a gradient in carbon content, the hardenability varies along the sheet thickness.
• Although a multiphase microstructure was present for all quenching rates and material

conditions, the hardness of fully martensitic 22MnB5 could partially be exceeded,
which is a consequence of the influence of carbon content on martensitic hardness.

• Special care has to be taken in terms of the process design to ensure a sufficient
heat transfer during cooling since the mechanical properties exhibited a distinctive
dependence from the quenching rates within the investigated range of parameters.

• The in-situ study of the grain growth behavior showed that the additional carbur-
ization process leads to an increase in prior austenite grain size from 4 µm to 10 µm
after hot stamping. However, grain size stability was not affected by the carburization
process. Compared to the conventional 22MnB5 the carburized complex phase steel
exhibits higher process robustness in terms of austenite grain size control while having
comparable mechanical properties.

• The material behavior of CP-W®800 during hot stamping underlines the suitability of
the recommended scope of application in small batch size productions and prototyp-
ing. The robustness regarding the grain size during austenitization is advantageous in
these manufacturing processes where fluctuations in the heat treatment can occur due
to a lower degree of automation. Furthermore, cycling time is not an issue and so a
sufficient cooling performance of tools can be ensured.

5. Outlook

Within this study, the influence of additional carburization treatment on the evolution
of microstructure during hot stamping was investigated. Within the investigated parame-
ters, all material conditions exhibited a mixed microstructure after quenching. However,
a quantification of the respective phase fraction was not undertaken. Therefore, further
research should not only focus on higher cooling rates up to 100 K/s but also include
quantitative phase fraction analysis. In the context of faster cooling, occurring latent heat
must be compensated in future experiments to guarantee constant quenching rates. Fur-
thermore, the additional analysis should include higher austenitization temperatures, since
a heat treatment temperature of 900 ◦C is in the lower range of relevant carburization and
austenitization temperatures.
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